用户名: 密码: 验证码:
大功率齿轮调速装置关键设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型齿轮调速传动装置是集机、电、液于一体的新型传动装置,其设计制造技术是一项复杂的综合技术,加上国外对我国的技术封锁限制,国内也缺乏系统的研究、设计、生产和实验,目前仅有少数企业在中小型产品方面进行仿制,大型高参数装置还依赖进口,特别是传递功率6000kW以上、转速5000-6650r/min,配套60万千瓦、100万千瓦超临界、超超临界火电锅炉给水泵机组的大功率齿轮传动调速装置目前完全从国外进口。本文以大功率齿轮调速传动装置为研究对象,运用现代设计计算方法对其内部高功率密度齿轮副轴系系统、叶轮工作腔液力传动系统、勺管位移—工作腔进油—勺管体排油控制系统等方面进行了较全面的研究,基本掌握了大功率、高速度齿轮传动、液力传动及控制系统组成的大型齿轮调速装置的关键设计制造技术,开发出了超临界、超超临界燃煤发电机组中高速重载大型机电液调速传动装置。论文研究内容涉及大型齿轮调速装置调试运行基本特性及工作匹配关系、轴系模态计算及滑动轴承承载能力分析、叶轮工作腔内流场数值模拟计算及工作油路系统控制等。主要研究内容及结论有:
     (1)基于大型齿轮调速系统的传动结构形式,建立了轴系动力学模型,分别对主动齿轮轴、泵轮轴、涡轮轴以及主动齿轮轴与泵轮轴耦合状态进行了模态计算,从计算结果可以得出,主动齿轮与齿轮-泵轮轴组成的系统在工作时是安全的。基于不完全液体润滑轴承承载能力计算和液体润滑静压轴承承载能力计算两种方法分别对装置关键位置径向滑动轴承和止推滑动轴承等十个滑动轴承进行承载能力计算,提出了提高滑动轴承承载能力的途径。
     (2)基于调速装置叶轮工作腔内流场液力传动特性,确定了内流场三维数值模拟计算方法,选取相邻三个叶片间的流体块作为研究对象,采用流体分析软件FLUENT进行计算,得到额定功率7334kW、输入转速1490r/min齿轮调速装置的制动、牵引和额定三个代表性工况充液率分别为40%、80%及100%时流场压力、速度分布及液相分布情况。并计算出力矩系数预测装置输出外特性曲线,经对比符合理想特性曲线。
     (3)在工作叶轮三维实体模型基础上,对叶轮在循环流动的工作液体中受力情况进行了分析求解。分别针对泵轮和泵轮涡轮套连接体,应用不同有限元分析软件对叶轮进行有限元分析,得到了液体作用在叶轮壁壳内壁上的应力与位移分布情况,找出了叶轮应力最大部位,泵轮最大应力发生在叶片根部与内腔连接处。泵轮涡轮套连接体计算表明,涡轮套应力主要是内壁压力的影响,整个叶轮中最容易发生破坏的薄弱处位于涡套的中心圆处。
     (4)基于大型复合式齿轮调速装置油路控制系统原理,推导了调速装置工作油量计算公式,进而得到了工作油量的计算方法。以额定功率7334kW大型齿轮调速装置为例,计算了不同速比下需要的工作油油量,得出当速比为0.667时,齿轮调速装置的最大功率损失约为工作机械功率的16%。绘制了工作油量与速比的关系曲线,当输出转速在20%—97%调节时,最大所需工作油量约为最小油量的5.25倍。分析了进油控制阀体通油面积、勺管移动位置及充液率的关系,实现了对勺管和油路系统的精确控制。
Large gear variable speed transmission device is a new equipment incorporated with mechanics, electricity and hydraulics as a whole, the technology of its design and manufacturing is a sophisticated and integrated technology. For the reason of foreign technology blockade restrictions to China and lacking of systematic research, design, production and experiments, only minor products are imitated in a few companies nowadays, while large-scale high-parameter device is still basically dependent on imports. In particular, high-power gear variable speed devices used for boiler feed water pump in the thermal power is fully imported from abroad, which are over6000kW and5000rpm to6650rpm, supporting600,000kilowatts or1000,000kilowatts of supercritical generator sets or even ultra supercritical generator sets. In this dissertation, with high-power gear variable speed device as the study object, applying modern design calculation methods, a comprehensive study about the internal shaft system with high power density, the hydraulic drive system of the impeller's working chamber and the control system of displacement of scoop tube, inlet oil of working chamber and outlet oil of scoop tube is fulfilled. The key design and manufacturing technology of large gear variable speed transmission device consisting of high-power, high-speed gear transmission, hydraulic transmission and control system are basically mastered, high-speed and heavy duty hydraulic adjustment speed transmission device used for supercritical or ultra-supercritical coal-fired generating units is developed. The research contents of this dissertation involve the basic characteristics of the commissioning and the working match relationships in the device, the shaft system model buliding and the sliding bearing capacity calculation, the flow field numerical simulation and analysis in the working chamber of the impeller and the working hydraulic control system. Main research and conclusions are as following:
     (1) Based on the transmission structure of the large gear speed control system, the shaft system dynamics model is established and model calculations about gear shaft, pump shaft, turbine shaft and the coupling state of gear shaft and pump shaft are respectively accomplished. From the calculation results, it can be concluded that the system is safe while working. Based on two methods of incomplete liquid lubricated bearing capacity calculation and liquid lubrication hydrostatic bearing capacity calculation, the load capacity calculations of ten sliding bearings including radial sliding bearings and thrust sliding bearings of the device are finished. Also the suggestion methods to increase the load capacit of sliding bearingy are proposed.
     (2) Based on the hydraulic transmission characteristics of flow field in the working chamber of the impeller, three-dimensional numerical simulation method of inner flow field is determined. Fluid blocks of adjacent three blades are selected as the research subjects and fluid analysis software FLUENT is used, the pressure, speed and liquid phase distribution are analysed, in which the rated power is7334kW, the input speed is1490r/min for gear speed device at three representative operating conditions such as braking, traction and nominal speed, where the filling rates are40%,80%and100%respectively. After calculating the torque coefficient, the output external characteristic curve can be predicted. By contrast, it is the ideal characteristic curve.
     (3) On the basis of three-dimensional model of the impeller, the liquid forces of the impeller are analyzed. Aiming at the pump wheel and the assembly body of the pump wheel and turbine wheel sleeve, different finite element analysis softwares are applied to analyse the impeller, then the stress and displacement distribution on the impeller housing acted by the liquid are obtained, and the maximum stress point in the impeller is found. The maximum stress occurs at the location connected by the impeller blade root and the cavity. The calculations of turbine impeller sleeve connector body also show that the turbine sets stress has a great effect on the stress of inner wall, occurring at the center circle of vortex sets which are most likely destroyed throughout the impeller.
     (4) Based on the oil control system theory, the formula of the speed device's working oil mass can be derived and then its calculation method is got. Taking the large gear variable speed transmission device with a rated power of7334kW for example, by calculating the required working oil mass under different ratios, it is found that the gear adjusting device's maximum power loss is about16percent of working mechanical power when the ratio is0.667. From the curve drawn between working oil and ratio, it can be seen that when the output speed is adjustable between20%-97%, the maximum required working oil mass is approximately5.25times the minimum oil mass. By analyzing the oil passing area of the inlet oil control valve, the location of displacement of scoop tube spoon tube and the filling rate, the precise control for the spoon tube and hydraulic system can be achieved.
引文
[1]孟令先.超临界/超超临界火电机组齿轮调速传动装置研究与应用[J].机械传动,2012,36(11):19-21,26.
    [2]张德生.大功率阀控液力偶合器设计理论及关键技术研究[D].徐州:中国矿业大学,2011.
    [3]陈思奇.超临界机组与亚临界机组的比较[J].中国电力,1995,40(11):2-12.
    [4]邵万珍.调速型液力偶合器运行效率计算及节能分析[J].节能,2005,25(9):28-31.
    [5]大功率液力偶合器调速给水泵组研制成功[J].中国电力,1981,26(6):76-77.
    [6]汪贞静.12.5万千瓦机组锅炉给水泵液力偶合器[J].华电技术,1981,3(3):25-28.
    [7]曹甫祥,郭予超,陈惠民.12.5万千瓦机组液力偶合调速给水泵组[J].中国电力,1982,27(2):1-9.
    [8]薛殿君,孙瑞琨.液力传动试验台简介[J].工程机械,1984,21(5):20-23.
    [9]杨乃乔.5500kW液力偶合器鉴定简讯[J].起重运输机械,1988,28(2):52.
    [10]金多文,朱华发.YOT51系列调速型液力偶合器试制介绍[J].上海电力,1994,7(2): 49-51.
    [11]BAI L, MITRA N K, FIEBIG M.Computation of unsteady 3D turbulent flow and torque transmission in fluid couplings[C]. Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Heidelberg:Springer Berlin,1995: 435-440.
    [12](苏)A.H.图尔金著.火电厂给水泵的液力联轴器[M].黄锡康,陈思琦译.北京:水利电力出版社,1979.
    [13]伍晓芳.空调用多翼离心风机现代设计的CAD/CFD研究[D].武汉:华中科技大学,2004.
    [14]Jean Schweitzer, Jeya Gandham. Computational Fluid Dynamics in Torque Converters:Validation and Application[J]. International Journal of Rotating Machinery,2003(9):411-418.
    [15]H.Huitenga, N.K. Mitra. Improving startup behavior of fluid couplings through modification of runner geometry:Part I-fluid flow analysis and proposed improvement[J]. Journal of fluid engineering,2000(122):686-688.
    [16]H.Huitenga, N.K. Mitra. Improving startup behavior of fluid couplings through modification of runner geometry:Part II-fluid flow analysis and proposed improvement[J]. Journal of fluid engineering,2000(122):689-693.
    [17]马文星,何延东,刘春宝.液力传动研究现状分析与展望[J].农业机械学报,2008,39(7): 51-55.
    [18]何延东.基于CFD的大功率调速型液力偶合器设计[D].吉林:吉林大学,2009:1-10.
    [19]卢秀泉.调速型液力偶合器流固耦合与振动特性研究[D].吉林:吉林大学,2012:1-3.
    [20]褚亚绪.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,2006.
    [21]王佳.调速型液力偶合器叶轮强度及振动特性研究[D].长春:吉林大学,2009.
    [22]马文星.流动可视化技术在液力传动中的应用[J].建筑机械,1993(4):22-26.
    [23]U.Hampela, D.Hoppea, K.-H. Dieleb ect. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation,2005(16):177-182.
    [24]D. Hoppe, J. Fietz, U. Hampel et al. Gamma tomographic visualization of the fluid distribution in a hydrodynamic coupling, in F. P. Weiss, U. Rindelhardt: Institute of Safety Research, Annual Report,2002, FZR-380.
    [25]M.J.Da Silvaa, Y.Lu, T.Suhnel, et al. Autonomous planar conductivity array sensor for fast liquiddistribution imaging in a fluid coupling[J]. Sensors and Actuators A,2008,147:508-515.
    [26]Kraus S O, Flack R, Habsieger A, et al. Per iodic velocity measurements in a wide and large radius ratio automotive torque converter at the pump/turbine interface[J]. ASME Journal of Fluids Engineering,2005,127(2):308-316.
    [27]Yasunori Kunisaki, Toshio Kobayashi, Tetsuo Saga ect al. PIV Measurement on the Flow Field Around a Stator Cascade of Automotive Torque Converter. SAE 2001-01-0868.
    [28]Tetsuya Kubota, Toshio Kobayashi, Tetsuo Saga. Application study of PIV measurement of flow flied around lock-up clutch of automotive torque converter. JSAE,2003,4.
    [29]夏焕文,张景香.液力偶合器强度及轴向力分析[J].测试技术学报,1996,10(23):411-417.
    [30]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电,2001,22(6):20-23.
    [31]李娅娜,邵万珍,兆文忠.YOTCHP调速型液力偶合器叶轮强度的有限元分析[J].大连交通大学学报,2007,28(2):30-33.
    [32]侯继海,赵雯姝,赵玉全,等.高速大功率锅炉给水泵偶合器工作油量的理论探讨[J].水泵技术,1999,32(1):19-23.
    [33]刘建强.高速调速型液力偶合器油路控制技术[J].液压气动与密封,2011,31(8):50-53.
    [34]杨乃乔,严纯伟.新型调速型液力偶合器[J].液压气动与密封,2010,30(3):58-61.
    [35]陈荆山,王延合,于洪昌等.超临界火电机组用给水泵技术综述[J].水泵技术,2004,37(4):3-9.
    [36]邓春.锅炉给水泵运行方式优化及其控制的研究[D].镇江:江苏大学,2007.
    [37]毕淑娥.电工与电子技术基础[M].哈尔滨:哈尔滨工业大学出版社,2004:4.
    [38]陈江华.液力偶合器液力计算法及共同工作特性仿真[D].哈尔滨:哈尔滨工业大学,2007.
    [39]VOITH TURBO. Hydrodynamic solutions form Voith Turbo.100 years of fascination and innovation. G 1905 a (RTS/WA).2004:5
    [40]VOITH TURBO. Turbosyn The Turbo Coupling with Synchronization. Voith Turbo Start-up Components Publications, Cr354 en (RTS/WA),2002:06
    [41]HeinzHlole, Hydrodynamics.in.Drive.Technology-A.Short.Introduction[EB/OL]. Cr 604 en,04/2008.
    [42]严进,王曦东,董芳.后辅室延长式限矩型液力偶合器特性分析[J].重庆工业高等专科学校学报,1999(3):174-178.
    [43]陆肇达,李有义,孙逢华.限矩型液力偶合器的特性测试方法[J].起重运输机械,1993(8):20-22.
    [44]P. Coudray, M. Guesdon. Determination of the Transfer Matrix of a Fluid Coupling[J]. ASME Design Engineering Technical Conference,1985(8):8-16.
    [45]刘肖健.液力偶合器运行特性的计算机仿真[J].起重运输机械,1999,44(8):19-20.
    [46]Li Guangbu, Yang Ruqing. Belt Conveyor Dynamic Behavior and Associated Problems. Bulk Solids Handling,2003,23(5):322-327.
    [47]商高高,何仁,陆森林.液力变矩器性能特性的数学模型[J].江苏理工大学学报,1999(1):27-31.
    [48]王永生,王绍增,丁江明.液力偶合器输入特性变换及工程应用[J].机械工程学报,2006,42(4):218-221.
    [49]D.J. Dobner. A Mathematical Engine Model for Development of Dynamic Engine Control[J]. SAE Paper No.800054.1980:11-20.
    [50]王永生,陈华清,放晨阳.舰船液力偶合器数学模型新方法[J].海军工程大学学报,2002,14(107):40-45.
    [51]Wang Liwen, Li Guohong, Zhang Qiang. The Testing Exploration of Drive and Control Systems with Hydrodynamic Torque Converters. Proceedings of the 3rd International Symposium on Fluid Power Transmission and Control (ISFP'99) Harbin,1999:522-524.
    [52]童祖楹.液力偶合器[M].上海:上海交通大学出版社,1988.
    [53]李国平,赵美,赵继云等.大功率刮板输送机阀控充液型液力偶合器研发[J].中国工程科学,2011(11):39-49.
    [54]顾家柳转子动力学[M].西北工业大学出版社,1985:59.
    [55]Congxin YANG, Xiaorui CHENG, Xiuyong Wang et al. Numerical computation and design improvement of a supercritical pump based on the integral model combined with the pass-by pressure-balancing pipes[p]. RIC-WJT2009 Proceedings, Water Jetting Technology for LOHAS, Koriyama, Japan,2009, 231-236.
    [56]蒋鸿,张克危.锅炉给水泵的全面性能预测[J].水泵技术,2005(1):20-23.
    [57]屈德伟.机械振动手册[M].北京:机械工业出版社,1991.
    [58]虞烈,刘恒.轴承一转子系统动力学[M].西安:西安交通大学出版社,2001
    [59]马运通.600MW超临界机组汽动锅炉给水泵水动力及临界转速的分析与计算[D].兰州:兰州理工大学,2012.
    [60]王斌.基于离心泵内流场模拟的转子临界转速分析与计算[D].兰州:兰州理工大学,2010.
    [61]闻邦椿.高等转子动力学:理论、技术与应用[M].北京:机械工业出版社,1999:7-12.
    [62]孟光,转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9
    [63]Childs D W, Moyer D S.Sample Rotor Dynamic Calculations Using Cal TechCofficients[P].2nd International Pump Symposium, Texas A&M University, 1985.
    [64]尚志恿.转了-轴承系统的非线性动力学分析[D].哈尔滨工业大学硕士论文,2006.
    [65]焦映厚,明章,陈照波.不同油膜力模型下转子-圆柱轴承系统的动力学分析[J].哈尔滨工业大学学报,2007,39(1):46-50.
    [66]余最康.液体静压轴承.[M].南京:江苏科学技术出版社,1981:197-199.
    [67]侯予,赵祥雄,陈双涛,等.小孔节流静压比推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9):1-3.
    [68]夏欢.陶继忠.土洋.空气静压比推轴承静态性能测试装置设计[J].制造技术与机床,2009(3):61-63.
    [69]ANSYS.ANSYS FLUENT 12.0 Documentation.
    [70]江帆,黄鹏.Fluent高级应用与实力分析[M].北京:清华大学出版社,2008.
    [71]姚子生.液力偶合器部分充液两相流动数值模拟与分析[D].长春:吉林大学,2008.
    [72]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2006.
    [73]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,2009.
    [74]褚亚绪.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,2006.
    [75]李翠翠.液力偶合器的CAD及其动态特性的理论研究[D].南京:南京航空航天大学,2010.
    [76]Kost, A., Mitra, N.K., Fiebig, M. Numerical simulation of 3D periodic flow in fluid couplin[J]. Acta Mechanica Mechanica,1994.
    [77]Mansour, Mahmoud L., Gunaraj, John, Goswarni, Shrarnan. Validation of steadyaverage-passage and mixing plane CFD approaches for the performance prediction of a modern gas turbine multistage axial compressor[C]. Proceedings of the ASME Turbo Expo,2008,6, PART A:393-402.
    [78]M.Silk, Peter Drtina, M.V.Casey. Use of state capability in CFD for turbomachinery, with application in a Francis turbine[J]. International Journal of Computer Applications in Technology,1998,11.
    [79]潘兴河.高压低噪恒流量离心泵动力学研究[D].大连:大连交通大学,2008.
    [80]王晓峰.超微粉碎过程粉碎腔流场的研究[D].无锡:江南大学,2008.
    [81]曾诚.带自由表面的后向台阶流动的流场研究[D].南京:河海大学,2006.
    [82]赖喜德.叶片式流体机械的数字化设计与制造[M].成都:四川大学出版社2008.
    [83]刘春宝,马文星,褚亚旭.多流动区域祸合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1342-1347.
    [84]严军.车用液力缓速器设计理论和控制方法的研究[D].无锡:江苏大学,2009.
    [85]郭刘洋,杜明刚.CFD为基的液力减速器结构优化仿真[J].现代制造工程,2009(1):104-106.
    [86]庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1991.
    [87]严军.车用液力缓速器设计理论和控制方法的研究[D].镇江:江苏大学,2009.
    [88]褚亚绪.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,2006.
    [89]卢秀全.石油管道检测机器人流场数值模拟及PIV实验研究[D].长春:吉林大学,2008.
    [90]郭鹏程.水力机械内部复杂流动的数值研究与性能预测[D].西安:西安理工大学,2006.
    [91]J.D. Anderson, Computational Fluid Dynamic:the basic with applications[M]. McGrawhill.1995,清华大学出版社,2002.
    [92]刘应诚.液力偶合器实用手册[M].北京:化学工业出版社,2008.
    [93]孔珑.两相流体力学[M].北京:高等教育出版社,2005.
    [94]ROLLET-MIET LAURENCED JFERZIGER. LES and RANS of Turbulent Flow in Tube Bundles[J].International Journal of Heat and Fluid Flow 1999,20(3): 241-254.
    [95]肖兴均.轴流式混输泵单个压缩级设计及内部流场的CFD模拟分析[D].兰州:兰州理工大学,2007.
    [96]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [97]常思勤.三维流动数值模拟中网格划分方法的研究[J].武汉汽车工业大学学 报,1998(2):1-5.
    [98]何延东,马文星,刘春宝.液力偶合器部分充液流场数值模拟与特性计算[J].农业机械学报,2009,40(5):24-28.
    [99]Bin SONG, Jiangang LU, Guangjun ZHAO, ect al. Numerical simulation on gas-liquid two-phase flow in Fluid Coupling during Braking[C]. Proceedings of the 2010 3rd IEEE International Conference on Computer Science and Information Technology,2010:709-713.
    [100]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议,2006:659-664.
    [101]何延东,刘刚.基于CFD的调速型液力偶合器流场数值计算[J].工程机械,2012,43(9): 45-51.
    [102]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [103]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [104]陈艳伟.齿轮同步器流场分析与同步特性研究[D].秦皇岛:吉燕山大学,2011.
    [105]杨乃乔.液力调速与节能[M].北京:国防工业出版社,2000.
    [106]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电,2001(6):20-23.
    [107]王正宾.液力传动[M].北京:中国铁道出版社,1992
    [108]王春花.振动筛结构损伤故障诊断[D].太原:太原理工大学,2006.
    [109]王亚双.基于有限元的JZH25型均质机曲轴断裂分析及其改进设计[D].天津:天津大学,2006.
    [110][美]Saede Movaeni有限元分析-ANSYS理论与应用[M].王落,董春敏,金云平,译.北京:电子工业出版社,2005.
    [111]黄家良.调速型液力偶合器叶轮的有限元分析及优化设计[D].大连:大连交通大学,2008.
    [112]张兵.固定式起重机支承圆筒回转制动过程的动力学分析[D].武汉:武汉理工 大学,2009.
    [113]齐双强.C80B型敞车弹性体整车模型分析[D].大连:大连交通大学,2011.
    [114]吴志辉.膜片弹簧的力学性能分析[D].南京:南京农业大学,2008.
    [115]黄家良,邵万珍YOCQ550调速型液力偶合器叶轮强度的有限元分析[J].机械工程师,2008(11):65-66.
    [116]宋光辉.液力偶合器叶轮三维整体有限元强度分析方法[J].传动技术,2004,(4)6: 15-17.
    [117]刘立宝,赵继云,张德生等.水介质阀控充液式液力偶合器电液阀常见问题分析及应对措施[J].矿山机械,2010(4):18-21.
    [118]丛培林.新型结构普通V带传动无级变速器设计[D].大连:大连交通大学,2007.
    [119]范长伟.LJ465Q-2A汽油发动机机体结构有限元分析与增压强化设计[D].南宁:广西大学,2008.
    [120]张劲峰.电子机柜振动实验方法及夹具设计研究[D].成都:电子科技大学,2004.
    [121]姚建斌,武建生.液力偶合器的工作原理及振动故障原因分析[J].轻金属,2002(6):19-22.
    [122]B.V.Marathe B.Lakshminarayan, D.G. Maddock.Experimental Investigation of Steadyand Unsteady Flow Field.
    [123]Downstream of Automotive Torque Converter Turbine andInside the Stator Part I: Turbine[J]. ASME 95-GT-231.
    [124]J.Gandham.CFD on Torque Converter:Validation of Computational Results of CFD on Torque Converter[J]. General Motors.
    [125]夏焕文,张景香.液力偶合器强度及轴向力分析[J].测试技术学报,1996,10(2):411-417.
    [126]王峰,闫清东,王书灵.基于CFD和FEA的液力减速器叶片强度分析[J].北京理工大学学,2006,26(12):1052-1054,1060.
    [127]过学讯,梁荣亮,陈见.基于ANSYS的车辆缓速器叶片强度分析及模态分析[J].武汉理工大学学报,2010,34(1):68-71.
    [128]巍巍,闰清东,朱颜.液力变矩器叶片流固耦合强度分析[J].兵工学报,2008,29(10):1158-1162.
    [129]陆忠东,吴光强,殷学仙,等.液力变矩器流固耦合研究[J].汽车技术,2009,2: 37-41,57.
    [130]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [131]机械设计手册编委会.机械设计手册-滑动轴承[M].北京:机械工业出版社,2007.
    [132]沈兴全.液压传动与控制[M].北京:国防工业出版社,2009.
    [133]刘振声,顾子兴.液力传动装置结构与设计[M].北京:中国铁道出版社,1987.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700