用户名: 密码: 验证码:
人体行走过程中的滑摔倾向及其机制与防控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
打滑以及由打滑引起摔倒事故是一个普遍存在的社会现象,会对人们造成不同程度的身体和心理伤害。轮船、汽车、飞机等是人们出行常用的交通工具,在这些运动着地器件上行走时一旦发生打滑或摔倒,对人体造成的伤害更大。因此,研究人体在静止路面和运动路面上行走时发生打滑的倾向大小和机制具有很大的理论意义和实际意义。
     本文研制了步进摩擦测试分析平台,并在该平台上进行了水平路面条件下的人体行走试验。结果表明:年龄、性别以及行走过程中所采用的步速和步长都对打滑倾向有影响。在所有试验组中,儿童的打滑倾向最大,青年的打滑倾向最小;男性发生侧向打滑的倾向较大,而女性发生前后方向打滑的倾向较大。打滑倾向随步长的增大而增大,随步速的增大而减小。
     本文采用步进摩擦测试分析平台探讨了摩擦副材料及表面状况对打滑倾向的影响,结果表明摩擦副材料与其表面状态都对打滑倾向有影响。在所使用的具有不同花纹的鞋底试样中,折线纹的综合防滑性能最好,横条纹的前后向防滑性能最好,纵条纹的侧向防滑性能最好,菱形纹和小圆点纹也有较好的防滑性能。在所使用的三种地板中,瓷砖和花岗岩的防滑性能相当,钢板的防滑性能最好;地板表面上有小而多的凸起花纹时,防滑性能较好。
     本文采用步进摩擦测试分析平台进行了坡道行走试验,结果表明:在坡道上行走时,发生侧向打滑的倾向几乎不受坡度角的影响,而前后方向的打滑倾向随坡度角的增大而增大;在所有试验组中,青年和中年组的打滑倾向大小相当且最小,儿童的打滑倾向最大。
     本文采用步进摩擦测试分析平台进行了正弦波条件下的人体行走试验,结果表明:正弦波条件下行走时,发生侧向打滑的倾向基本不随试验条件的改变而改变,但前后方向的打滑倾向随波幅、波频和人体在波浪中的位置而有所不同。摇摆的角度越大、频率越高,越容易发生脚起步时的向后滑,因此,人们在乘船时,为了防止打滑,可使上体稍向后仰,使重力对身体中心产生一个顺时针力矩,以抵消脚地接触力所产生的逆时针力矩。
     本文根据人体行走的特点并对其进行了合理简化,建立了人体行走过程中重心运动轨迹的物理模型和数学模型,以此模型为基础,分析了人体行走过程中发生滑摔的力学机制,结果表明:人体发生打滑的根本原因是各力对人体重心所产生的力矩不守恒。着地脚的侧向力矩大,则人体向起步脚侧倒;反之,起步脚的侧向力大,人体就会向着地脚侧倒。着地脚的前后向力或起步脚的垂向力产生的力矩越小,身体向后倾倒的打滑几率也越大,而起步脚的前后向力或着地脚的垂向力产生的力矩越小,身体向前倾倒的打滑几率也越大。根据滑摔的力学机制及其主要影响因素,提出了预防滑摔的主要措施,一是通过调整人体的行走姿态,以降低安全行走所需要的最低摩擦系数;二是通过改变脚、地接触界面的特性,以提高地面所能提供的最大摩擦系数。
Slips and falls are serious problems in many countries, which can hurt people in bodyand mind at different degrees. Ship, bus and plane are common vehicle for people. Onceslips and falls occurs in these moving devices, injury will be more severe to people.Therefore, study on probability mechanism and control measures of slip occurring onthese static and kinetic floors has great theoretic and actual meaning.
     Walking experiments on a level way were carried out by the analysis and testplatform for gait friction (ATPGF) developed by Henan University of Science andTechnology. Results showed that age, sex, step length and walking speed affected slipprobability of people. In the four test groups, slip possibility of children was the highestwhile that of young adults was the lowest. Lateral slip tendency of male was higher thanthat of female but slip tendency in front to rear direction of female is higher than that ofmale. Slip possibility increased with increasing of step length but decreased withincreasing of walking speed.
     Effects of material and surface topography of friction couple on slip possibility werestudied by ATPGF. Results showed that material and surface topography of frictioncouple affected the slip possibility of human. Of all the shoe sole samples with differentgroove pattern, integrate slip potential of human body corresponding to polygonal linegroove was the highest, longitudinal slip potential of human body corresponding to crossstriation was the highest, and lateral slip potential of human body corresponding tolongitudinal striation was the highest. In the three floor materials, slip potential ofhuman body corresponding to steel plate was the highest, while slip potential of humanbody corresponding to ceramic tile and granite was equivalent. Slip potential of humanbody was low if there were small and abundance hump on the surface of floor.
     Ramp walking experiments were conducted by ATPGF. Results showed that lateralslip tendency was not affected by ramp inclination but slip tendency in heading directionincreases with increasing of ramp inclination. In the four test groups, slip possibility ofchildren is highest, which is equivalent and smallest for young adults and middle-agedpeople. Slip possibility of young adults and middle-aged people are equivalence andsmallest.
     Walking experiments under sinusoidal wave condition were also conducted byATPGF. Results indicated that lateral slip tendency didn’t change with test conditions.Slip tendency in heading direction varied with increasing of locations, amplitude and frequency of sea wave and position of foot contacting with ground. Slip to rear at themoment of taking-off occurred easily if the amplitude and frequency of sinusoidal wavewas higher.
     Physical and mathematical models of centrobaric motion trajectory were establishedby analyzing and simplifying the feature of human body walking. Based on the model,mechanism of slips and falls was analyzed from the point of mechanical view. Theauthor considered that the basic reason of slip was imbalance of moments caused by allforces. Human body would overturn to the right side if lateral moment of left foot washigher, while overturn to the left side if lateral moment of right foot was high. Bodywould overturn to back if moments caused by forces in front to rear direction or verticalforce of landing foot(at the front of center of mass) were low, on the contrary, humanbody would overturn to front if moments caused by forces in front to rear direction orvertical force of taking-off foot(at the behind of center of mass) were low. According tothe mechanical principle, major factors, including physical features of body such asheight and weight and walking parameters such as walking speed and step length andground status such as level way and ramp, which affect the potential of slips and fallswere analyzed. Results indicated that the higher the body height, the lower the slippotential and the heavier the body weight, the higher the slip potential when the walkingparameters were constant. While when the physical features of body were constant, thelonger the step length, the higher the slip potential and the faster the walking speed, thelower the slip potential. Slip potential at the moment of landing phase and taking offphase were equivalent when walking on a level way. Slip potential of landing was lowerthan that of taking off when ascending on a ramp. While slip potential of landing washigher than that of taking off when descending on a ramp. According to the slip effectfactors, main control measures were put forward to prevent slips and falls. One measureis decreasing the minimum required coefficient of friction for safe walking by adjustingwalking posture. Another measure is increasing the maximum required coefficient offriction provided by ground via changing the features of contact interface between footand ground.
引文
[1]陈钊钰,杨承杰,丁绍兰.鞋底止滑性能的研究进展[J].中国皮革,2005,34(5):44-47.
    [2] Chioua S S, Bhattacharyaa A, Laia F C, et al. Effects of environmental and job-taskfactors on workers’ gait characteristics on slippery surfaces[J]. OccupationalErgonomics,2002/2003,(3):209-223.
    [3] Hanson P J, Redfern S M,Mazumdar M. Predicting slips and falls consideringrequired and available friction[J]. Ergonomics,1999,42(12):1619-1633.
    [4] Japanese Ministry of Health, Labour and Welfare (2006).Vital statistics of Japan,2004, Vol.1, Health&Welfare Statistics Association.
    [5]陈国本.浅议我国研究和制定地面防滑标准的迫切性[J].石材,2008,1:33-36.
    [6]孙建中,范保卫.中国海军研成弹性防滑甲板漆
    [Z].http://military.china.com
    [7]周连柏.浅论工伤事故的特点与对策[J].广州远洋(网络版),2005(1).
    [8] Chang W R. The Effects of surface roughness and contaminants on the dynamicfriction between Porcelain tile and vulcanized rubber[J]. Safety Science,2002,40:577-591
    [9] Chang W R. The effect of surface roughness on the measurement of slip resistance[J]; International Journal of Industrial Ergonomics,1999,24:299-313.
    [10] Chang W R. The effect of surface roughness and contaminant on the dynamicfriction of porcelain tile [J]. Applied Ergonomics,2001,32:173-184.
    [11] Chang W R. The effect of surface roughness on dynamic friction between neoliteand quarry tile [J]. Safety Science,1998,29:89-105.
    [12] Derler S, Kausch F, and Huber R. Analysis of factors influencing the frictioncoefficients of shoe sole materials [J]. Safety Science,2008,46:822–832.
    [13] Li K W, Chang W R, Leamon T B. and et al. Floor slipperiness measurement:friction coefficient, roughness of floors, and subjective perception under spillageconditions [J]. Safety Science2004,42:547–565.
    [14] Derek P M, Carla J, Frederick J R, and et al. The surface roughness of a rubbersoling material determines the coefficient of friction on Water-Lubricated Surfaces[J]. Journal of Safety Research,1998,29(4):275–283.
    [15] Li K W, Hsu Y W, Chang W R, et al. Friction measurements on three commonlyused floors on a college campus under dry, wet and sand-covered conditions [J].Safety Science,2007,45(9):980-992.
    [16]杜少勋,吴洁.地面状况与运动鞋大底花纹功能关系的研究[J].陕西科技大学学报,2004,22(3):169-174.
    [17]陈钊钰.温度、鞋底花纹和路面介质对鞋子止滑性能影响的研究[D].西安:陕西科技大学,2006.
    [18]陈钊钰,杨承杰,丁绍兰.温度和材料对鞋底防滑性能影响的研究[J].中国皮革,2006,21:126-129.
    [19]彭文利,蒙桂利,陈钊钰等.温度和材料对鞋底止滑性能的影响[J].皮革科学与工程,2006,16(4):68-73.
    [20] Li K W. An ergonomic assessment of four female shoes:friction coefficients of thesoles on the floors and electromyographic activities in the shank when walking[J].Journal of Chinese Institute of Industrial Engineers,2003,20(5):472-480.
    [21] Li K W, Chang W R, Lin C H, et al. Relationship between the measured frictioncoefficient of floors on a horizontal surface and on a100ramp[J]. InternationalJournal of Industrial Ergonomics,2006,36:705-711.
    [22]罗向东,弓太生,杨敏贞.鞋底花纹与止滑性能间的关系初探(一)[J].中国皮革,2004,(8):154-155.
    [23]罗向东,弓太生,杨敏贞.鞋底花纹与止滑性能间的关系初探(二)[J].中国皮革,2004(110):117-119.
    [24] Li K W, Chen C J. Measurement of floor slipperiness using footwear pads withvarious tread groove width design [J]. Journal of the Chinese Institute of IndustrialEngineers,2005,22(5):408-418.
    [25] Li K W, Chen C J, Lin C H, et al. Relationship between measured frictioncoefficient and two tread groove design parameters for footwear pads [J]. TsinghuaScience and Technology,2006,11(6):712-719.
    [26] Li K W, Wu H H, Lin Y C. The effect of shoe sole tread groove depth on thefriction coefficient with different tread groove widths, floors and contaminants [J].Applied Ergonomics,2006,37:743-748.
    [27]罗向东.鞋底花纹的设计与鞋底止滑性能的研究[D].西安:陕西科技大学,2004.
    [28]励建安,孟殿怀.步态分析的临床应用[J].中华物理医学与康复杂志,2006,28(7):500.
    [29]郑秀媛主编.现代运动生物力学[M].第一版,北京:国防工业出版社,2002.
    [30]张今瑜,王岚,张立勋.基于多传感器的实时步态检测研究[J].哈尔滨工程大学学报,2007,28(2):218-221.
    [31] Simpson K J, Jiang P. Foot landing position during gait influences ground reactionforces [J]. Clinical Biomechanics,1999,14:396-402.
    [32] Zhang S N, Clowers K G, Powell D. Ground reaction force and3D biomechanicalcharacteristics of walking in short-leg walkers[J]. Gait&Posture,2006,24:487-492.
    [33] White R, Agouris I, Fletcher E. Harmonic analysis of force platform data in normaland cerebral palsy gait [J]. Clinical Biomechanics,2005,20:508-516.
    [34]栾天峰.11~12岁肥胖儿童不同步速时足底压力分布特征及步态研究[J].天津体育学院学报,2010,25(6):533-536.
    [35] Redfern M S, Dipasquale J. Biomechanics of descending ramp [J]. Gait and posture,1997,6:119-125.
    [36] Hanson J P, Redfern M S and Mazumdar M. Predicting slips and falls consideringrequired and available friction[J]. Ergonimics,1999,42(12):1619-1633.
    [37] Yamaguchi T, Yamaguchi H, and Hokkirigawa K. Experimental analyses of loadcarrying effects on the peak traction coefficient between shoe sole and floor duringwalking[J]. Tribology Online,2008,3(6):342-347.
    [38] Chrustina K A, Cavanagh P R. Ground reaction forces and frictional demandsduring stair descent: effect s of age and illumination [J]. Gait and posture,2002,15:153-158.
    [39] Chang C C, Chang W R, and Matz S. The effects of straight ladder setup and usageon ground reaction forces and friction requirements during ascending anddescending[J]. Safety science,2005,43:469-483.
    [40] Burnfield J M, Tsai Y J, Powers C M. Comparison of utilized coefficient of frictionduring different walking tasks in persons with and without a disability [J]. Gait&Posture,2005,22:82–88.
    [41]杨建坤,金德闻,季林红等.膝上截肢患者行走过程中的滑倒危险性分析[J].清华大学学报,2006,4(2):1854-1856.
    [42] Liddle D, Rome K, Howe T. Vertical ground reaction forces in patients withunilateral plantar heel pain—a pilot study [J]. Gait and Posture,2000,11:62–66.
    [43]陈龙伟,王珏,王志敏等.痉挛性脑瘫患儿起步过程步态特征的生物力学分析[J].中国运动医学杂志,2009,28(6):644-646.
    [44] Yamaguchi T, Hokkirigawa K. Experimental analyses of slip potential innormal-style walking and nanba-style walking [J]. Journal of biomechanical scienceand engineering,2009,4(3):468-479.
    [45] Didomenico A, Mcgorry R W, Chang C C. Association of subjective ratings ofslipperiness to heel displacement following contact with the floor[J]. ApplicedErgonomics,2007,38(5):533-539.
    [46] Yamaguchi T, Hokkirigawa K.“Walking-mode maps” based on slip/non-slipcriteria [J]. Industrial Health,2008,46:23-31.
    [47] Yamaguchi T, Hatanaka S, and Hokkirigawa K. Effect of step length and walkingspeed on traction coefficient and slip between shoe sole and walkway [J]. TribologyOnline,2008,3(2):59-64.
    [48] Sukwon Kim, Thurmon Lockhart, and Yoon H Y. Relationship between age-relatedgait adaptations and required coefficient of friction [J]. Safety science,2005,43:425–436。
    [49]汪敏加.运动时不同鞋一作用表面之间摩擦特性的生物力学分析[D].北京:北京体育大学,2008.
    [50] Kim I J, Nagata H. Research on slip resistance measurements-a new challenge [J].Industrial Health2008,46:66–76.
    [51] Kim I J, Smith R, Nagata H. Microscopic observations of the progressive wear onshoe surfaces that affect the slip resistance characteristics [J]. International Journalof Industrial Ergonomics,2001,28:17–29.
    [52]李积德主编.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [53]金兴斌.高速集装箱船舶在海浪中的安全性研究[J].青岛远洋船员学院学报,1999,20(4):11-22.
    [54] Naess A. A second-order theory for the response statistics of wave induced ship hullvibrations in random seas [J]. Marine Structures,1996,9:389-408.
    [55]贾忠湖,高永,郭卫刚.规则海浪情况下直升机着舰速度研究[J].飞行力学,2001,19(3):63-65.
    [56]谷良贤,李军政.海浪对运载器姿态的影响研究[J].西北工业大学学报,1997,15(4):523-527.
    [57] Xiong Y P, Xing J T, Price W G. Interactive power flow characteristics of anintegrated equipment—nonlinear isolator—travelling flexible ship excited by seawaves[J]. Journal of Sound and Vibration,2005,287:245–276.
    [58]王石岩.海浪与船舶安全[J].航海技术,2006,(5):11~14.
    [59]贾忠湖,高永,韩维.航母纵摇对舰载机弹射起飞的限制研究[J].飞行力学,2002,20(2):19-21.
    [60]彭震,周洲,任刚.舰船运动对某无人机发射安全的影响研究[J].飞行力学,2009,27(4):22-31.
    [61]朱利锋,鲍其莲,张炎华等.船载炮的射击误差分析及消除方法[J].中国造船,2006,47(3):70-76.
    [62]贾利晓,张永振,牛永平等.人体步进摩擦的主要影响因素.摩擦学学报,2009.29(6):
    [63](美)巴塔查雅(Bhattacharyya,R.)著.海洋运载工具动力学.北京:海洋出版社,1982
    [64] Crowe A, Samson M M, Hoitsma M J, and et al. The influence of walkingspeed on parameters of gait symmetry determined from groundreaction forces[J]. Human Movement Science,1996, I5:347-367.
    [65] Glaister B C, Orendurff M S, Schoen J A, and et al. Ground reaction forces andimpulses during a transient turning maneuver[J]. Journal of Biomechanics,2008,41:3090–3093.
    [66] Bruening D A, Cooney K M, Buczek F L, and et al. Measured and estimated groundreaction forces for multi-segment foot models[J]. Journal of Biomechanics,2010,43:3222-3226.
    [67]武卫,王占林.基于小脑模型神经网络的气动六自由度并联平台的复合控制方法研究[J].机械科学与技术,2008,27(6):748-751.
    [68]刘胜,宋佳,李晚龙等.并联六自由度运动平台控制系统研究[J].自动化技术与应用,2006,25(4):7-10
    [69] Wu D S, Gu H B. Adaptive sliding control of six-DOF flight simulator motionplatform [J]. Chinese Journal of Aeronautics,2007,20:425-433.
    [70]胡国才,侯志强,应朝龙.六自由度舰面模拟平台的数学建模与仿真[J].海军航空工程学院学报,2006,21(3):307-310.
    [71]曹清华,张小行.六自由度运动平台汽车驾驶模拟器临场感研究与开发[J].南昌工程学院学报,2009,28(4):8-11.
    [72]刘文俊.并联气动减重步行助力机器人的开发与研究[D].大连:大连理工大学硕士学位论文,2009.
    [73]刘文涛.并联机床性能分析与研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2000:1~2.25~26.
    [74] Zhang Y B, Liu H Z,Wu X. Kinematics analysis of a novel parallel manipulator[J].Mechanism and Machine Theory,2009,44(9):1648—1657.
    [75]王杨.载体运动仿真平台机构的分析与新设想[J].全国仿真技术学术会议论文集,2001,141-145.
    [76]李小奇,卢颖.六自由度液压平台和电动平台比较分析[J].系统仿真学报,2009,21(增刊2):176-178.
    [77]春潮.篮球运动员前转身过程中转动腿的生物力学分析[J].安徽科技学院学报,2007,21(6):68~71
    [78]丁海曙,王广志,周凌宏等.偏瘫步态的监测和分析[J].清华大学学报(自然科学版),1995,35(1):53-59.
    [79]阮哲,熊开宇,陈自旺等.太极拳运动对老年人下肢平衡力学因素的影响[J].北京体育大学学报,2008,31(4):498-499.
    [80] Weishaupt M A, Wiestner T, Hogg H P, and et al. Vertical ground reactionforce–time histories of sound warmblood horses trotting on a treadmill [J]. TheVeterinary Journal,2004,168:304–311.
    [81] Birrell S A, Hooper R H, Haslam R A. The effect of military load carriage onground reaction forces [J]. Gait&Posture,2007,26:611–614.
    [82]赵勇主编.传感器与检测技术[M],北京:机械工业大学出版社,2010年第一版,9-35.
    [83]冯凯昉主编,工程测试技术[M],西安:西北工业大学出版社,1994年第一版,36-92.
    [84] Grabiner M D, Feuerbach J W, Lundin T M and et al. Visual guidance to force platesdoes not influence ground reaction force variability [J]. Journal of Biomechanics,1996,28(9):1115-l117.
    [85] Ganley K J, Powers C M. Gait kinematics and kinetics of7-year-old children:acomparison to adults using age-specific anthropometric data [J]. Gait Posture,2005,21:141-145.
    [86]董奇,淘沙.动作与心理发展[M].北京:北京师范大学出版社,2002.
    [87] Dierick F, Lefebvre C, Vanden H A, and et a1.Development of displacement ofcentre of mass during independent walking in children[J].Developmental Medicineand Child Neurology,2004,46(8):533—539.
    [88]张永振.钢铁干滑动摩擦副摩擦学特性研究[D].西安:西安交通大学博士学位论文,2001.
    [89] Luigi T, Viviana R, Cecilia C and et al. The3D path of body centre of mass duringadult human walking on force treadmilll[J]. Journal of Biomechanics.2010,43:938–944.
    [90] Luigi T, Viviana R, Laura P. The3D trajectory of the body centre of mass duringadult human walking: Evidence for a speed–curvature power law[J]. Journal ofBiomechanics.2011,44:732–740.
    [91] Alberto E. M, Caterina C, Omar S. M. The mathematical description of the bodycentre of mass3D path in human and animal locomotion[J]. Journal ofBiomechanics.2011,44:1471–1477.
    [92]任千红.可视性动画技法:运动规律(上)[M].第一版,北京:中国轻工业出版社,2010.
    [93]吴剑,李建设.人体行走时步态的生物力学研究进展[J].中国运动医学杂志,2002,21(3):305-307.
    [94] http//data.icxo.com美联社《2009年上半年东亚统计年鉴》.
    [95]哈尔滨工业大学理论力学教研室编.理论力学[M].第七版,北京:高等教育出版社,2009.
    [96]杨咏东,李剑平.平面曲线运动拐点的法向加速度[J].山东师范大学学报(自然科学版).2011,26(1):135.
    [97]郑秀媛等.现代运动生物力学(第二版)[M].北京:国防工业出版社,2007.
    [98]赵焕彬,李建设主编.运动生物力学[M],第三版,北京:高等教育出版社,2008.3,186-192.
    [99]王瑞元主编.运动生理学[M],第一版,北京:人民体育出版社,2002.
    [100]胡生宇主编.运动解剖学[M].第一版,北京:人民体育出版社,2000.
    [101]张永振主编.材料的干摩擦学[M],第一版,北京:科学出版社,2007.
    [102]王颉主编.试验设计与SPSS应用[M].第一版,北京:化学工业出版社,2006.
    [103]袁志发,周静芋主编.试验设计与分析[M].第一版,北京:高等教育出版社,2000.
    [104] Moore D F. The friction and lubrication of elastomers. Pergamon Press, Oxford.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700