用户名: 密码: 验证码:
污水生物处理过程建模、优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于活性污泥法的污水生物处理是利用微生物去除污水中有机污染物的一种有效方法,是当前有机污水处理,特别是城市生活污水处理的主要途径。其过程是一个外界干扰强烈、时变性强、耦合性强、非线性的复杂动态生物化学过程。由于微生物在污水中的生存规律及所依赖的条件还没有被完全认识,现场试验又周期长、成本高,因此利用基于复杂机理建立模型的计算机仿真方法是污水处理相关问题研究中的重要手段之一
     以ASMs模型为代表的ASP过程模型中,虽然对过程进行了完整的描述,但是其过于复杂,并不能适用于实践中的污水处理过程的模拟;而实际污水厂运行中DO控制不稳定,使得出水水质得不到保证,同时也造成了大量的曝气成本浪费,不符合国家的节约型社会发展思路。而对于污水处理这样一种靠政府扶持的非营利、高能耗企业来讲,过大的处理成本使得企业入不敷出,生存状况堪忧。本文于理论模型、控制方法以及在实际污水厂的控制等问题展开研究,并取得一定的成果。
     在过程模型与仿真软件包的研究中,针对现有复杂模型无法直接应用于实际污水处理厂模拟的现状,对ASM1进行分解、简化,得到简化的有机碳去除模型,该模型简单可靠,对以除碳为目的的污水处理特定过程有着重要的意义;同时,利用Matlab/Simulink建立了完整的ASP过程模拟软件包,并将其应用于ASP的模拟与验证,通过改进聚类方法,对仿真软件包运行数据进行合理分类,并以此建立了过程的多模型表述,仿真结果显示,多模型建模方法有利于提高过程建模精度,并为后续控制相关问题的研究提供模型支持。
     在ASP过程的DO控制相关问题的研究中,针对DO控制不稳定、曝气成本过高等问题,提出了模型预测控制、结合优化神经网络的GMC控制等两种控制策略用于改进PI控制中存在的缺陷。其中,结合优化神经网络的GMC控制策略用于解决有机碳消耗模型中的DO浓度控制问题,该策略融合了神经网络能够无限逼近非线性过程的特性,使得过程中的未知机理得以更准确的模拟,与现有控制策略相比具有更高效、可靠的控制性能,而且能够降低处理成本,节约运行费用。
     在ASP过程的优化研究中,结合出水底物浓度过高和处理成本过高等两大突出问题,提出了一种将这两者综合起来考虑的ASP优化方法,以有机物排放为限制条件、以降低污水处理主要成本为目标,将克隆选择算法首次应用于ASP过程的多变量优化控制,对比仿真实验验证了该策略的优越性。
Activated sludge process based wastewater biological treatment is an effective method that makes the use of microorganisms to remove organic pollutants in wastewater, and it is the main way of current organic wastewater treatment, especially in urban wastewater treatment. The nonlinear process is a complex dynamics with the characters of strong outside interference, large time-varying and strong coupling. The laws of survival and the dependents on the conditions of the microorganisms in wastewater environment have not been fully aware. Because of the field test takes a long cycle and a higher cost, so the computer simulation based on some complex mechanism models is particularly important in the research of wastewater treatment.
     ASM series models of the ASP processes has made great strides in recent decades. Although the process was complete description in these models, but its too complicated to be directly applied in the actual wastewater treatment plant for process simulation; The stability of DO control is still not enough, which makes the water quality can not be guaranteed, but also caused a lot of aeration costs wasted for wastewater treatment enterprises. The WWTPs are non-profit, high energy consumption and supported by government finances. Large processing costs make them ends meet and survival worrying, and it also does not meet the national saving society development ideas. In this thesis, a study to address the problem in the ASP model, process control and control practice in WWTP is done and it has achieved the following contributions.
     In the researches of the process model and simulation software, according to the status for complex model can not be applied directly to the actual WWTPs, a simplified organic carbon remove model is by exploded and simplified from the ASM1. The model is simple and reliable to handle a specific process, which is for the purpose of carbon remove operation of the wastewater treatment. Also, a complete ASP process simulation package is developed by using Matlab/Simulink in this thesis, and it is applied to the simulation the ASP process to verification, and achieved good results. Reasonable classification of the running data from the simulation software packages through improved clustering method results to the establishment of the multi-model representation of the process. The simulation results show that the multi-modeling methods improved the accuracy of the process modeling, and it can be the model support in the subsequent control problem researches.
     In the researches of the DO concentration control and the other relational problems in the ASP process, some new strategies are proposed based on the MPC, optimized NN based GMC. The optimized NN based GMC control strategy is used to solve the control problem of DO concentration in the organic carbon remove process. The strategy combined with the characteristics that the neural network can infinite approximation to the nonlinear process, and use the NN to represent the unknown parts of the process will make more accurate simulation results. It is more efficient and reliable performances than others. And it also reduces the processing costs and saving the operating costs.
     In the researches of the ASP process optimization, a new strategy is proposed to optimize the ASP process combing with the two outstanding problems together, which are high effluent organic concentration and high processing costs of the ASP process. It takes the flowrate of wastage and the concentration of dissolved oxygen (DO) as control parameters and regards effluent quality as restriction factor and operation cost as performance index. And the clonal selection algorithm is first time used in the multivariable optimal control in ASP process, which performance good in the comparing simulation study.
引文
[1]中华人民共和国国务院.国家环境保护“十一五”规划[R],2007.12.
    [2]中华人民共和国国家环境保护总局,国家统计局.中国绿色国民经济核算研究报告2004(公众版)[R],2006.9.
    [3]中华人民共和国国家环境保护总局,国家统计局.2009年中国环境经济核算报告[R].2012.1.
    [4]周军,王佳伟,应启锋,王洪臣.城市污水再生利用现状分析[J].给水排水,2004,30(2):12-16.
    [5]中华人民共和国国务院.中华人民共和国国民经济和社会发展第十二个五年规划纲要[R],2011.3.
    [6]中华人民共和国国务院.中华人民共和国国民经济和社会发展第十一个五年规划纲要[R],2006.3.
    [7]于广平,苑明哲,王宏.活性污泥法污水处理数学模型的发展和应用[J].信息与控制,2006,35(5):614-618.
    [8]Gujer W. Activated sludge modeling:past, present and future[J]. Water Science and Technology,2006,53(3):111-119.
    [9]Dold P. L., Ekama G. A., Marais G. R. The activated sludge process.1.A General Model for the Activated Sludge Process[J]. Progress in Water Technology,1980,12(6): 47-77.
    [10]Vanhaandel A C, Ekama G A, Marais G V. The activated sludge process.3. single sludge denitrification[J]. Water Research,1981,15(10):1135-1152.
    [11]Hauduc H, Gillot S, Rieger L, et al. Activated sludge modelling in practice:an international survey[J]. Water Science and Technology,2009,60(8):1943-1951.
    [12]Lesouef A, Payraudeau M, Rogalla F, et al. Optimizing nitrogen removal reactor configurations by on-site calibration of the iawprc activated-sludge model[J]. Water Science and Technology,1992,25(6):105-123.
    [13]Fall C, Loaiza-Navia J, Esparza-Soto M. Full activated sludge model no.1 calibration experience at a medium-size WWTP in Mexico [J]. Water Science and Technology,2009,60(12):3069-3082.
    [14]Levstek M, Plazl Ⅰ, Koloini T. Modelling of a pilot wastewater treatment plant operated with variable inflows[J]. Chemical and Biochemical Engineering Quarterly, 2006,20(1):85-91.
    [15]蓝梅,李雯,吴宏举,等.基于ASM1的城市污水厂优化诊断与改造[J].中国给水排水,2009(12):65-68.
    [16]季民,霍金胜,胡振苓,等.活性污泥法数学模型的研究与应用[J].中国给水排水,2001,17(8):18-22.
    [17]张代钧,卢培利,陈丹琴,等.传统活性污泥法COD去除及脱氮改造的模拟[J].环境科学学报,2002,22(04):448-453.
    [18]邹亮,曾光明,黄国和,等.活性污泥系统的回流污泥量控制策略[J].中国给水排水,2004,20(1):1-6.
    [19]Stamou A, Katsiri A, Mantziaras I, et al. Modelling of an alternating oxidation ditch system[J]. Water Science and Technology,1999,39(4):169-176.
    [20]Lesage N, Sperandio M, Lafforgue C, et al. Calibration and application of a 1-D model for oxidation ditches[J]. Chemical Engineering Research & Design,2003,81(A9): 1259-1264.
    [21]Stamou A I. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description[J]. Water Science and Technology,1997,36(5):269-276.
    [22]邓荣森,杜康平,王涛,等.活性污泥法动力学模型与氧化沟设计[J].中国给水排水,2007,23(24):38-41.
    [23]揭大林,操家顺,花月,等.WEST仿真软件在污水处理中的应用研究[J].环境工程学报,2007,1(3):138-141.
    [24]刘广立,王玉珏,施汉昌,等.活性污泥工艺模拟系统软件在氧化沟中的应用[J].中国环境科学,2001,21(4):359-361.
    [25]Mace S, Dosta J, Gali A, et al. Optimization of biological nitrogen removal via nitrite in a SBR treating supernatant from the anaerobic digestion of municipal solid wastes[J]. Industrial & Engineering Chemistry Research,2006,45(8):2787-2792.
    [26]Coelho M, Russo C, Araujo O. Optimization of a sequencing batch reactor for biological nitrogen removal[J]. Water Research,2000,34(10):2809-2817.
    [27]孙光伟,毛弘毅.序批式活性污泥法数学模型的改进[J].哈尔滨建筑大学学报,2001,34(4):37-39.
    [28]Back S H, Jeon S K, Pagilla K. Mathematical modeling of aerobic membrane bioreactor (MBR) using activated sludge model no.1 (ASM1)[J]. Journal of Industrial and Engineering Chemistry,2009,15(6):835-840.
    [29]Jiang T, Liu X, Kennedy M D, et al. Calibrating a side-stream membrane bioreactor using Activated Sludge Model No.1[J]. Water Science and Technology,2005,52(10-11): 359-367.
    [30]Plattes M, Henry E, Schosseler P M, et al. Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater[J]. Biochemical Engineering Journal,2006,32(2):61-68.
    [31]J. Alex, L. Benedetti, J. Copp, et al. Benchmark Simulation Model No.1 (BSM1)[R]. Prepared by the IWA Taskgroup on Benchmarking of Control Strategies for WWTPs,2008.3.
    [32]Maryns F, Bauwens W. The application of the activated sludge model no.1 to a river environmen[J]. Water Science and Technology,1997,36(5):201-208.
    [33]Magri A, Corominas L, Lopez H, et al. A model for the simulation of the SHARON process:pH as a key factor[J]. Environmental Technology,2007,28(3):255-265.
    [34]Wang C, Zeng Y Z, Lou J, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model [J]. Biochemical Engineering Journal,2007,33(3):217-227.
    [35]Barker P. S., Dold P. L. General model for biological nutrient removal activated-sludge systems:model presentation[J]. Water Environment Research.1997, 69(5):969-984.
    [36]Brdjanovic D, Van Loosdrecht M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder[J]. Water Research,2000,34(3): 846-858.
    [37]van Veldhuizen H M, van Loosdrecht M, Brandse F A. Model based evaluation of plant improvement strategies for biological nutrient removal [J]. Water Science and Technology,1999,39(4):45-53.
    [38]Murnleitner E, Kuba T, van Loosdrecht M, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J]. Biotechnology and Bioengineering,1997,54(5):434-450.
    [39]Smolders G, Klop J M, van Loosdrecht M, et al. A metabolic model of the biological phosphorus removal process.1. effect of the sludge retention time[J]. Biotechnology and Bioengineering,1995,48(3):222-233.
    [40]Kuba T, van Loosdrecht M, Murnleitner E, et al. Kinetics and stoichiometry in the biological phosphorus removal process with short cycle times[J]. Water Research,1997, 31(4):918-928.
    [41]Thesen A. Some notes on systems models and modeling[J]. International Journal of Systems,1974,5(2):145-152.
    [42]卢培利,张代钧,刘颖,王飞.活性污泥法动力学模型研究进展和展望[J].重庆大学学报,2002,25(3):109-114.
    [43]Gernaey K V, van Loosdrecht M, Henze M, et al. Activated sludge wastewater treatment plant modelling and simulation:state of the art[J]. Environmental Modelling & Software,2004,19(9):763-783.
    [44]彭永臻,刘智波,Takashi MINO污水强化生物除磷的生化模型研究进展[J].中国给水排水,2006,22(4):1-5.
    [45]孙洪伟,彭永臻,王淑莹,等.厌氧氨氧化生物脱氮技术的演变、机理及研究进展[J].工业用水与废水,2008,39(1):7-11.
    [46]Hu Z R, Wentzel M C, Ekama G A. Modelling biological nutrient removal activated sludge systems-a review[J]. Water Research,2003,37(14):3430-3444.
    [47]Wentzel M C, Ekama G A, Marais G R. Process and modelling of nitrification denitrification biological excess phosphorus removal systems-a review[J]. Water Science and Technology,1992,25(6):59-82.
    [48]Rieger L, Koch G, Kuhni M, et al. The EAWAG Bio-P module for activated sludge model No.3[J]. Water Research,2001,35(16):3887-3903.
    [49]Guclu D, Dursun S. Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN)[J]. Clean-Soil Air Water,2008, 36(9):781-787.
    [50]Akratos C. S., Papaspyros J., Tsihrintzis V. A. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands[J]. Chemical Engineering Journal,2008,143(1-3):96-110.
    [51]Ginoris Y. P., Amaral A. L., Nicolau A., et al. Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system[J]. Water Research,2007,41(12):2581-2589.
    [52]Hong S. H., Lee M. W., Lee D. S., et al. Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks[J]. Biochemical Engineering Journal,2007,35(3):365-370.
    [53]Lee M. W., Hong S. H., Choi H., et al. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors[J]. Process Biochemistry,2008,43(10): 1107-1113.
    [54]Novotny V., Capodaglio A. G. Strategy of stochastic real-time control of wastewater treatment plants[J]. ISA Transactions,1992,31(1):73-85.
    [55]Novotny V., Capodaglio A., Jones H. Real-time control of wastewater treatment operations[J]. Water Science and Technology,1992,25(4-5):89-101.
    [56]Chen H. W., Ning S. K., Yu R. F., et al. Optimizing the monitoring strategy of wastewater treatment plants by multiobjective neural networks approach[J]. Environmental Monitoring and Assessment,2007,125(1-3):325-332.
    [57]Chen Z., Ren N., Wang A., et al. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater[J]. Water Research,2008,42(13):3385-3392.
    [58]Kotti M. E., Parisis N. A., Vlessidis A. G., et al. Pattern recognition techniques for the classification of wastewater samples based on their UV-absorption spectra and their fractions after applying MW-fractionation techniques[J]. Desalination,2007,213(1-3): 297-310.
    [59]J. Ferrer, M.A. Rodrigo, A. Seco, et al. Energy saving in the aeration process by fuzzy logic control [J]. Water Science and Technology,1998,38(3):209-217.
    [60]Ruey-Fang Yu, Shu-Liang Liaw, Cheng-Nan Chang, et al. Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system[J]. Water Science and Technology,1998,38(3):271-280.
    [61]Bongards M. Improving the efficiency of a wastewater treatment plant by fuzzy control and neural network[J]. Water Sci Technol,2001,43(11):189-196.
    [62]A Punal, E Roca, M Lema. system for monitoring and diagnosis of anaerobic wastewater treatment plants[J]. Water Research,2002(36):2656-2666.
    [63]E.F. Carrasco, J. Rodriguez, A. Punal, E. Roca, J.M. Lema. Diagnosis of acidification states in an anaerobic wastewater treatment plant using a fuzzy-based expert system[J]. Control Engineering Practice,2004,12(1):59-64.
    [64]Bongards M, Ebel Hilmer T. Predictive control of wastewater works by neural networks[C]. proceedings of the World Automation Congress,2004,17:397-402.
    [65]R. Piotrowski, M. A. Brdys, K. Konarczak, et al. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice,2008(16): 114-131.
    [66]B. Holenda, E. Domokos, A. Redey, J. Fazakas. Dissolved oxygen control of activated sludge wastewater treatment process using model predictive controlJJ]. Computers & Chemical Engineering,2008(32):1270-1278.
    [67]杜树新.污水生化处理过程建模与控制[J].控制理论与应用,2002,19(5):660-666.
    [68]安坤,柳春平.氧化沟系统中溶解氧智能控制系统的研究[J].中山大学学报(自然科学版),2006(6):504-507.
    [69]刘超彬,乔俊飞.污水处理过程中溶解氧的模糊神经网络控制[J].山东大学学报(工学版),2005,35(3):83-87.
    [70]于广平,张平.仿人智能PID控制及在污水处理溶解氧中的应用[J].微计算机信息,2006,2(1):13-15.
    [71]张平,王宏,范明哲.污水生化处理过程中溶解氧的非线性控制[J].仪器仪表学报,2008,29(2):387-391.
    [72]Hongtao Ye, Fei Luo, Yuge Xu. Dissolved oxygen generic model control of wastewater treatment process based on immune optimization least squares support vector machine[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China,2010:5082-5085.
    [73]Yang Ping, Zhao De'an, Lian Xianguo. The research for dissolved oxygen experts fuzzy control system in sewage treatment[C]. International Forum on Computer Science Technology and Applications,2009:359-362.
    [74]Edward Ardern, William T. Lockett. Experiments on the oxidation of sewage without the aid of filters[J]. Journal of the Society of Chemical Industry,1914,33(10): 523-539.
    [75]姚重华,刘漫丹.环境工程仿真与控制(第三版)[M].北京:高等教育出版社.2010.7.
    [76]J. Monod. The Growth of Bacterial Cultures[J]. Annual Review of Microbiology, 1949(3):371-394.
    [77]Leonor Michaelis, Maud Menten. Die Kinetik der Invertinwirkung[J]. Biochem. Z., 1913(49):333-369.
    [78]Eckenfelder W W, Conor D. Biological Waste Treatment[M]. New York:Pergamon Press,1961.
    [79]Wang B Z, Li G Q, Wang L, et al. Design and operation of a WWWP with submerged biofilm process[C]. IWA 1st World Congress, Paris, France,2000:3-7.
    [80]Alonzo W. Lawrence, Perry L. McCarty. Unified Basis for Biological Treatment Design and Operation[J]. Journal of the Sanitary Engineering Division, ASCE,1970, 96(3):757-778
    [81]McKinney R E, San J. Mathematics of complete mixing activated sludge[J]. Journal of the Sanitary Engineering Division, ASCE.1962,88(3):87-113.
    [82]Jones, J. H. General circulation and water characteristics in the Southern California Bight[R]. Rep. sth. Calif, cstl Wat. Res. Proj. TR101,1971.
    [83]Henze M, Grady C P, Gujor W, et al. Activated sludge model No.1[R]. London, England:International Association on Water Pollution Research and Control (IAWPRC), 1986.
    [84]W. Gujer, M. Henze, T. Mino, et al. The Activated Sludge Model No.2:Biological phosphorus removal [J]. Water Science and Technology,1995,31(2):1-11.
    [85]Mogens Henze, Willi Gujer, Takahashi Mino, et al. Activated sludge model No.2D, ASM2D[J]. Water Science and Technology,1999,39(1):165-182.
    [86]Willi Gujer, Mogens Henze, Takahashi Mino, Mark van Loosdrecht. Activated sludge model No.3[J]. Water Science and Technology,1999,39(1):183-193.
    [87]E. Ducleaux. Traite de microbiologie[M]. Paris:Masson,1898.
    [88]Donald R. Washington and James M. Symons. Volatile Sludge Accumulation in Activated Sludge Systems[J], Water Pollution Control Federation,1962,34(8):767-790.
    [89]Nandor Porges. Snake Venoms, Their Biochemistry and Mode of Action[J]. Science, 1953,117(3029):47-51.
    [90]Newell Allen, Shaw J. C., Simon Herbert A. Elements of a theory of human problem solving[J]. Psychological Review,1958,65(3):151-166.
    [91]E. A. Dawes and D. W. Ribbons. The Endogenous Metabolism of Microorganisms [J]. Annual Review of Microbiology,1962(16):241-264.
    [92]S. J. Pirt. The Maintenance Energy of Bacteria in Growing Cultures[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences,1965,163(991): 224-231.
    [93]C. P. L. Grady Jr., R. E. Roper Jr. A model for the bio-oxidation process which incorporates the viability concept[J]. Water Research,1974,8(7):471-483.
    [94]曹海彬,张代钧,卢培利.活性污泥模型进水COD组分的测定方法[J].重庆大学学报:自然科学版,2005,28(9):83-87.
    [95]卢培利,张代钧,严晨敏,等.活性污泥法动力学模型应用中的参数校核[J].环境科学与技术,2002,25(5):13-14.
    [96]张代钧,卢培利,严晨敏,等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究[J].环境科学学报,2003,23(3):332-337.
    [97]张天,张代钧,卢培利,等.基于微分代数方法的生物除磷模型参数结构可识别性研究[J].环境科学学报,2010(1):97-102.
    [98]Abusam. Development of a Benchmarking methodology for evaluating oxidation ditch control strategies[D]. (PHD). The Netherlands:Wageningen University,2001.
    [99]X. J. DU, X. H. HAO, H. J. LI and Y. W. MA. Study on Modeling and Simulation of Wastewater Biochemical Treatment Activated Sludge Process[J]. Asian Journal of Chemistry,2011,23(10):4457-4460.
    [100]X. J. Du, X. H. Hao, A. M. An. Study on Modeling and Simulation of BSM1 With Matlab[J]. Lecture Notes in Electrical Engineering,2011(126):861-866.
    [101]百度百科,http://baike.baidu.com/view/10598.htm
    [102]Takacs I., Patry G. G., Nolasco D. A Dynamic Model of the Clarification Thickening Process[J]. Wat. Res.,1991,25(10):1263-1271.
    [103]Mohand Mokhtari, Michel Marie. Matlab与Simulink工程应用[M].赵彦玲,吴淑红,译.北京:电子工业出版社,2002.
    [104]商建东.专家智能pH控制器及其应用[J].化工自动化及仪表,1998(3):46-48.
    [105]邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,1997.
    [106]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999.
    [107]欧林林,王先路,陈长琦,等.活性污泥系统中溶解氧模糊控制器的研究[J].自动化与仪表,2003,18(2):28-31.
    [108]J. Alex, J. F. Beteau, J. B. Copp, et al. Benchmark for evaluating control strategies in wastewater treatment plants[C]. Proceeding of ECC99', Karlsruhe, Germany,1999: 1-6.
    [109]金晓明,王树青,荣冈.先进控制技术及应用,第四讲:模型预测控制及其工业应用[J].化工自动化及仪表,1999,26(5):67-74.
    [110]Richalet J., Rault A., Testud J. L., et al. Model predictive heuristic control: Applications to industrial processes[J]. Automatica,1978,14(2):413-428.
    [111]于霞,刘建昌,李鸿儒.时变系统控制方法综述[J].控制与决策,2011,26(9):1281-1287,1294.
    [112]Copp J. B. The COST simulation benchmark:Description and simulator manual (COST Action 624 & COST Action 682) [R]. Luxembourg:Office for Official Publications of the European Union,2002.
    [113]Lee P. L., G. R. Sullivan. Generic Model Control[J]. Comput. Chem. Engng., 1988(12):573-580.
    [114]Lee P. L., R. B. Newell, G. R. Sullivan. Generic Model Control-A Case Study[J]. Canadian Journal of Chemical Engineering,1989(67):478-484.
    [115]K. Yamuna, K. Gangiah. Adaptive generic model control:dual composition control of distillation[J]. AIChE Journal,1991,37(11):1634-1644.
    [116]Guo Bingjun, YU Jinshou. A common model controller[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China,2004(1): 805-808.
    [117]B. J. Cott, S. Macchietto. Temperature Control of Exothermic Batch reactors using Generic Model Control[J]. Industrial Engineering Chemical Research,1989(28): 1177-1184.
    [118]S. Sujatha, N. Pappa. GMC Design Based on SVM Model of Batch Reactor[J]. International Journal of Computer Applications,2010,1(20):76-80.
    [119]S. Sujatha, N. Pappa. GA based optimal control of a batch reactor with SVM tuned GMC[C].2011 IEEE International Conference on Control Applications (CCA),2011: 1256-1261.
    [120]P. D. Signal, P. L. Lee. Robust stability and performance analysis of generic model control (GMC)[J]. Chemical Engineering Communications,1993(124):57-76.
    [121]Ye Jun, Zhang Xinhua. High speed learning algorithm for a multiplayer feedforward neural network and its application[J]. Control and Decision,2002(17): 817-819.
    [122]J. Fernandez de Canete, A. Garcia-Cerezo, I. Garcia-Moral. Direct control with radial basis function networks:Stability analysis and applications[J]. Journal of Systems Architecture,1998(44):583-596.
    [123]Martin Pottmann, H. Peter Jorgl. Radial Basis Function Networks for Internal Model Control[J]. Applied Mathematics and Computation,1995(70):283-298.
    [124]Dimitris C. P., Ungar L. H. A hybrid neural network-first-principles approach to process modeling[J], AIChE Journal,1992,38(10):1499-1511.
    [125]Thompson M. L., Kramer M. A. Model chemical processes using priori knowledge and neural networks[J]. AIChE Journal,1994,40(8):1328-1340.
    [126]Pottman M., Pearson R.K. Block-Oriented NARMAX Models with Output Multiplicities[J]. AIChE Journal,1998(44):131-140.
    [127]G.乌尔松,B.纽厄尔.污水处理系统的建模、诊断和控制[M].高景峰,彭永臻,译.北京:化学工业出版社,2005.
    [128]J. Abonyi, J. Madar and F. Szeifert. Combining first principles models and neural networks for generic model control [J]. Springer Engineering Series,2002:111-122.
    [129]M. L. Thompson, M. A. Kramer. Model chemical processes using priori knowledge and neural networks[J]. AIChE Journal,1994,40(8):1328-1340.
    [130]N. V. Bhat, J. J. McAvoy. Determining model structure for neural models by network stripping[J]. Computers & Chemical Engineering,1992,16(4):271-281.
    [131]梅家斌.遗传算法在神经网络权值优化中的应用[J].武汉科技学院学报,2001,14(3):23-25.
    [132]Debarchana Ghosh, Rajarshi Guha. Use of genetic algorithm and neural network approaches for risk factor selection:A case study of West Nile virus dynamics in an urban environment[J]. Computers, Environment and Urban Systems,2010(34):189-203.
    [133]D. Dasgupta. Information processing mechanisms of the immune system[M]. New Ideas in Optimization, D. W. Corne, M Dorigo, and F. Glover (Ed.), Berkshire, UK: McGraw-Hill,1999.
    [134]Berna H. U., Sadan K. K. A review of clonal selection algorithm and its applications[J]. Artificial Intelligence Review,2011(36):117-138.
    [135]L. N. de Castro, F. J. von Zuben. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation,2002,6(3): 239-251.
    [136]X. Wang, X. Z. Gao, S. J. Ovaska. Artificial immune optimization methods and applications [C]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hague, Netherlands,2004:3415-3420.
    [137]G. L. Ada, G. J. V. Nossal. The clonal selection theory[J]. Scientific American, 1987,257(2):50-57.
    [138]L. N. de Castro, J. Timmis. Artificial Immune Systems:A New Computational Intelligence Approach [M]. London, UK:Springer Verlag,2002.
    [139]李恒杰,郝晓弘,曾贤强.基于克隆选择算法的非线性优化迭代学习控制[J].吉林大学学报(工学版),2010,40(4):111-116.
    [140]解学书.最优控制理论与应用[M].北京:清华大学出版社,1986.
    [141]张春芝.活性污泥法多变量最优控制的遗传算法实现[J].北京工业职业技术学院学报,2005,4(2):1-5.
    [142]Harris C. J. Modelling and adaptive control of urban wastewater treatment plants[C]. Environmental System Planning, Design, and Control of Proc IF AC Symp, Kyoto, Japan,1977:1-5.
    [143]Hamalainen R. P., Halme A., Gyllenberg A. A control model for activated sludge wastewater treatment process[C]. Proc IF AC 6th World Congress, Boston, Mass.,1980: 1-7.
    [144]Cheruy A., Panzarella L., Denat J. P. Multimodel simulation and adaptive stochastic control of an activated sludge process[C]. Modelling and Control of Biotechnological Processes of Proc IFAC Symp, Helsinki, Finland,1982:1-6.
    [145]Sincic D., Bailey E. Optimal periodic control of activated sludge processes I. Results for the base case with monod/decay kinetics[J]. Wat. Res.,1978(12):47-53.
    [146]S. Y. S. Yeung, Sincic D., Bailey E. Optimal periodic control of activated sludge Processes Ⅱ. Comparison with conventional control for structured sludge Kinetics[J]. Wat. Res.,1980(14):77-83.
    [147]Chen M. Stochastic modelling and stochastic optimization of chemical engineering process[D]. (PHD). Department of Chemical Engineering, Kansas State University, Manhattan, Kansas,1969.
    [148]Kabouris J. C., Georgakakos A. P. Optimal control of the activated sludge Process[J]. Wat. Res.,1990,24(10):1197-1208.
    [149]Angelbeck D. I., Shah Alam A. B. Simulation studies on optimization of the activated sludge process[J]. J. WPCF,1978,50(1):31-39.
    [150]Kabouris J. C, Georgakakos A. P., Camara A. Optimal control of the activated sludge process:Effect of sludge storage[J]. Wat. Res.,1992,26(4):507-517.
    [151]彭永臻,王宝贞,王淑莹.活性污泥法的多变量最优控制Ⅰ.基础理论与DO浓度对运行费用的影响[J].环境科学学报,1998,18(1):11-19.
    [152]王洪臣.城市污水处理厂运行控制和维护管理[M].北京:科学出版社,2002.8.
    [153]冯虚.支持向量机在污水处理中的节能应用研究[D].电子科技大学,2009.5.
    [154]彭永臻,王宝贞,王淑莹.活性污泥法的多变量最优控制Ⅱ.限制有机物(BOD)的排放总量[J].环境科学学报,1998,18(1):20-27.
    [155]彭永臻,王宝贞,王淑莹,黑田正和.活性污泥法的多变量最优控制Ⅲ.限制最高和同时限制平均与最高出水BOD浓度[J].环境科学学报,1998,18(2):128-136.
    [156]Liu Z. W., Zhang C. Z., Wang X. Y., et al. Method of optimal control for wastewater treatment process based on genetic algorithms [J]. Computers and Applied Chemistry,2007,24(7):959-962.
    [157]Xue W. T., Wu X. B., Xu Z. L. Immune programming based on double mutation operators[J]. Control and Decision,2007,22(12):1411-1416.
    [158]Ye H. T., Luo F., Xu Y. G., et al. Optimal control of wastewater treatment process based on novel Immune Algorithm[J]. Journal of South China University of Technology (Natural Science Edition),2010,38(2):137-141.
    [159]Par Samuelsson, Bjorn Halvarsson, Bengt Carlssonb. Cost-efficient operation of a denitrifying activated sludge process[J]. Water Research,2007(41):2325-2332.
    [160]A. Stare, D. Vrecko, N. Hvala, S. Strmcnik. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs:A simulation study[J]. Water Research,2007(41):2004-2014.
    [161]A. Rivas, I. Irizar, E. Ayesa. Model-based optimisation of Wastewater Treatment Plants design[J]. Environmental Modelling & Software,2008(23):435-450.
    [162]Xavier Flores-Alsina, Alejandro Gallego, Gumersindo Feijoo, Ignasi Rodriguez-Roda. Multiple-objective evaluation of wastewater treatment plant control alternatives[J]. Journal of Environmental Management,2010(91):1193-1201.
    [163]R. B. Murphy, B. R. Young, V. Kecman. Optimising operation of a biological wastewater treatment application[J]. ISA Transactions,2009(48):93-97.
    [164]Raynitchka Tzoneva. Optimal PID Control of the Dissolved Oxygen Concentration in the Wastewater Treatment[C]. Proceedings of AFRICON 2007, Windhoek, Namibia, September,2007:1-7.
    [165]M. Beck. Identification, estimation and Control of Biological Wastewater Treatment Processes[J]. Proc. Inst. Elec. Eng.,1986(133):254-264.
    [166]P. L. Dold, M. C. Wentzel, A. E. Billing, G. A. Ekama, and G. v. R. Marais, Activated sludge systems simulation programs[C]. Water Research Commission, South Africa,1991(01):1-7.
    [167]IWA Benchmark工作组官方网站www.benchmarkwwtp.org
    [168]I. Nopens, L. Benedetti, U. Jeppsson, et al. Benchmark Simulation Model No.2: finalization of palnt layout and default control strategy[J]. Water Science and Technology,2010,62(9):1967-1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700