用户名: 密码: 验证码:
城市河岸带氮阻控能力和机制及其工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十年来,我国沿海地区经济发展和城市化进程突飞猛进,然而由于环境设施不完善等问题,导致城市水体的严重污染。河岸带由于其独特位置和环境功能,已成为一个研究热点区域,同时在城市河岸带的建设上有向生态型绿地河岸带发展的趋势。研究城市绿地河岸带对分散点源和面源污染中氮(N)的阻控能力,探讨城市河岸带土壤中N的转化,以及建设城市河岸带脱N工程应用使其在极其有限的空间范围内最大限度地消减陆源N,已经成为一个重要研究方向和研究热点。
     在本研究中,主要开展了以下4方面的工作。1、在上海市城市绿地河岸带建立了微区径流场,采用现场实际降雨径流观测与模拟径流漫灌实验,系统研究和探讨了城市绿地河岸带对面源N的阻控效率;2、在上海市的典型城市河岸带,对城市河岸带土壤N转化过程开展了系统的研究和探讨;3、在上海市城市绿地河岸带径流场微区采用静态箱法测定了河岸带阻控不同浓度硝酸盐后的环境负效应-温室气体排放通量的变化;4、采用土壤、锯末、煤渣、沸石和麦饭石等渗滤介质,在温州市鹿城区的实验基地内自主设计建设了城市河岸带土壤脱N工程应用的中试模型,并采用模拟径流漫灌方式探讨了其对面源N的削减效率和净化能力。取得了以下主要结论:
     (1)城市绿地河岸带对降雨下渗流和模拟地表径流下渗流中N具有一定的去除作用。对雨水中NH3-N和NO3-N的净化分别集中于0-60cm和60-90cm深度,降雨强度对绿地岸带的N去除效果影响显著,在暴雨事件中0-90cm深度对NH3-N和NO3--N的去除率分别在12.9%和0.64%以上,而两次小雨事件中0-90cm深度对NH3-N和NO3--N的平均去除率可达43.8%和49%以上。对具有较高N浓度地表径流的净化集中于0-30cm深度,对TN、NH3-N和NO3--N+NO2--N去除率分别可达39.9%、39.8%和10.0%以上,但随淹水时间延长去除率降低;在径流场中下渗径流N浓度空间变化显著,随径流流动距离的增加N浓度先升后降;地表径流中N浓度不是影响绿地岸带对N的去除率的主要因素。
     (2)上海市城市河岸带0-35cm深度土壤净氨化、净硝化、净矿化速率均较低(净氨化速率为-0.115~0.154mg·kg-1·d-1,平均值为0.004mg·kg-1·d-1;净硝化速率为-0.093~0.100mg·kg-1·d-1,平均值为0.010mg·kg-1·d-1;净矿化速率为-0.127~0.233mg·kg-1·d-1,平均值为0.019mg·kg-1·d-1)且具有显著的时空差异,多表现为有效N的积累;上海市城市河岸带0-35cm深度土壤反硝化速率在0.002-33.915ng·g-1·h-1之间,平均值为3.08ng·g-1·h-1。
     (3)土壤理化性质(SOC、NO3--N和NH4+-N)是区域因素中影响净氨化、净硝化和净矿化速率的主要因子,NO3--N和NH4+-N含量增加促进净氨化和净硝化速率,而SOC会降低三者速率;受多种因素影响,城市河岸带土壤理化性质对反硝化速率影响不显著,但在初始土壤基质较为一致的小区域内,反硝化速率随土壤中SOC、NO3--N和NH4+-N含量的升高而升高;温度是季节因素中影响N转化速率的主要因子,随温度升高转化速率显著上升。
     (4)含水率和植被也是影响土壤净氨化、净矿化和净硝化速率的重要因子;在含水率低于20%时,不同植被下土壤净氨化、净矿化和净硝化速率具有显著差异,高于20%则不存在显著差异;各植被下土壤净氨化、净矿化和净硝化速率随土壤含水率的增加多呈上升趋势。
     (5)不同时间间隔的干湿交替下土壤的净矿化、净氨化和净硝化速率以及反硝化速率均较初始土壤有显著的增加,但是随着干湿交替间隔时间的加长,速率会明显逐步下降,但在长期干旱条件下反硝化速率低于初始土壤,而净矿化、净氨化和净硝化速率则高于初始土壤。
     (6)NO3--N的阻控,改变了短期内河岸带土壤温室气体的排放通量,随阻控NO3--N量的增加,显著增加了春夏秋季N2O的排放通量,而在冬季表现为促进吸收;阻控NO3--N后,短时间后(夏季3d,春秋季4-5d)温室气体的日均排放通量即可有显著降低,使各阻控N量下的排放通量不具有显著差异。
     (7)季节(温度和光强)是影响N2O、CO2和CH4排放通量的重要环境因子,除CO2排放通量受光照强度影响显著(光照越强排放通量越低)外,N2O、 CO2和CH4均受到不同深度土壤温度的显著影响,温度升高排放通量增加。
     (8)模型可对入水中NH3-N、NO2--N、TN、TP和CODCr均可起到一定的净化作用,其中对NH3-N和TP的净化效果较好,出水浓度可达国家水质V类标准阈值,模型的去除率分别为65.6%和54.9%,对NO2--N、TN和CODCr的去除效果较差,去除率分别为38.8%、21.1%和32.9%;而对NO3--N表现为明显的析出,平均去除率为-1150.0%。
     (9)在实验进程中,模型对NH3-N、TN、TP和CODCr的净化能力不断提升,在第六次实验中,模型对以上这四种污染指标的去除负荷为1483.33mg·m-2·h-1、84.28mg·m-2·h-1、128.93mg·m-2·h-1和2220.84mg·m-2·h-1;模型去除能力与入水中NH3-N、TP浓度呈显著正相关关系,入水中浓度是影响模型去除能力的重要因素;而对于TN、NO3--N和NO2-N来说,入水浓度不是模型去除能力的主要影响因素。
With the rapid development of economy and urbanization process in the coastal area of China over the past three decades, the water bodis in the urban area were contaminated seriously due to lack and incomplete of environmental facilities. Riparian zone has drawn widespread concern for its special geographic location and environmental function. To study the removal capability of riparian zone for nitrogen in scattered point sources and non-point sources, and to discuss nitrogen transformation in soil of riparian zone as well as to construct engineering application to abate terrigenous nitrogen into urban water bodies at the most extent in relatively limited space of urban riparian zone has become not only an important direction but also a hot area of research.
     In this study, four parts of the work were carried out. The first one, a micro catchment area was constructed at Changfeng green belt of Suzhou River riparian in Shanghai city to study nitrogen removal efficiencies in vertical infiltration by using field investigation of rain and simulated rainfall-runoff. The second one, nitrogen transformable rates were systematically measured and studied by buried bags method in situ and acetylene inhibition method in lab at six typical urban riparian zones of Shanghai city. The third one, greenhouse gas (GHG) fluxes, which was an important negative environmental effect after different concentrations of nitrate were retained were measured using static closed chamber/GC technique in micro catchment area. The last part, one pilot-scale apparatus of engineering application was structured by coal cinder, sawdust, zeolite, medical stone and local soil, as well as Cynodon dactylon cultivated on the surface. Capability of the multiple-composing apparatus to removal the nitrogen in simulated urban rainfall runoff was studied. The main conclusions in this paper were as follows:
     (1) Nitrogen in vertical infiltration, which formed either by rain or by stimulative rainfall-runoff, was partly removed by artificial green riparian belt. NH3-N was mainly removed at0-60cm layer, but it was at60-90cm layer for NO3--N. The removal rate was significantly influenced by rainfall intensity. Removal rates for NH3-N and NO3--N were respectively over12.9%and0.64%at0-90cm layer in heavy rainfall event. But the removal rates were over43.8%and49%in two light rains. As for the stimulative rainfall-runoff containing relatively high nitrogen concentration, the removal of nitrogen mainly occurred in0-30cm layer. Removal rates of TN, NH3-N and NO3--N+NO2--N by soil at0-30cm layer were over39.9%,39.8%and10.0%respectively. However nitrogen removal rate decreased with the waterlogging time increasing. There was conspicuous spatial variation of nitrogen concentrations in vertical infiltration at different sites in catchment area. With the increase of flow distance of surface runoff, concentrations of nitrogen in vertical infiltration first increased and then decreased. Nitrogen concentration partly influenced treatment load of green belt on stimulative rainfall-runoff, but it was not the main influencing factor.
     (2) The net ammoniation rates, net nitrification rates and net mineralization rates were generally low and showed significant spatial-temporal difference at0-35cm layer in urban riparian zone of Shanghai city. The net ammoniation rates were from-0.115to0.154mg·kg-1·d-1with an average of0.004mg·kg-1·d-1.The net nitrification rates varied between-0.093and0.100mg·kg-1·d-1with an average of0.010mg·kg-1·d-1, and the net mineralization rates ranged from-0.127to0.233mg·kg-1·d-1with an average of0.019mg·kg-1·d-1. The soil in riparian zone of Shanghai city tended to accumulate available nitrogen. The denitrification rates were from0.002to33.915ng·g-1·h-1with an average of3.08ng·g-1·h-1at0-35cm layer in urban riparian zone of Shanghai city.
     (3) Physico-chemical properties of soil (SOC, NO3--N and NH4+-N) were main influencing factors in regional difference of net ammoniation rates, net nitrification rates and net mineralization rates. High concentrations of NO3--N and NH4+-N in soil could increase net ammoniation rates and net nitrification rates, but it turned out to be the opposite for SOC.The denitrification rates were not significantly influenced by physico-chemical properties of soil. But in small areas where the soil properties were homogeneous, the denitrification rates increased with the concentrations of SOC, NO3--N and NH4+-N in soil. Temperature was the main influencing factor in seasonal change for nitrogen transformable rates. Generally, nitrogen transformable rates increased with temperature.
     (4) Moisture content and vegetation type were also main influencing factors for nitrogen transformable rates. When moisture content was lower than20%, there was significant difference for net ammoniation rate, net nitrification rate and net mineralization rate in soil under different vegetation type. It was on the contrary when moisture content was above20%. Generally, net ammoniation rates, net nitrification rates and net mineralization rates in soil under different vegetation type increased with moisture content.
     (5) Net ammoniation rate, net nitrification rate, net mineralization rate and denitrification rate in soil with the treatment of wetting and drying in different time interval all significantly increased compared with the initial values. But with the increase of the time interval of wetting and drying, the rates reduced. Especially, under the long-term drought condition denitrification rates were lower than the initial values of fresh soil, but it is the opposite for net ammoniation rate, net nitrification rate and net mineralization rate.
     (6) Due to the input of NO3--N, GHG fluxes in short time were changed, which showed significant seasonal difference. N2O fluxes in spring, summer and autumn increased significantly, while the GHG fluxes reduced accordingly in other seasons suggesting that the input of NO3--N promoted the soil to absorb GHG. After the input and retention of NO3--N, daily fluxes of N2O, CH4and CO2significantly reduced in a short time, ie.3days in summer,4-5days in spring and autumn, which might be the reason that the GHG fluxes in soils treated with input of different NO3--N concentrations presented no significant difference.
     (7) Temperature and light intensity accounted for the seasonal change of GHG fluxes. There were significant correlations between GHG fluxes and temperature and light intensity. Specifically, CO2discharge fluxes significantly reduced with the increase of light intensity, while N2O, CO2and CH4fluxes correlated significantly with the soil temperature at different depths, and the fluxes all increased with the temperature.
     (8) The constructed pilot scale apparatus could partly purify NO2--N, NH3-N, TN, TP and CODCr, in which the purification effect of NH3-N and TP was best. The concentrations of NH3-N and TP in effluent flowing through the apparatus were generally lower than the type V standard values of GB3838-2002National Environmental Standards for Surface Water and the average removal rates were65.6%and54.9%for NH3-N and TP respectively. The purification effect for NO2--N, TN and CODCr was not as good as that for NH3-N and TP, and the removal rates were38.8%for NO2--N,21.1%for TN and32.9%for CODCr. The apparatus did not purify NO3--N in influent, furthermore, the NO3--N concentrations in effluent flowing through the apparatus increased significantly resulting in the average removal rate of-1150.0%.
     (9) The treatment capability of apparatus improved with the increasing experiments, and the treatment loads of NH3-N, TN, TP and CODcr in the last experiment (the sixth experiment) were1483.33mg·m-2·h-1,84.28mg·m-2·h-1,28.93mg·m-2·h-1and2220.84mg·m-2·h-1, respectively. Significantly positive correlations were found between removal capability and concentrations of NH3-N and TP in influent indicating that the concentrations of NH3-N and TP in influent might be the main factors influencing the purification effect, but it is not the same with TN, NO3--N and NO2--N.
引文
[1]Abbasi M. K., Hina M., Tahir M. M. Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions [J]. Chemosphere,2011,82: 1629-1635.
    [2]Adekalu K., Olorunfemi I., Osunbitan J. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria [J]. Bioresource Technology,2007,98: 912-917.
    [3]Asner G., Seastedt T., Townsend A. The decoupling of terrestrial carbon and nitrogen cycles [J]. BioScience,1997,47:226-234.
    [4]Athanasiadis K., Helmreich B., Horn H. On-site infiltration of a copper roof runoff:Role of clinoptilolite as an artificial barrier material [J]. Water Research,2007,41(15):3251-3258.
    [5]Azam F., Gill S., Farooq S. Availability of CO2 as a factor affecting the rate of nitrification in soil [J]. Soil Biology and Biochemistry,2005,37:2141-2144.
    [6]Babatunde A. O., Zhao Y. Q., O'Neill M., O'Sullivan B. Constructed wetlands for environmental pollution control:A review of developments, research and practice in Ireland [J]. Environment International,2008,34:116-126.
    [7]Beare M., Gregorich E., StGeorges P. Compaction effects on CO2 and N2O production during drying and rewetting of soil [J]. Soil Biology and Biochemistry,2009,41:611-621.
    [8]Bedard-Haughn A., Matson A., Pennock D. Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands [J]. Soil Biology and Biochemistry, 2006,38:3398-3406.
    [9]Benjamin M., Sletten R., Bailey R., Bailey R. P., Bennett T. Sorption and filtration of metals using iron-oxide-coated sand [J]. Water Research,1996,30(11):2609-2620.
    [10]Bernal S., Sabater F., Butturini A., Nin E., Sabater S. Factors limiting denitrification in a Mediterranean riparian forest [J]. Soil Biology and Biochemistry,2007,39:2685-2688.
    [11]Bialowiec A., Davies L., Albuquerque A., Randerson P. Nitrogen removal from land fill leachate in constructed wetlands with reed and willow:Redox potential in the root zone [J]. Journal of Environmental Management,2012,97:22-27.
    [12]Borin M., Passoni M., Thiene M., Tempesta T. Multiple functions of buffer strips in farming areas [J]. European Journal of Agronomy,2010,32(1):103-111.
    [13]Borin M., Vianello M., Morari F., Zanin G. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy [J]. Soil Biology and Biochemistry,2005,102(1-2):101-114.
    [14]Borken W., Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils [J]. Global Change Biology,2009,15,808-824.
    [15]Bradley R., Whalen J., Chagnon P., Lanoix M., Alves M. C. Nitrous oxide production and potential denitrification in soils from riparian buffer strips:Influence of earthworms and plant litter [J]. Applied Soil Ecology,2011,47:6-13.
    [16]Chang W. S., Hong S. W., Park J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Process Biochemistry,2002,37(7):693-398.
    [17]Chen D. J. Z., MacQuarrie K. T. B. Numerical simulation of organic carbon, nitrate, and nitrogen isotope behavior during denitrification in a riparian zone [J]. Journal of Hydrology, 2004,293:235-254.
    [18]Cho K., Song K., Cho J. Removal of nitrogen by a layered soil infiltration system during intermittent storm events [J]. Chemosphere,2009,76:690-696.
    [19]Chung S. J., Ahn H. K. Oh J. M., Choi I. S., Chun S. H., Choung Y. K. Comparative analysis on reduction of agricultural non-point pollution by riparian buffer strips in the Paldang Watershed, Korea [J]. Desalination and Water Treatment,2010,16(1-3):411-426.
    [20]Collins A., Hughes G, Zhang Y., Whitehead J. Mitigating diffuse water pollution from agriculture:Riparian buffer strip performance with width [J]. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources,2009,4:1-15.
    [21]Costello D. M., Lamberti G A. Biological and physical effects of non-native earthworms on nitrogen cycling in riparian soils [J]. Soil Biology and Biochemistry,2009,41:2230-2235.
    [22]Cuhel J., Simek M. Proximal and distal control by pH of denitrification rate in a pasture soil. Agriculture [J]. Ecosystems and Environment,2011,41:230-233.
    [23]Davidsson T. E., Stepanauskas R., Leonardson L. Vertical patterns of nitrogen transformations during infiltration in two wetland soils[J]. Applied and Environmental Microbiology,1997,63(9):3648-3656.
    [24]Davis A. P., Shokouhian M., Sharma H., Minami C. Laboratory study of biological retention for urban stormwater management [J]. Water Environment Research,2001,73 (5):5-14.
    [25]Delgado D., Eugenio P., Viqueira F. Vegetated filter strips for waste water purification:A review [J]. Bioresource Technology,1995,51(1):13-22.
    [26]DeSimone J., Macrae M. L., Bourbonniere R. A. Spatial variability in surface N2O fluxes across a riparian zone and relationships with soil environmental conditions and nutrient supply [J]. Agriculture, Ecosystems and Environment,2010,138:1-9.
    [27]Dhondt K., Boeckx P., Hofman G, Van Cleemput O. Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones [J]. Biology and Fertility of Soils,2004,40,243-251.
    [28]Drewer J., Lohila A., Aurel M., Laurila T., Minkkinen K., Penttila T., Dinsmore K. J., McKenzie R. M., Helfter C., Flechard C., Sutton M. A., Skiba U. M. Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland [J]. European Journal of Soil Science,2010,61,640-650.
    [29]Dueck T. A., De Visser R., Poorter H., Persijn S., Gorissen A., De Visser W., Schapendonk A., Verhagen J., Snel J., Harren F. J. M., Ngai A. K. Y., Verstappen F., Bouwmeester H., Voesenek L. A. C. J., Der Werf A. V. No evidence for substantial aerobic methane emission by terrestrial plants:a 13C-labelling approach [J]. New Phytologist,2007,175:29-35.
    [30]Eno C. Nitrate production in the field by incubating the soil in polyethylene bags [J]. Proceedings of the Soil Science Society of America,1960,24:277-279.
    [31]Fan C. H., Chang F. C., Ko C. H., Sheu Y. S., Teng C. J., Chang T. C. Urban pollutant removal by a constructed riparian wetland before typhoon damage and after reconstruction [J]. Ecological engineering,2009,35:424-435.
    [32]Farm C. Metal sorption to natural filter substrates for storm water treatment-column studies [J]. The Science of the Total Environment,2002,298:17-24.
    [33]Fellows C. S., Hunter H. M., Eccleston C. E. A., De Hayr R. W., Rassam D. W.., Beard N. J., Bloesch P. M. Denitrification potential of intermittently saturated floodplain soils from a subtropical perennial stream and an ephemeral tributary [J]. Soil Biology and Biochemistry, 2011,43:324-332.
    [34]Ferretti D. F., Miller J. B., White J. W. C., Lassey K. R., Lowe D. C., Etheridge D. M. Stable isotopes provide revised global limits of aerobic methane emissions from plants [J]. Atmospheric Chemistry and Physics,2007,7:237-241.
    [35]Field R., Pitt R. E. Urban storm induced discharge impacts:US Environmental Protection Agency research program review [J]. Water Science and Technology,1990,22(10/11):1-7.
    [36]Fuerhacker M., Haile T., Monai B., Mentler A. Performance of a filtration system equipped with filter media for parking lot runoff treatment [J]. Desalination,2011,275(1-3):118-125.
    [37]Gabaldon C., Marzal P., Ferrer J. Single and competetive adsorption of Cd and Zn onto a granular activated carbon [J]. Water Research,1996,30(12):3050-3060.
    [38]Gassman K., Munns D. Nitrogen mineralization as affected by soil miosture, temperature, and depth [J]. Soil Science Society of America,1980,44,1233-1236.
    [39]Ghermandi A., Vandenberghe V., Benedetti L., Bauwens W., Vanrolleghem P. A. Model-based assessment of shading effect by riparian vegetation on river water quality [J]. Ecological Engineering,2009,35:92-104.
    [40]Gilliam J. Reparian wetlands and water quality [J]. Environmental Quality,1994, (23): 896-900.
    [41]Gobel P., Stubbe H., Weinert M., Zimmermann J., Fach S., Dierkes C., Kories H., Messer J., Mertsch V., Geiger W. F., Coldewey W. G. Near-natural stormwater management and its effects on the water budget and groundwater surface in urban areas taking account of the hydrogeological conditions [J]. Journal of Hydrology,2004,299:267-283.
    [42]Goldberg S. D., Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought [J]. Soil Biology and Biochemistry, 2009,41:1986-1995.
    [43]Grierson P., Comerford N., Jokela E. Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spodosol [J]. Soil Biology and Biochemistry,1998,30:1323-1331.
    [44]Groffman P., Bain D., Band L., Belt K. T., Brush G. S., Grove J. M., Pouyat R. V., Yesilonis I. C., Zipperer W. C. Down by the riverside:urban riparian ecology [J]. Frontiers in Ecology and the Environment,2003,1:315-321.
    [45]Harmayani K. D., Anwar A. H. Adsorption of nutrients from stormwater using sawdust[J]. International Journal of Environmental Science and Development,2012,3(2):114-117.
    [46]Hatt B. E., Fletcher T. D., Deletic A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale [J]. Journal of Hydrology,2009,365: 310-321.
    [47]Hatt B. E., Fleycher T. D., Deletic A. Hydraulic and pollutant removal performance of fine media stormwater filtration systems [J]. Environmental Science and Technology,2008,42, 2535-2541.
    [48]Hayakawa A., Nakata M., Jiang R., Kuramochi K. Spatial variation of denitrification potential of grassland, windbreak forest, and riparian forest soils in an agricultural catchment in eastern Hokkaido, Japan [J]. Ecological Engineering,2012,47:92-100.
    [49]Hefting M., Beltman B., Karssenberg D., Rebel K., van Riessen M., Spijker M. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands [J]. Environmental Pollution,2006,139:143-156
    [50]Hefting M., Clement J., Bienkowski P., Dowrick D., Guenat C., Butturini A., Topa S., Pinay G., Verhoeven J. T. A. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe [J]. Ecological Engineering,2005,24:465-482.
    [51]Hernandez M. E., Mitsch W. J. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes [J]. Wetlands,2006,26 (3):862-877.
    [52]Hernandez M., Mitsch W. Denitrification in created riverine wetlands:Influence of hydrology and season [J]. Ecological Engineering,2007,30:78-88.
    [53]Hickey M., Doran B. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems [J]. Water Quality Research Journal of Canada,2004,39: 311-317.
    [54]Hofmann C., Kjaergaard C., Uusi-Kamppa J., Hansen H., Kronvan B. Phosphorus retention in riparian buffers:Review of their efficiency [J]. Journal of Environmental Quality,2009,38: 1942-1955.
    [55]Hsieh C., Davis A. P., Needelman B. A. Bioretention column studies of phosphorus removal from urban storm water runoff [J]. Water Environment Research,2007,79(2):177-184.
    [56]Huang J., Du P., Ao C., Lei M. H., Zhao D. Q., Ho M. H., Wand Z. S. Characterization of surface runoff from a subtropics urban catchment [J]. Journal of Environmental Scienccs, 2007,19:148-152.
    [57]Jahangir M. M. R., Khalil M. I., Johnston P., Cardenas L. M., Hatch D. J., Butler M., Barrett M., O'flaherty V. Denitrification potential in subsoils:A mechanism to reduce nitrate leaching to groundwater [J]. Agriculture, Ecosystems and Environment,2012,147:13-23.
    [58]Ji G. D., Zhi W., Tan Y. F. Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems [J]. Ecological Engineering,2012,44:269-277.
    [59]Jiang X., Ma M. C., Li J., Lu A. H., Zhong Z. S. Analysis of microbial molecular ecology techniques in constructed rapid infiltration system [J]. Journal of Earth Science,2011,22(5): 669-676.
    [60]Jordan T. E., Weller D. E., Correll D. L. Denitrification in surface soils of a riparian forest: effects of water, nitrate and sucrose additions [J]. Soil Biology and Biochemistry,1998,30(7): 833-843.
    [61]Kachenchart B., Jones D., Gajaseni N., Edwards-Jones G., Limsakul A. Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem [J]. Agriculture, Ecosystems and Environment,2012,158:15-30.
    [62]Keppler F., Hamilton J. T. G., Brass M., Rockmann T. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature,2006,439:187-191.
    [63]Kesraoui-Ouki S., Cheeseman C., Perry R. Natural Zeolite utilisation in pollution control:a review of applications to metals' effluents [J]. Journal of Chemical Technology and Biotechnology,1994,59(2):121-126.
    [64]Khalil M. I., Baggs E. M. Soil water-filled pore space affects the interaction between CH4 oxidation, nitrification and N2O emissions [J]. Soil Biology and Biochemistry,2005,37: 1785-1794.
    [65]Khan E., Khaodhir S., Ruangrote D. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration [J]. Bioresource Technology,2009,100:4454-4461.
    [66]Knops J., Bradley K. L., Wedin D. A. Mechanisms of plant species impacts on ecosystem nitrogen cycling [J]. Ecology Letters,2002, (5):454-466.
    [67]Krave A., Van Straalen N., van Verseveld H. Potential nitrification and factors influencing nitrification in pine forest and agricultural soils in Central Java, Indonesia[J]. Pedobiologia, 2002,46 (6):573-594.
    [68]Kustermann B., Christen O., Hulsgergen K. Modeling nitrogen cycles of farming systems as basis of site-and farm-specific nitrogen management [J]. Agriculture ecosystems and Environment,2010,135:70-80.
    [69]Lee B. C., Matsui S., Shimizu Y., Matsuda T, Tanaka Y. A new installation for treatment of road runoff:up-flow filtration by porous polypropylene media [J]. Water Science and Technology,2005,52(12):225-232.
    [70]Li Y. H., Li H. B., Sun T. H., Wang X. Effects of hydraulic loading rate on pollutants removal by a deep subsurface wastewater infiltration system [J]. Ecological Engineering,2011,37: 1425-1429.
    [71]Liang Z., Liu J. X. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system [J]. Journal of Hazardous Materials,2008,151:202-212.
    [72]Lovell S., Sullivan W. Environmental benefits of conservation buffers in the United States: Evidence, promise, and open questions[J]. Agriculture, Ecosystems and Environment,2006, 112:249-260.
    [73]Lu H., Yin C. Shallow groundwater nitrogen responses to different land use managements in the riparian zone of Yuqiao Reservoir in North China [J]. Journal of Environmental Sciences, 2008,20:652-657.
    [74]Lu S. Y., Wu F. C., Lu Y. F., Xiang C. S., Zhang P. Y., Jin C. X. Phosphorus removal from agricultural runoff by constructed wetland[J]. Ecological Engineering,2009,35(3):402-409.
    [75]Maitre V., Cosandey A., Parriaux A., Guenat C. A methodology to estimate the denitrifying capacity of a riparian wetland [J]. Journal of Environmental Quality,2005,34 (2):707-716.
    [76]Maljanen M., Nykanen H., Moilanen M., Martikainen P. J. Greenhouse gas fluxes of coniferous forest floors as affected by wood ash addition [J]. Forest Ecology Management, 2006,237:143-149.
    [77]Martikainen P. J. Microbial processes in boreal forest soils as affected by forest management practices and atmospheric stress [J]. Soil Biochemistry,1996,9:195-232.
    [78]Martin T., Kaushik N., Trevors J., Whiteley H. R. Review:denitrification in temperate climate riparian zones[J]. Water, Air, and Soil Pollution,1999,111:171-186.
    [79]Mayer P., Reynolds S., Mccutchen M., Canfield T. J. Meta-analysis of nitrogen removal in riparian buffers [J]. Journal of Environmental Quality,2007,36(4):1172-1180.
    [80]McIntyre R., Adams M., Grierson P. Nitrogen mineralization potential in rewetted soils from a semi-arid stream landscape, north-west Australia [J]. Journal of Arid Environments,2009, 73:48-54.
    [81]Merrill A. G., BenningT. L. Ecosystem type differences in nitrogen process rates and controls in the riparian zone of a montane landscape [J]. Forest Ecology and Management,2006,222: 145-161.
    [82]Munoz-Leoz B., Antiguedad I., Garbisu C., Ruiz-Romera E. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil:An undisturbed soil column study [J]. Science of the Total Environment,2011,409:763-770.
    [83]Murakami M., Sato N., Anegawa A., Nakada N., Harada A., Komatsu T., Takada H., Tanaka H., Ono Y., Furumai H. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration [J]. Water Research,2008,42:2745-2755.
    [84]Muscutt A., Harris G., Bailey S., Davies D. B. Buffer zones to improve water quality-a review of their potential use in UK agriculture [J]. Agriculture, Ecosystems and Environment, 1993, (45):59-77.
    [85]Nanbakhsh H., Kazemi-Yazdi S., Scholz M. Design comparison of experimental storm water detention systems treating concentrated road runoff [J]. Science of the Total Environment, 2007,380:220-228.
    [86]Nina S. Effect and design of buffer zones in the Nordic climate:The influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff [J]. Ecological Engineering,2005,24(5):483-490.
    [87]Oehler F., Bordenave P., Durand P. Variations of denitrification in a farming catchment area [J]. Agriculture, Ecosystems and Environment,2007,120:313-324.
    [88]Owen J. S., Wang M. K., Wang C. H., King H. B., Sun H. L. Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan [J]. Forest Ecology and Management,2003,176, (1-3):519-530.
    [89]Parkyn S. Review of riparian buffer zone effectiveness [M]. New Zealand:Ministry of Agriculture and Forestry,2004, pp 1-31.
    [90]Parton W. J., Mosier A. R., Ojima D. S., Valentine D. W., Schimel D. S., Weier K., Kulmala A. E. Generalized model for N2 and N2O production from nitrification and denitrification [J]. Global Biogeochemical Cycles,1996,10(3):401-412.
    [91]Pavel E. W., Raymond Jr. B. R., Duane F. B. Denitrification potential of non-tidal riparian wetland soils in the Virginia Coastal Plain [J]. Water Research,1996,39:2798-2804.
    [92]Pei Y. S, Yang Z. F., Tian B. H. Nitrate removal by microbial enhancement in a riparian wetland [J]. Bioresource Technology,2010,101:5712-5718.
    [93]Peltola R., Salkinoja-Salonen M., Pulkkinen J., Koivunen M., Turpeinen A., Aarnio T. Nitrification in polluted soil fertilized with fast-and slow-releasing nitrogen:A case study at a refinery landfarming site [J]. Environmental Pollution,2006,143:247-253.
    [94]Peng S. Z., Yang H., Xu J. Z., Gao H. Z. Field experiments on greenhouse gas emissions and nitrogen and phosphorus losses from rice paddy with efficient irrigation and drainage management [J]. Science China Technological Sciences,2011,54(6):1581-1587.
    [95]Pennock D., Yates T., Bedard-Haughn A., Phipps K., Farrell R., McDougal R. Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region [J]. Geoderma,2010,155:308-319.
    [96]Peterjohn W., Correll D. Nutrient dynamics in an agricultural watershed:Observations on the role of a riparian forest [J]. Ecology,1984,65(5):1466-1475.
    [97]Poe A. C., Piehler M. F., Thompson S. P., Paerl H. W. Denitrification in a constructed wetland receiving agricultural runoff[J]. Wetlands,2003,23:817-826.
    [98]Quanrud D., Hafer J., Karpiscak M., Zhang J. M, Lansey K. E., Arnold R. G. Fate of organics during soil-aquifer treatment:sustainability of removals in the field [J]. Water Research,2003, 37(14):3401-3411.
    [99]Rassam D., Fellows C., De Hayr R., Hunter H., Bloesch P. The hydrology of riparian buffer zones; two case studies in an ephemeral and a perennial stream [J]. Journal of Hydrology, 2006,325:308-324.
    [100]Rassam D., Pagendam D., Hunter H. Conceptualisation and application of models for groundwater-surface water interactions and nitrate attenuation potential in riparian zones [J]. Environmental Modelling and Software,2008,23:859-875.
    [101]Rickerl D., Janssen L., Woodland R. Buffer wetlands in agricultural landscapes in the prairie pothole region:environmental, agronomic and economic evaluations [J]. Journal of Soil and Water Conservation,2000,55(2):220-226.
    [102]Roberts W., Stutter M., Haygarth P. Phosphorus retention and remobilization in vegetated buffer strips:A review [J]. Journal of Environmental Quality,2012,41(2):389-399.
    [103]Ross D. S., Wemple B. C. Soil nitrification in a large forested watershed, Ranch Brook (Vermont), mirrors patterns in smaller northeastern USA catchments [J]. Forest Ecology and Management,2011,262:1084-1093.
    [104]Rudebeck A., Persson T. Nitrification in organic and mineral soil layers in coniferous forests in response to acidity [J]. Environmental Pollution,1998,102(S1):377-383.
    [105]Sabater S., Butturini A., Clement J. C., Burt T., Dowrick D., Hefting M., Matre V., Pinay G., Postolach C., Rzepecki M., Sabater F. Nitrogen removal by riparian buffers along a European climatic gradient:Patterns and factors of variation [J]. Ecosystems,2003,6:20-30.
    [106]Sakadevan K., Bavor H. J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems [J]. Water Research,1998, 32(2):393-399.
    [107]Sala O., Parton W., Joyce L., Lauenroth W. K. Primary production of the central grassland region of the United States [J]. Ecology,1988,69,40-45.
    [108]Sarioglu M. Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite [J]. Separation and Purification Technology,2005,41:1-11.
    [109]Sauve S., Dumestre A., McBride M. Nitrification potential infield-collected soils contaminated with Pb or Cu [J]. Applied Soil Ecology,1999,12:29-39.
    [110]Schipper L. A., Cooper A. B., Harfoot C. G, Dyck W. J. Regulators of denitrification in an organic riparian soil [J]. Soil Biology and Biochemistry,1993,25:925-933.
    [111]Schoonover J., Williard K., Zaczek J., Mangun J. C., Carver A. D. Nutrient attenuation in agricultural surface runoff by riparian buffer zones in Southern Illinois, USA [J]. Agroforestry Systems,2005,64(2):169-180.
    [112]Seitzinger S. P., Giblin A. Estimating denitrification in North Atlantic continental shelf sediments [J]. Biogeo-chemistry,1996,35:235-260.
    [113]Senbayram M., Chen R., Budai A., Bakken, L., Dittert, K. N2O emission and the product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations [J]. Agriculture, Ecosystems and Environment,2012,147:4-12.
    [114]Seneviratne R., Wild A. Effect of mild drying on the mineralization of soil nitrogen [J]. Plant Soil,1985,84:175-179.
    [115]Sgouridis F., Heppell C. M., Wharton G., Lansdown K., Trimmer M. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain [J]. Water research,2011,45:4909-4922.
    [116]Shabaga J. A., Hill A. R. Groundwater-fed surface flow path hydrodynamics and nitrate removal in three riparian zones in southern Ontario, Canada [J]. Journal of Hydrology,2010, 388:52-64.
    [117]Simek M., Jisova L., Hopkins D. What is so-called optimum pH for denitrification in soil [J]. Soil Biology and Biochemistry,2002,34:1227-1234.
    [118]Simojoki A., Jaakkola A. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emissions in a loamy clay [J]. European Journal of Soil Science,2000,51(3):413-424.
    [119]Sitaula B. K., Bakken L. R. Nitrous oxide release from spruce forest soil:relationships with nitrification, methane uptake, temperature, moisture and fertilization [J]. Soil Biology and Biochemistry,1993,25:1415-1421.
    [120]Song K., Kang H., Zhang L., Mitsch W. J. Seasonal and spatial variations of denitrification and denitrifying bacterial community structure in created riverine wetlands [J]. Ecological Engineering,2012,38:130-134.
    [121]Song K., Lee S., Kang H. Denitrification rates and community structure of denitrifying bacteria in newly constructed wetland [J]. European Journal of Soil Biology,2011,47:24-29.
    [122]Soosaar K., Mander U., Maddison M., Kanal A., Kull A., Lohmus K., Truu J,, Augustin J. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests [J]. Ecological Engineering,2011,37:40-53.
    [123]Ste-Marie C., David P. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands [J]. Soil Biology and Biochemistry,1999,31: 1579-1589.
    [124]Sung C., Li M., Rogers G., Volder A., Wang Z. F. Investigating alien plant invasion in urban riparian forests in a hot and semi-arid region[J]. Landscape and Urban Planning,2011, 100:278-286.
    [125]Syversen N. Effect and design of buffer zones in the Nordic climate [J]. Ecological Engineering,2005,24 (5):483-490.
    [126]Templer P. H., Pinder R. W., Goodale C. L. Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America [J]. Frontiers in Ecology and the Environment,2012,10(10):547-553.
    [127]Tranvik L. J., Downing J. A., Cotner J. B., Loiselle S. A., Striegl R., Ballatore T. J., Dillon P., Finlay K., Fortino K., Knoll L., Kortelainen P. L., Kutser T., Larsen S., Laurion I., Leech D. M., Mccallister S., Mcknight D. M., Melack J., Overholt E., Porter J. A., Prairie Y., Renwick W. H., Roland F., Sherman B. S., Schindler D. W., Sobek S., Trembay A., Vanni M., Verschoor A., Von Wachenfeldt E. Lakes and reservoirs as regulators of carbon cycling and climate [J]. limnology and oceanography-methods,2009,54(6):2298-2314.
    [128]Van Beek C. L., Hummelink E. W. J., Velthof G. L., Oenema O. Denitrification rates in relation to groundwater level in a peat soil under grassland [J]. Biology and Fertility of Soils, 2004,39,329-336.
    [129]Veiko U., Krista L., Merit K., Tullus H. The effect of land use type on net nitrogen mineralization on abandoned agricultural land:Silver birch stand versus grassland [J]. Forest Ecology and Management,2008,255:226-233.
    [130]Vernimmen R., Verhoef H., Verstraten J., Bruijnzeel L. A., Klomp N. S., Zoomer H. R., Wartenbergh P. E. Nitrogen mineralization, nitrification and denitrification potential in contrasting lowland rain forest types in Central Kalimantan, Indonesia [J]. Soil Biology and Biochemistry,2007,39:2992-3003.
    [131]Vilain G., Gamier J., Tallec G., Cellier P. Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France) [J]. Agricultural and Forest Meteorology,2010, 150:1192-1202.
    [132]Vinther F. P. Measured and simulated denitrification activity in a cropped sandy and loamy soil [J]. Biology and Fertility of Soils,1992,14:43-48.
    [133]Vitousek P., Aber J., Howarth R. Human alternation of the global nitrogen cycle:sources and consequences [J]. Ecological Applications,1997,7(3):737-750.
    [134]Vymazal J. Removal of nutrients in various types of constructed wetlands [J]. Science of the Total Environment,2007,380:48-65.
    [135]Wahl M. H., McKellar H. N., Williams T. M. Patterns of nutrient loading in forested and urbanized coastal streams [J]. Journal of Experimental Marine Biology and Ecology,1997, 213:111-131.
    [136]Walker J. T., Geron C. D., Vose J. M., Swank W. T. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia [J]. Chemosphere,2002,49:1389-1398.
    [137]Wang S. B., Peng Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment [J]. Chemical Engineering Journal,2010,56:11-24.
    [138]Wang X. L., Mannaerts C. M., Yang S. T., Gao Y. F., Zheng D. H. Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data [J]. Science of the Total Environment,2010a,408:3310-3318.
    [139]Wang X., Sun T. H., Li H. B., Li Y. H., Pan J. Nitrogen removal enhanced by shunt distributing wastewater in a subsurface wastewater infiltration system [J]. Ecological Engineering,2010b,36:1433-1438.
    [140]Wang Y. S., Xue M., Zheng X. H., Ji B. M., Du R., Wang Y. F. Effcts of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia [J]. Chemosphere,2005,58:205-215.
    [141]Watts S., Seitzinger S. Denitrification rates in organic and mineral soils from riparian sites:a comparison of N2 flux and acetylene inhibition methods [J]. Soil Biology and Biochemistry,2000,32:1383-1392.
    [142]Wenger S, Fowler L. Protecting stream and river corridors:creating effective local riparian buffer ordinances [M]. Carl Vinson Institute of Government, University of Georgia, Athens, GA.2000.
    [143]Whitford V., Ennos A., Handley J. "City form and natual process"-indicators for the ecological performance of urban areas and their application to Merseyside, UK [J]. Landscape and Urban Planning,2001,57(2):91-103.
    [144]Xiang S., Doyle A., Holden P., Schimel J. P. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils [J]. Soil Biology and Biochemistry,2008,40:2281-2289.
    [145]Yamada T., Logsdon S., Tomer M., Burkart M. R. Groundwater nitrate following installation of a vegetated riparian buffer [J]. Science of the Total Environment,2007,385: 297-309.
    [146]Yang L., Zhang F., Gao Q., Mao R. Z., Liu X. J. Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China [J], Catena,2010,82:15-22.
    [147]Ye C., Cheng X., Zhang Y., Zhang Q. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir, China [J]. Ecological Engineering,2012,38:37-44.
    [148]Young E., Briggs R. Shallow groundwater nitrate-N and ammonium-N in cropland and riparian buffers [J]. Agriculture, Ecosystems and Environment,2005, (109):297-309.
    [149]Zhang X, Liu X, Zhang M, Dahlgren R. A., Eitzel M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution [J]. Journal of Environmental Quality,2010a,39(1):76-84.
    [150]Zhang K., Xu X., Wang Q. Characteristics of N mineraliztion in urban soils of Hefei, East China [J]. Pedosphere,2010b,20(2):236-244.
    [151]边博,程晓娟.城市河流生态系统健康及其评价[J].环境评价,2006,(2B):66-69.
    [152]蔡祖聪,Mosier A. R.土壤水分状况对CH4氧化,N20和C02排放的影响[J].土壤,1999,31(6):289-295.
    [153]曹裕松,傅声雷,旷远文,胡文杰.氮和磷增加对华南两种人工林土壤甲烷通量的影响[J].井冈山大学学报(自然科学版),2010,31(5):53-57.
    [154]常静,刘敏,侯立军,许世远,林啸,Ballo S城市地表灰尘的概念、污染特征与环境效应[J].应用生态学报,2007,18(5):1153-1158.
    [155]常静,刘敏,许世远,侯立军,王和意,Ballo S上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2006,25(6):994-1002.
    [156]陈庆锋,单保庆,尹澄清,胡承孝.利用生态混凝土控制城市坡面暴雨径流污染试验研究[J].环境污染治理技术与设备,2006,(11):23-28.
    [157]陈思光,王劲松,周志武,彭瑞婷.城市雨水处理研究现状与进展[J].南华大学学报(自然科学版),2010,24(3):103-106.
    [158]陈先江,王彦荣,侯扶江.草地生态系统温室气体排放机理及影响因素[J].草业科学,2011,28(05):722-728.
    [159]储纪芳.上海市城市绿地土壤特点与改良对策[J].中国城市林业,2010,8(1):47-49.
    [160]邓红兵,王青春,王庆礼,吴文春,邵国凡.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    [161]丁洪,王跃思.东北黑土区不同作物系统氮肥反硝化损失与N20排放量[J].农业环境科学学报,2004,23(2):323-326.
    [162]丁维新,蔡祖聪.沼泽甲烷排放及其主要影响因素[J].地理科学,2002,22(5):619-625.
    [163]樊兰英,郭晋平,张芸香,杜宁宁,张延坤.山地河岸林土壤对硝态氮和铵态氮的截留及影响因素[J].水土保持学报,2011,25(2):134-137.
    [164]范小华,谢德体,魏朝富.河岸带生态系统管理模型研究进展[J].中国农学通报,2006,22(1):277-282.
    [165]冯绍元,侯立柱,丁跃元,张书函.多层渗滤介质系统去除城市雨水径流有机污染物[J].环境科学学报,2008,28(6):1123-1130.
    [166]高大文,杨帆.滨岸缓冲带在水源地农业面源污染防治上的应用[J].环境科学与技术,2010,33(10):92-96.
    [167]龚清宇,王林超,朱琳.基于城市河流半自然化的生态防洪对策-河滨缓冲带与柔性堤岸设计导引[J].城市规划,2007,(3):51-57,63
    [168]郭会哲,樊巍,宋绪忠.河岸带植被结构功能及修复技术研究进展[J].河南林业科技,2005,25(4):1-3.
    [169]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002,243-248,254-257,276-281.
    [170]韩润平,刘晨湘,石杰,杨健,陆雍森,刘宏民.不同结构生态滤池处理城镇污水研究[J].生态环境,2005,14(3):309-312.
    [171]韩舞鹰.海水化学要素调查手册[M].北京:科学出版社,1986:127-136.
    [172]韩芸,李斌,彭党聪,许玮.宝鸡市雨水径流岸边渗滤系统设计与应用[J].给水排水,2009,35(4):36-39.
    [173]韩壮行.不同宽度森林河岸带对土壤氮素截留转化效率影响[D].东北林业大学,2007.
    [174]郝庆菊,王跃思,宋长春,王毅勇,王明星.三江平原湿地土壤N2O和CH4排放的初步研究[J].农业环境科学学报,2004,23(5):846-851.
    [175]侯立柱,冯绍元,丁跃元,张书函,田景宏.多层渗滤介质系统对城市雨水径流氮磷污染物的净化作用[J].环境科学学报,2009,29(5):960-967.
    [176]黄磊,高旭,谢伟丹,陈俊宏,马晓霞.负荷对渗滤系统控制农业径流污染物的影响[J].农业工程学报,2011,27(5):46-51.
    [177]黄益宗,冯宗炜,张福珠.农田氮损失及其阻控对策研究[J].中国科学院研究生院学报,2000,13(12):1703-1706.
    [178]黄勇强,吴涛,厉晶晶,杨飚.初期弃流/旋流分离/生态浮床工艺处理径流雨水[J].中国给水排水,2010,26(11):1-4.
    [179]姜凌,秦耀民.利用土壤层净化雨水补给地下水的实验研究[J].水土保持学报,2005,19(6):94-97.
    [180]蒋德明,蒋玮.国内外城市雨水径流水质的研究[J].物探与化探,2008,32(4):417-420.
    [181]蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):54-57.
    []82] 蒋海涛,于丹丹,韩润平.城市初期雨水径流治理现状及对策[J].水资源保护,2009,25(3):33-36.
    [183]蒋海燕,刘敏,顾琦,侯立军,许世远.上海城市降水径流营养盐氮负荷及空间分布[J].城市环境与城市生态,2002,15(1):15-17.
    [184]劳家柽.土壤农化分析手册[M].北京:农业出版社,1988:234-236.
    [185]李斌.岸边渗滤系统处理宝鸡市雨水径流污染应用研究[D].西安建筑科技大学,2009.
    [186]李海防,段文军.华南地区典型人工林土壤二氧化碳和氧化亚氮通量研究[J].浙江农林大学学报,2011,28(1):26-32.
    [187]李怀恩,邓娜,杨寅群,史冬庆.植被过滤带对地表径流中污染物的净化效果[J].农业工程学报,2010,26(7):81-86.
    [188]李俊祥,王玉洁,宋永昌,王华.基于GIS的上海市河道及其水污染空间特征分析[J].中国环境科学,2004,24(5):632-635.
    [189]李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003,(6):41-43.
    [190]李婉,张娜,吴芳芳.北京转河河岸带生态修复对河流水质的影响[J].环境科学,2011,32(1):80-87.
    [191]李秀艳,沈叶红,刘军,孟飞琴,吕淑华.微生物在城市绿地消减暴雨径流污染过程中的作用[J].应用与环境生物学报,2010,16(2):240-246.
    [192]梁东丽,同延安,Emteryd O.,方日尧,张树兰.干湿交替对旱地土壤N20气态损失的影响[J].干旱地区农业研究,2002,20(2):28-31.
    [193]刘伟,刘百桥,苏睿先,陈振楼.上海郊区中心小城镇半城市化特征及其对水环境的影响实例研究[J].水土保持研究,2008,15(6):252-255.
    [194]卢培歌.苏州河城市河岸带结构与社会服务功能研究[D].华东师范大学,2012.
    [1 95]卢妍,宋长春,王毅勇,赵志春.植物对沼泽湿地生态系统N20排放的影响[J].生态与农村环境学报,2007,23(4):72-75,94.
    [196]梅雪英.城市草坪温室气体通量研究[D].华东师范大学,2008.
    [197]孟鲁伟.河岸植被土壤系统对氮素削纳的研究[D].厦门大学,2009.
    [198]聂发辉.上海城市景观绿地削减地表径流及其污染负荷的可行性研究[D].同济大学,2008.
    [199]齐玉春,董云社,耿元波,赵志春.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,22(4):342-352.
    [200]钱进,王超,王沛芳,侯俊,艾小榆.河岸带表土层氮素非饱和入渗运移规律模拟[J].水科学进展,201 1,22(4):568-573.
    [201]邵波,方文,王海洋.国内外河岸带研究现状与城市河岸林带生态重建[J].西南农业大学学报(社会科学版),2007,5(6):43-46.
    [202]施展.平原河网地区城市河流滨岸带生境评价研究-以上海市苏州河为例[D].华东师范大学,2008.
    [203]施振香.上海城郊土壤硝化、反硝化作用及其影响因素研究[D].上海师范大学,2010.
    [204]宋长春,张丽华,王毅勇,赵志春.淡水沼泽湿地CO2、CH4和N20排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27(12):2369-2375.
    [205]孙玮玮,王东启,陈振楼,胡蓓蓓,许世远.长江三角洲平原河网水体溶存CH4和N20浓度及其排放通量[J].中国科学,2009,39(2):165-175.
    [206]谭凌智,安黛宗,萧劲东.蓄水陶土对雨水面源污染物的吸附性能研究[J].中国给水排水,2008,24(5):98-101.
    [207]谭文博,欧阳峰,肖琳川.黄壤土土地处理系统去除N·P效果的研究[J].安徽农业 科学,2011,39(17):10324-10326.
    [208]唐浩,黄沈发,王敏,周海英,陈洪健.不同草皮缓冲带对径流污染物的去除效果试验研究[J].环境科学与技术,2009,32(2):109-112.
    [209]汪冬冬,施展,杨凯.城市河流滨岸带土地利用变化的环境效应-以上海苏州河为例[J].中国人口·资源与环境,2009,19(3):96-101.
    [210]汪冬冬.上海城市河流滨岸带生态系统退化评价研究-以苏州河为例[D].华东师范大学,2010.
    [211]王和意,刘敏,刘巧梅,侯立军.城市降雨径流非点源污染分析与研究进展[J].城市环境与城市生态,2003,16(6):283-285.
    [212]王和意.上海城市降雨径流污染过程及管理措施研究[D].华东师范大学,2005.
    [213]王华玲,赵建伟,程东升,刘玲花,戢正华,贺茂银,朱端卫.不同植被缓冲带对坡耕地地表径流中氮磷的拦截效果[J].农业环境科学学报,2010,29(9):1730-1736.
    [214]王敏,黄宇驰,吴建强.植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究[J].环境科学,2010,31(11):2607-2612.
    [215]王敏,吴建强,黄沈发,吴健.不同坡度缓冲带径流污染净化效果及其最佳宽带[J].生态学报,2008,28(10):4951-4956.
    [216]王庆成,崔东海,王新宇,吕跃东,姚琴,乔树亮,韩壮行.帽儿山地区不同类型河岸带土壤的反硝化效率[J].应用生态学报,2007b,18(12):2681-2686.
    [217]王庆成,于红丽,姚琴,韩壮行,乔树亮.河岸带对陆地水体氮素输入的截流转化作用[J].应用生态学报,2007a,18(11):2611-2617.
    [218]王新军,罗继润.城市河道综合整治中生态护岸建设初探[J].复旦学报(自然科学版),2006,45(1):120-126.
    [219]王洋,刘景双,孙志高,王金达,张学林.湿地系统氮的生物地球化学研究概述[J].湿地科学,2005,4(4):311-320.
    [220]徐化成.景观生态学[M].北京:中国林业出版社,1996.
    [221]徐宪根,周焱,阮宏华,韩勇,於华,曹慧敏,汪家社,徐自坤.武夷山不同海拔高度土壤氮矿化对温度变化的响应[J].生态学杂志,2009,28(7):1298-1302.
    [222]阎丽凤,雷泽勇,刘胜利,陈光华,魏永忠.河岸缓冲带不同植被配置对铵氮去除效果研究[J].世界科技研究与发展,2011,33(1):46-48,53.
    [223]阎丽凤,石险峰,于立忠,苗永刚,姚立平,李莉.沈阳地区河岸植被缓冲带对氮、 磷的削减效果研究[J].中国生态农业学报,2011,19(2):403-408.
    [224]杨帆,高大文,高辉.高效吸收氮、磷的滨岸缓冲带植物筛选[J].东北林业大学学报,2010,38(9):62-63,112.
    [225]杨继松,于君宝,刘景双,王金达,孙志高,李新华.三江平原湿地岛状林CH4和N2O排放通量的特征[J].生态环境,2004,13(4):476-479.
    [226]尹澄清,邵霞,王星.白洋淀水陆交错带对氮磷截留量的初步研究[J].生态学杂志,1999,18(5):7-11.
    [227]尹澄清.城市面源污染问题:我国城市化进程的新挑战-代“城市面源污染研究”专栏序言[J].环境科学学报,2006,26(7):1053-1056.
    [228]于占源,曾德慧,姜凤岐,范志平,陈伏生,赵琼.半干旱区沙质草地生态系统碳循环关键过程对水肥添加的响应[J].北京林业大学学报,2006,28(4):45-50.
    [229]袁雯,杨凯,徐启新.城市化对上海河网结构和功能的发育影响[J].长江流域资源与环境,2005,14(2):133-138.
    [230]曾蓓清,潘文斌.河岸缓冲区氮素截留研究进展[J].环境科学与管理,2008,33(1):22-25.
    [231]张国春,刘琪璟,徐倩倩,刘燕.长白山高山苔原带雪斑地段牛皮杜鹃群落的土壤氮矿化与净初级生产力[J].应用生态学报,2010,21(9):2187-2193.
    [232]张洪玲,邹俊,陈昕.多级土壤渗滤系统处理太湖流域农村生活污水的工程研究[J].安徽农业科学,2011,39(9):5178-5180.
    [233]张金炳,汤鸣皋,陈鸿汉,钟佐燊,邓雁希,宋志勇.人工快渗系统处理洗浴污水的试验研究[J].岩石矿物学杂志,2001,20(4):539-543.
    [234]张菊,陈振楼,刘杰.上海河流氮负荷的年际变化及其水体富营养化的原因探讨[J].环境污染与防治,2005,27(1):29-34.
    [235]张丽华,宋长春,王德宣.沼泽湿地CO2, CH4, N2O排放对氮输入的响应[J].环境科学学报,2005,25(8):1112-1118.
    [236]张树兰,杨学云,吕殿青,同延安.温度水分及不同氮源对土壤硝化作用的影响[J].生态学报,2002,22(12):2147-2153.
    [237]张威,张旭东,何红波,解宏图,白震.干湿交替条件下土壤氮素转化及其影响研究进展[J].生态学杂志,2010,29(4):783-789.
    [238]张炜,车伍,李俊奇,陈和平.植被浅沟在城市雨水利用系统中的应用[J].给水排 水,2006,32(8):33-37.
    [239]张炜,莫江明,方运霆,鲁显楷,王晖.氮沉降对森林土壤主要温室气体通量的影响[J].生态学报,2008,28(5):2309-2319.
    [240]张玉铭,胡春胜,董文旭.农田土壤N20生成与排放影响因素及N20总量估算的研究[J].中国生态农业学报,2004,12(3):119-123.
    [241]张之山,金崟,雷中方,杉浦则夫,许晓天,殷娣娣.土壤渗滤系统中亚硝态氮的变化与系统运行性能的关系[J].复旦学报(自然科学版),2006,45(6):755-761.
    [242]章明奎,方利平.河岸水稻缓冲带宽度对排水中氮磷流失的影响[J].水土保持学报,2005,19(4):10-13.
    [243]赵航美.滨岸缓冲带生态效益研究[D].华东师范大学,2008.
    [244]赵洪涛,李叙勇,王为东,陈梅雪,尹澄清.城镇街尘污染与平原河网水体的源-汇效应研究[J].环境科学学报,2010,30(6):1295-1301.
    [245]郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    [246]周栋,陈振楼,毕春娟,王骏,林守民,祁莹莹.沸石和麦饭石组合滤料对城市降雨径流氮磷去除效率的研究[J].华东师范大学学报(自然科学版),2011,(1):185-193.
    [247]朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度[J].生态学报,2005,25(9):2406-2412.
    [248]邹亚丽,韩方虎,耿丽英,沈禹颖.温度和湿度对紫花苜蓿土壤氮矿化的影响[J].草业学报,2010,19(4):101-107.
    [249]左俊杰,蔡永立,罗坤,郭纪光,季夏薇.上海地区河岸带结构:类型、分布及改进[J].水资源保护,2009,25(6):24-28.
    [250]左倬,由文辉,汪冬冬.上海市青浦区不同用地类型河流滨岸带生境及植物群落组成[J].长江流域资源环境,2011,20(1):116-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700