用户名: 密码: 验证码:
基于生命周期理论的畜禽养殖跨介质污染防治技术评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽养殖污染已经成为我国面源污染的主要贡献者之一,目前主要的污染防治技术大都着重于单一环境介质的污染治理,忽略了畜禽养殖过程中产生的跨介质污染问题,缺乏系统和全过程性的综合防治思想。而在欧盟、美国等发达国家针对跨介质污染已开展了大量研究并形成最佳可行技术参考等法律性文件。本论文针对畜禽养殖跨介质污染问题,结合国内目前法律法规及污染防治现状,通过对40多家不同技术类型、规模、区域特点的典型畜禽养殖企业的调研,开展对畜禽养殖跨介质污染防治技术评估的研究,建立了畜禽养殖跨介质污染生命周期价模型,并系统的评价了禽畜养殖的生态环境问题。主要取得以下研究成果。
     以EDIP2003生命周期评价理论为基础,结合我国畜禽养殖跨介质污染的特征,通过文献研究、现场调研、专家打分、公众调查等研究方法,构建了畜禽养殖跨介质污染生命周期评价模型。并通过对沼气工程型和生物发酵床型畜禽养殖企业进行深入调研和现场实测,利用层次分析法对畜禽养殖不同阶段所产生的污染物总量进行核算,针对不同工艺的跨介质污染现状,对其环境影响、经济效益等进行了对比分析研究。
     根据构建的评估模型和跨介质污染的特征,将畜禽养殖分为原料系统、养殖系统和废物处置系统三个不同阶段,采用定量和定型相结合的方法,从环境酸化、全球暖化、不可再生能源消耗和富营养化四个要素对两种不同工艺进行跨介质污染评估。从四个要素的特征化、归一化角度,对其环境影响程度进行量化计算,采用沼气工程工艺的四个要素的影响潜势计算结果分别为:ED5.15×10-3、GWP1.73×10-2、AP4.30×10-2和EP1.38×10-3;采用生物发酵床工艺的计算结果为:ED7.25×10-3、GWP1.35×10-2、AP3.22×10-2和EP4.55×10-3。两种工艺可能造成的四种环境影响潜势按其大小依次均为:环境酸化、全球暖化、不可再生能源消耗和富营养化。
     两种工艺的环境影响潜势对比分析结果表明,原料生产环节由于耗能大、生产链长,对生命周期内的环境影响贡献最为突出;生猪饲养环节对环影响主要影响为温室气体排放;废物处理环节带来的影响主要表现为环境酸化和全球暖化。生物发酵床因废物处理环节工艺简单,生产链短,而且同样产能下所消耗的饲料相对较少,所以产生的环境影响小于沼气工程。
Livestock and poultry breeding pollution has become one of the main reasons for non-point source pollution. Currently, major pollution control technologies focus on pollution control of single environmental medium, but ignore the cross-medium pollution in the process of livestock and poultry breeding and lack systematic and comprehensive prevention thought, while in developed countries such as European Union, the United States, a large number of cross-medium researches have carried out and best feasible legal documents such as technical reference have formed. This thesis, in allusion of cross-medium pollution of livestock and poultry breeding and combining China's laws and regulations and the current situation of pollution prevention and control, investigated more than40typical livestock and poultry breeding enterprises of different types of technology, scale and regional characteristics, carried out the evaluation research of cross-medium pollution prevention technology of livestock and poultry breeding, established life cycle assessment model of cross-medium pollution of livestock and poultry breeding, systematically evaluated the ecological environment problem of livestock and poultry breeding. The main achievements of research are as follows:
     Based on the life cycle assessment theory of EDIP2003and combining the characteristics of China's cross-medium pollution of livestock and poultry breeding, research methods such as literature research, field research, expert scoring and public survey were used and life cycle assessment model of cross-medium pollution of livestock and poultry breeding was established. Besides, through the deep investigation and field testing of livestock and poultry breeding enterprises of two types including biogas engineering type and biological fermentation bed type, analytic hierarchy process was used to calculate the total amount of pollution in the different stages of livestock and poultry breeding and a comparison analysis of current situation of cross-medium pollution, its impact on the environment and economic benefit between two types was carried out.
     According to the established evaluation model and characteristics of cross-medium pollution, livestock and poultry breeding is divided into three different systems including raw material system, breeding system and waste treatment system. By using both quantitative and qualitative method, the cross-medium pollution of two types from four perspectives of environmental acidification, greenhouse effect, consumption of non-renewable energy and eutrophication is evaluated. Through the characteristics and normalization of four elements, the degree of impact on the environment was quantified. The results of impact potential of four elements of biogas engineering type are:ED:5.15×10-3; GWP:1.73×10-2;AP:4.30×10-2and EP:1.38×10-3; and results of biological fermentation bed type are:ED:7.25×10-3;GWP:1.35×10-2;AP:3.22×10-2和EP:4.55×10-3. The rating of potential impact of four elements caused by two techniques rank on environment is environmental acidification, greenhouse effect, consumption of non-renewable energy and eutrophication in turn.
     The results of comparison analysis of impact potential of two techniques on environment reveal that production of raw material has the largest impact on the environment in the life cycle due to large consumption and long production chain; in the link of pig breeding, greenhouse gas emission is the main factor of influence the environment; in the link of waste disposal, the impact on environment mainly embodies in environmental acidification and greenhouse effect. Biological fermentation bed technology, as the result of its simple waste disposal, short production chain and relatively less feedstuff consumption under the same productivity, has smaller impact on environment than biogas engineering.
引文
Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced C02 fixation and biofuels production:Development of a computing software for an LCA study[J]. Fuel Processing Technology 2005(86):1679-1693
    Barattoa F, Diwekar U, MancaI D. Impacts assessment and tradeoffs of fuel cell based auxiliary power units Part II. Environmental and health impacts, LCA, and multi-objective optimization[J]. Journal of Power Sources.2005(139):214-222
    Bare JC, Norris G. A., et al. TRACI:The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts[J]. Journal of Industrial Ecology, 2003,6 (3-4):49-78
    Bare JC., Gloria T., Norris G. A. Development of the Method and U.S. Normalization Database for Life Cycle Impact Assessment and Sustainability Metrics[J]. Environ. Sci. Technol.,2007;41(11):4179
    Bernard Catry,Michel Chevalier. Market Share Strategy and the Product Life Cycle. Journal of Marketing,1974, Vol.38, No.4, p29-34
    Chaya W, Gheewala S. Life cycle assessment of MSW-to-energy schemes in Thailand. Journal of Cleaner Production.2007(15):1463-1468
    Chevalier J, Rousseaux P, Benoit V, et al. Environmental assessment of flue gas cleaning processes of municipal solid waste incinerators by means of the life cycle assessment approach[J]. Chemical Engineering Science.2003(58):2053-2064
    Consoli, F, Allen, D, Boustead, I, Fava, J, Franklin, W, Jensen, AA, de Oude, N, Parrish, R, Perriman, R, Postlethwaite, D, Quay, B, Sieguin, J and Vigon, B, Guidelines for life cycle assessment. A code of practice. SETAC Press, Pensacola, Florida 2002
    Dewulf, J., Bosch, M. E., De Meester, B., Van der Vorst, G, Van Langenhove, H. Hellweg, Huijbregts, M. A. J. Cumulative Exergy Extraction from the Natural Environment (CEENE):a comprehensive Life Cycle Impact Assessmentmethod for resource accounting. Environ. Sci.Technol.41,2007.8477-8483.
    Dreyer, L. C., Niemann, A. L., Hauschild, M. Z. Comparison of three different LCIA methods:EDIP97, CML2001 and Eco-indicator 99. Does it matter which one you choose Int. J. LCA 8 (4).2003.191-200.
    Ekvall T, Tillman A, Molander S. Normative ethics and methodology for life cycle assessment[J]. Journal of Cleaner Production.2005(13):1225-1234
    Erikssona 0, Finnveden G, Ekvall T, et al. Life cycle assessment of fuels for district heating:A comparison of waste incineration, biomass-and natural gas combustion[J]. Energy Policy.2007(35):1346-1362
    Finnveden, G., Ostlund, P. Exergies of natural resources in life cycle assessment and other applications. Energy 22,1997.923-931.
    Frischknecht R., Jungbluth N., Althaus H., et al. Implementation of Life Cycle Impact Assessment Methods[M]. Swiss:Swiss Centre for Life Cycle Inventories, D ubendorf,2007
    George S. Day. The Product Life Cycle:Analysis and Applications Issues. Journal of Marketing,1981, Vol.45, No.4, p60-67
    Glen K. The Implementation and Evaluation of the modified Dry Litter waste Management system Under a Tropical Agricultural ecosystem[J].2004.
    Goedkoop M., Spriensma R. The Eco-indicator 99:A damage oriented method for life cycle impact assessment[M]. The Netherlands.:PRe Consultants, Amersfoort, 1999
    Guinee JB., Gorree M., Heijungs R., et al. Life cycle assessment:An operational guide to the ISO standards[M]. The Netherlands:Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden, 2001
    Guinee, JB., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H. A., de Bruijn, J. A., van Duin, R., Huijbregts, M.A.J. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Series:Eco-efficiency in Industry and Science. Kluwer Academic Publishers, Dordrecht.2002.
    H. F. Schnier, S. K. Datta, K. Mengel.E. P. Marqueses, J. E. Faronilo. Nitrogen use efficiency, floodwater properties, and nitrogen-15 balance in transplanted lowland rice as affected by liquid urea band placement[J],1988
    Hartung E. and G. J. Monteny, Methane (CH4 and Nitrous Oxide (N2O) emissions from animal husbandry. Agrartechnische Forschung,1999. pp. E62-E69.
    Hauschild M., Potting J. Background for spatial differentiation in LCA impact assessment:The EDIP03 methodology[M]. Denmark:Institute for Product Development Technical University of Denmark.2005
    Hauschild, M. Z. Assessing environmental impacts in a life cycle perspective. Environ. Sci. Technol.39,2005.81A-88A.
    Heidik, Strandd, Schmidt 1 ha. Update on impact categories, normalization and weighting in LCA:Version 1.0 [R]. Danish:Danish Environmental Protection Agency, 2005.
    Hermann B, Kroeze C, Jawjit W. Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators[J]. Journal of Cleaner Production.2007(15):1787-1796
    Huijbregts M, Hellweget S, Frischknechtc R, et al. Ecological footprint accounting in the life cycle assessment of products. Ecological Economics.2007 (4):1-10
    International Standards Organization (2006) Environmental management-LCA-Principles and framework. ISO 14040. Geneva ISO
    IPCC. Revised 1996 IPCC guidelines for national greenhouse gas inventories [M]. Paris:France, IPCC OECD IEA,1997.
    Italy, Italian Contribution to BATs Reference Document (BREF) (draft June 1999).
    Jolliet 0., Margni M., Charles R., et al. IMPACT 2002+:A New Life Cycle Impact Assessment Methodology[J]..Int J LCA,2003,8(6):324-330.
    Jolliet,0., Brent, A., Heijungs, R., Itsubu, N., Mi la I Canals, L., Mueller-Wenk, R., Pena, C., Pennington, D., Schenk, R., Stewart, M., Udo de Haes, H., Weidema, B. Analysis of Midpoint Categories. In:Life Cycle Impact Assessment Definition Study:Background Document Ⅱ. UNEP-SETAC Life Cycle Initiative, UNEP, Paris.2003b.
    Katoa S, Widiyanto A. Environmental impact consolidated evaluation of energy systems by an LCA-NETS scheme[J]. Energy.2005(30):2057-2072
    Keizo Nagatani. Life Cycle Saving:Theory and Fact. The American Economic Review, 1972, Vol.62, No.3, p344-353
    Koehler, A. Water use in LCA:managing the planet's freshwater resources. Int. J. Life Cycle Assess 13,2008.451-455.
    Koellner, T., Scholz, R. Assessment of the land use impacts on the natural environment. Part 1. An analytical framework for pure land occupation and land use change. Int. J. LCA 12.2007.16-23.
    Koellner, T., Scholz, R. Assessment of the land use impacts on the natural environment. Part 2. Generic characterization factors for local species diversity in central Europe. Int. J. LCA 13,2008.32-48.
    Kohler, A. Environmental Assessment of Industrial Wastewater Treatment Processes and Waterborne Organic Contaminant Emissions. Ph.D. thesis No.16367, ETH Zurich.2006.
    Lelystad, De forfaitaire excretie van stikstof door landbouwhuisdieren (The standardised excretion of nitrogen by livestock),2000.00-2040.
    Liamsanguan C, Gheewala S. LCA:A decision support tool for environmental assessment of MSW management systems[J].Journal of Environmental Management. 2007 (2):1-7
    Life-cycle Impact Assessment:A Conceptual Framework, Key Issues, and Summart of Existing Methods. The U.S. Environmental Protection Agency, EPA 452/R-95-002
    Lindeijer, E., Muller-Wenk, R., Steen, B. Impact assessment of resources and land use. SETAC Press, Pensacola, FL.2002.
    Lo S, Ma H, Lo S. Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method[J]. Science of the Total Environment.2005 (340):23-33
    M. A. Curran. Life-Cycle Assessment [J]. Encyclopedia of Ecology, Elsevier B. V. 2008, Pages 2168-2174
    MAFF. Making better use of livestock manures on arable land.1999
    Mark Duda, Jane S. Shaw. Life cycle assessment. Society,1997, Volume 35, Issue 1, p38-43
    McKone, T. E., Hertwich, E.G. The human toxicity potential and a strategy for evaluating model performance in life cycle assessment. J. LCA 6,2001.106-109.
    Michelsen,0. Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int. J. LCA 13,2008. 22-31.
    Mila I Canals, L., Bauer, C., Depestele, J., Dubreuil, A., Freiermuth Knuchel, R., Gaillard,. G., Michelsen,0., Muller-Wenk, R., Rydgren, B. Key elements in framework for land use impact assessment within LCA. Int. J. LCA 12, 2007a.5-15.
    Molander, S., Lidholm, P., Schowanek, D., Recasens, M., Fullana, P., Christensen, F.M., Guinee, J. B., Hauschild, M., Jolliet,O., Carlson, R., Pennington, D. W., Bachmann, T. M. OMNIITOX-operational life-cycle impact assessment models and information tools for practitioners. Int. J. LCA 9,2004. 282-288.
    Morselli L, Bartoli M, Bertacchini M, et al. Tools for evaluation of impact associated with MSW incineration:LCA and integrated environmental monitoring system[J]. Waste Management.2005(25):191-196
    Netherlands, Nitrogen and phosphorous consumption, utilisation and losses in pig production.1999
    Netherlands, t. Dutch notes on BAT for pig-and poultry intensive livestock farms. 1999.
    Oscar 0, Francesc C, Guido S. Sustainability in the construction industry:A review of recent developments based on LCA[J]. Construction and Building Materials. 2008 (10):1-12
    Owens, J. W. Water resources in life-cycle impact assessment:considerations in choosing category indicators. J. Indust. Ecol.5 (2),2002.37-54.
    Pehnt M. Dynamic life cycle assessment (LCA) of renewable energy technologies art in [J]. Renewable Energy.2006(31):55-71
    Pennington, D. W., Potting, J., Finnveden, G., Lindeijer, E. W., Jolliet, 0., Rydberg, T., Rebitzer, G. Life cycle assessment (Part 2):Current impact assessment practise. Environ. Int 30,2004.721-739.
    R.Bruce Hutton, William L. Wilkie. Life Cycle Cost:A New Form of Consumer Information. Journal of Consumer Research,1980, Vol.6, No.4, p349-360
    Raluy R, Serra L, Uche J, et al. Life-cycle assessment of desalination technologies integrated with energy production systems [J]. Desalination.2004 (167): 445-458
    Rebitzer, G., Stoffregen, A., Gerber, J. Modeling water consumption and water use:a first comprehensive approach to address water resources in LCA. In: Presentation at the SETAC Europe Annual Meeting. Porto,2007. May 20-24
    Sanden B, Karlstrom M. Positive and negative feedback in consequential life-cycle assessment[J]. Journal of Cleaner Production.2007(15):1469-1481
    Smith, et al. Nitrogen excretion by farm livestock with respect to landspreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: pigs and poultry, Bioresource Technology,1999. pp.183-194.
    Steen B. A systematic Approach to Environmental Priority Strategies in Product Development (EPS)[M]. Sweden:Chalmers University of Technology, Gothenburg, Sweden, 1999.
    Tan R. Rule-based life cycle impact assessment using modified rough set induction methodology[J]. Environmental Modelling & Software.2005(20):509-513
    Torstensson, L. Microbial assays in soil. Soil Ecotoxicology.1997
    Wanichpongpan W, Gheewala S. Life cycle assessment as a decision support tool for landfill gusto energy projects[J]. Journal of Cleaner Production.2007(15): 1819-1826
    Weidema, B. P., Finnveden, G., Stewart, M. Impacts from resource use-a common position paper. Int. J. LCA 10,2005.382.
    Wenzel, H., Hauschild, M. Z., Alting, L. Environmental Assessment of Products Methodology, Tools, Techniques and Case Studies, vol.1. Chapman & Hall, United Kingdom, Kluwer Academic Publishers, Hingham, MA, USA,544 pp.1997.5.
    安宝聚.发酵床养猪的猪舍设计、垫料制作与管理[J].养殖技术顾问,2012.(3):22-24
    白林.四川养猪业清洁生产系统LCA及猪粪资源化利用关键技术研究[D].四川农业大学,2007
    陈社照.规模化畜禽养殖场排泄物治理技术研究与推广[J].中国动物疫情,2007,24(7):8-9.
    陈新招、赵洪,几种农作物使用沼液的结果[J].浙江农业科学,2007,(06):18-19
    成冰,陈刚,李保明规模化养猪业粪污治理与清粪工艺[J]世界农业,2006,06:15-18
    程璜鑫、张国臣、王莹、王凯军,我国畜禽养殖污染防治现状与对策[J].2012年中国环境科学学会学术年会论文集(第四卷),2012,3272-3275
    戴四发,王立克,李如兰,张军,张水柱.密闭式种猪舍部分有害气体分布状况观测[J].安徽技术师范学院学报.2004(01)
    段宁.生命周期评价方法体系及其对比分析[J].安徽农业科学,2008,11:35-39
    管妙东.规模畜禽场环境污染问题及对策[J].四川畜牧兽医,2002,29:9-11
    国家统计局. 中国统计年鉴:2006[M]. 北京:中国统计山版社,2007.
    韩芳.沼气工程规模分类有了新标准[J].农业工程技术(新能源产业).2012(04)
    韩立波,刘莉,张会娜.生命周期评价在汽车能源与排放评估中的应用[J].交通节能与环保,2012,No.3204:26-32.
    洪梅,宋博宇,丁琼,何连生,林洪义.生命周期评价在电子废弃物管理中的应用前景[J].科技导报,2012,v.30,No.38733:62-67.
    胡启春,祝其丽,潘科.畜禽养殖场沼气工程产业发展探析[J].现代农业科技,2009(17):253-255.
    胡志远,蒲耿强,王成焘.木薯乙醇汽油车生命周期排放评价[J].汽车工程,2004,26(1):16-19.
    黄凡,企业集群生态绩效评价指标体系及评价模型研究[博士论文]杭州:浙江大学2008
    吉倩倩.污水处理厂成本效益的生命周期评价研究[J].杨凌职业技术学院学报,2012,(11):11-15.
    籍春蕾,丁美,王春梅,赵言文.基于LCA方法的模糊综合评价模型在粪便处理中的应用[J].中国沼气,2012,(30):8-13.
    纪楠.城市污水处理厂综合评价指标体系和评价方法的研究[博士论文].哈尔滨:哈尔滨工业大学,2011.
    金东霞.规模化畜禽养殖污染防治技术研究[J].中国工程科学,2004,12:27-28
    金冬霞,王凯军.规模化畜禽养殖场污染防治综合对策[J].环境保护,2002, (12):18-20.
    金星.脱硫石膏综合利用途径及环境影响评价[D].北京:北京科技大学硕士论文.2007.
    李宝林,王凯军,申立贤,等.大型集约化猪场粪水处理现状及建议[J].中国沼气1998,16(2):31-33.
    李宏强.养猪场生态发酵床建造及操作技术要点[J].甘肃畜牧兽医,2009,(3):30-34
    李民.规模化畜禽养殖场粪污污染与防治措施[J].畜牧兽医,2001,(10):22-23
    李文杰,皮运清.发酵床养殖——农村污染减排技术研究与应用[J].河南科学,2012,30(3):333-336
    李文娟.基于生命周期评价的中国城市生活垃圾处理评价模型及软件的研究与开发[D].浙江大学,2012.
    梁龙,陈源泉,高旺盛.基于生命周期的循环农业系统评价[J].环境科学.2010(11)
    梁龙,陈源泉,高旺盛.我国农业生命周期评价框架探索及其应用——以河北栾城冬小麦为例[J].中国人口.资源与环境.2009(05)
    林聪.规模化养猪场沼气工程应用技术[J].猪业科学,2007,(9):35-37
    刘明和,柳敦发.沼气工程在畜禽场应用及其经济效益评价[J].养殖技术顾问,2010(8):21.
    刘鸣达,赵妍,刘显军,王耀品.辽宁省育肥猪生产环境影响的生命周期评价[J].农业环境科学学报,2012,v.31;No.12206:1250-1255.
    刘晓利,许俊香,王方浩,张福锁,马文奇.我国畜禽粪便中氮素养分资源及其分布状况[J].河北农业大学学报.2005(05)
    罗燕,乔玉辉,吴文良.生命周期评价方法在农业中的应用[J].生态经济(学术版).2010(02)
    吕竹明.生命周期评价和碳排放核算[A].中国造纸学会.造纸行业清洁生产技术高级研修班讲义[C].中国造纸学会,2012:23
    苗泽伟.绿色设计和生命周期分析方法在农业生态系统管理中的应用[J].石家庄经济学院学报.2004(06)
    欧洲共同体联合研究中心,污染综合防治技术的经济效益与跨介质影响[b].2010
    潘安君.禽畜养殖业废弃物利用和治理模式初探[J].北京水利,1996(5):53-55
    彭莉,王莉玮,杨志敏等.降雨对农家堆肥氮磷流失的影响及其面源污染风险分析[J].环境科学.2012,33(2):407-411
    钱宇,杨思宇,贾小平,李秀喜,李恒冲.能源和化工系统的全生命周期评价和可持续性研究[J].化工学报,2013,v.6401:133-147
    郄文莉.畜禽生产中的环境污染与保护研究[J].安徽农业科学,2007,35(32):457-460.
    苏杨.我国集约化畜禽养殖场污染问题研究[J].中国农业生态学报,2006,14(2):15-18.
    孙启宏.生命周期评价在清洁生产领域的应用前景[J].环境科学研究,2002,15(2)4-6.
    谭斌.应用生命周期分析的酒精企业清洁生产研究[D].上海:同济大学,2007
    田宁宁,王凯军,李宝林等.畜禽养殖场粪污的治理技术[J].中国给水排水,2002,18(2):71-73.
    童晓霞,崔远来,史伟达.降雨对灌区农业面源污染影响规律的分布式模拟[J].中国农村水利水电.2010,(9):33-35
    王超.电石渣水泥和石灰石水泥生命周期的比较研究.[硕十论文].成都:西南交通大学.2007
    干德建,林静慧.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报.2001,9(1):16-18
    王革华. 农村能源建设对减排S02和C02贡献分析方法[J].农业工程学报,1999,15(1):169-172.
    王桂苓,马友华,孙兴旺等.巢湖流域麦稻轮作农田径流氮磷流失研究[J].水土保持学报.2010,24(2):6-10
    王明新,包永红,吴文良,刘文娜.华北平原冬小麦生命周期环境影响评价[J].农业环境科学学报.2006(05)
    王明新,吴文良,夏训峰.华北高产粮区夏玉米生命周期环境影响评价[J].环境科学学报.2010(06)
    于效琴,梁东丽,王旭东,彭莎,郑金正.运用生命周期评价方法评估奶牛养殖系统温室气体排放量[J].农业工程学报,2012,v.28:179-184.
    杨国义,陈俊坚,何嘉文等.广东省畜禽粪便污染及综合防治对策[J].土壤肥料.2005(2):46-48
    杨勤.基于生命周期评价的污水处理工艺低碳研究[博士论文].兰州:兰州大学,2012.
    杨印生,盛国辉,吕广宏.我国开展农业LCA研究的对策建议[J].中国软科学.2003(05)
    于红艳.在固体废弃物资源化中引入生命周期评价(LCA)方法[J].中国资源综合利用,2003(9):35-37.
    于亚丽,伍青生.绿色产品的生命周期评价模型研究[J].上海交通大学学报:农业科学版,2007,25(5):502-506.
    张树清,张夫道,刘秀梅,王玉军,邹绍文,何绪生.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报.2005(06)
    张颖,夏训峰,李中和,王明新,杨天学,席北斗.规模化养牛场粪便处理生命周期评价[J].农业环境科学学报,2010.29(7):1423-1427
    赵本领,王峰,王涛,等.沼气在畜牧业清洁生产中的应用[J].中国牧业通讯,2007(11):76-77.
    赵本领,王峰,王涛,等.沼气在畜牧业清洁生产中的应用[J].中国牧业通讯,2007(11):76-77.
    赵楠.基于生命周期评价的长春市生活垃圾处置规划的优化[博士论文].吉林:东北师范大学,2011.
    周品淼.基于生态现代化理论的我国石油资源可持续利用研究.[硕十论文]:大连,大连理工大学,2009
    周孟津,蔺金印,张定友.畜禽粪便沼气工程技术进步与存在问题[J].阳光能源,2010(3):45-46.
    周强.浅析大型养殖场沼气发电——以山东民和养殖场沼气发电工程为例[J].中国沼气,2010(1):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700