用户名: 密码: 验证码:
微透镜阵列焦距及其一致性检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微光学迅速发展的一个重要标志就是阵列型光学元件的出现。微透镜阵列由于其高衍射效率、高填充因子和较宽的工作波段,近年来广泛应用于光学三维成像、光整形和光耦合等领域。尤其在自适应光学系统的哈特曼波前传感器中,微透镜阵列是波面细分和检测的核心部件。近年来,随着加工工艺的提高和新型光学材料的应用导致微透镜阵列的生产成本降低、加工工艺日趋简单,其应用越来越广。
     与传统透镜类似,焦距是微透镜阵列的核心光学参数。随着微透镜阵列也向着小口径、多阵列数以及高填充因子的方向发展,对其焦距检测不仅需要较高的检测精度,而且需要较快的检测效率。对于微透镜阵列焦距的检测,传统的检测方法如转角法、放大率测量法、显微镜测量法、矢高测量法、浮雕深度测量法等不能完成焦距的高精度检测,同时测量范围受限较大。国外实验室常采用干涉仪定焦法,通过干涉仪的猫眼定焦技术确定微透镜阵列的焦点和顶点从而完成焦距的测量。该检测手段成本较高,同时测量效率偏低,不易完成多阵列数的微透镜阵列焦距测量。
     本文以解决微透镜阵列焦距测量的精度和效率为指导思想,对不同类型的微透镜阵列,通过分析其加工工艺和成像特性的不同,将4类检测方法用于微透镜焦距测量:基于光栅剪切干涉测量法,基于光栅多缝衍射原理的分光法,基于清晰度定焦评价函数的图像处理法和基于哈特曼波前检测原理的测量法。对剪切干涉法:通过傅里叶光学分析,将剪切干涉定焦从定性检测转换成定量检测,通过分析干涉条纹的周期变化即可完成微透镜阵列定焦检测,提高了测量精度;对光栅衍射法:利用光栅衍射的分光原理,用光栅分光代替传统的转角法完成微透镜的定焦测量,并分析了测量过程中,相邻子单元光斑的干扰状况,节约了测量成本,提高了检测效率;对图像处理法:利用清晰度函数定焦技术代替干涉仪的“猫眼”位置定焦,极大的提高了测量效率;对于哈特曼波前法:通过分析球面波前和平面波前在微透镜阵列焦面上光斑的移动,完成焦距测量,具有较高的检测精度和测量效率。综合分析4种测量方法,比较各类检测方法在不同微透镜阵列检测中的优劣。通过实验完成检测方法的可行性分析,测量范围标定,测量精度和效率分析。
     本研究初步构建了一套完整的微透镜阵列焦距及其一致性检测体系,对焦距变化范围为1-200mm,子单元孔径变化范围为0.2-1mm即F数变化为5-200的微透镜阵列,可选取合理的检测方法,完成其焦距测量。该检测体系有效填补了国内外对微透镜阵列焦距测量的空白,对适用于检测范围的微透镜阵列检测精度可达3%,一次测量可完成微透镜阵列10-20个子单元的焦距检测,具有较高的检测精度和检测效率。
As a typical micro-optical element, microlens-array (MLA) has been researchedextensively in recent times. Because of the high diffractive efficiency, high filling factorand wide working wavelength, MLA are applied in modern optical system such asthree-dimensional imaging, light reforming and light coupling, et al. Especially inHartmann-Shack sensor (HSS) of auto-adoption optics, MLA is the key component forthe wavefront subdivision and measurement. In recent times, the development of MLAfabrication and application of new optical materials reduce the cost of MLA fabrication,facilitate the craft and enlarge the application.
     Like the traditional lens, focal length is the key optical parameter of MLA. As the sizeof MLA is smaller, the number of arrays is more and the filling factor is bigger, thefocal length measurement of MLA needs not only measurement precision but alsomeasurement efficiency. For the focal length measurement of MLA, traditionaltechnique such as twirling platform method, amplification method, microcopy method,victor height method, and embossment height method can not finish the focal lengthmeasurement with high precision. In laboratory overseas, interferometer is applied forthe focus determination. By the “cat-position” of interferometer, the vertex and focus ofMLA is demarcated and the focal length is calculated after measure the axial distancebetween the vertex and focus. This technology not only has high experiment costs, butalso low measurement efficiency because this technology can only measure onesub-lens at single shot.
     To solve the measuring puzzle of MLA, four technologies namely grating shearinginterferometry, grating diffraction method, image process method and Hartmannwavefront measurement method are first applied in the focal length measurement of byanalyzing the fabrication and imaging characteristics of MLA. For the grating shearinginterferometry, this method is innovative improved from qualitative measurement toquantitative measurement by Fourier optics and the measurement precision is also improved after determine the relationship between period of stripe and defocus ofgrating. For the grating diffraction method, grating is applied as spectral instrumentinstead of the high precision turntable, and the disturbance of sub lens in themeasurement is analyzed; this method can improve the measurement efficiency becauseit can determine tens of sub lenses at single shot. For the image process method, focusfixed technology based on the digital image process is applied for the focus and vertexdetermination instead of interferometer, and the measurement efficiency is improvedwhile the measurement costs is reduced. For the Hartmann wavefront method, the focallength is measured by analyze the difference of imaging spot between plane andspherical wavefront. Comprehensive compare these four methods, the advantage anddisadvantage of each technology is analyzed. The feasibility, measurement range,measurement precision and efficiency is demarcated in the experiment.
     In this research, an integral measurement system is established for the focal lengthmeasurement of MLA. Different MLA with diameter of sub lens from0.2mm to2mmand F-number from5-200can be measured by choosing a suitable method in thissystem. This measurement system fills the blank of focal length measurement of MLA,and the measurement precision is better than3%. The technologies in this system canmeasure tens sub lens at one measurement, which means these technologies have notonly measurement precision but also efficiency.
引文
[1]. Takaaki. MIYASHITA, Standardization for Microlenses and Microlens Array [J]. JapaneseJournal of Applied Physics,2007,46(8B):5391-5396
    [2]. M. C. Hutley, Optical techniques for the generation of microlens arrays [J]. JOURNAL OFMODERN OPTICS,1990, Vol.37, No.2:253-265
    [3].吴非,浅析折射型微透镜阵列制作方法[J].现代光学,2009(9):43-45
    [4].姚军,高福华,高峰等,酶蚀明胶法制作折射微透镜阵列[J].激光技术,2001,25(4):272-274
    [5].杜春雷,周礼书,邱传凯等,衍射微透镜阵列的研究与应用[J].光学技术,1998(3):17-22
    [6].李毅,易新建,蔡丽萍等,128×128硅衍射微透镜阵列的设计与制备[J].中国激光,2000,27(6):510-514
    [7].赖建军,赵悦,柯才军等,硅衍射微透镜阵列的制作技术研究[J].半导体光电,2005(26):106-114
    [8].张慧娟,王肇圻,李凤友等,折/衍混合单透镜在目镜中的应用[J].光学学报,2003,23(2):236-239
    [9].张凤军,方形平面微透镜阵列的实验研究及理论初探[D].重庆:西南大学,2011
    [10].张玉,六角形孔径平面微透镜阵列的制作及成像[J].重庆师范大学学报,2008,25(3):1-4
    [11].刘德森,蒋小平,微小光学与异形孔径微透镜阵列研究[J].激光与光电子学进展,2010,47(083501):1-6
    [12].A. Y. Yi and L. Li, Design and fabrication of a microlens array by use of a slow tool servo [J].OPTICS LETTERS,2005,30(13):1707-1709
    [13].BRITISH STANDARD, EN ISO14880-1, Optics and photonics-Microlens array [S]. London:The authority of the Standards Policy and Strategy Committee,2005
    [14].BRITISH STANDARD, EN ISO14880-2, Optics and photonics-Microlens array [S]. London:The authority of the Standards Policy and Strategy Committee,2007
    [15].BRITISH STANDARD, EN ISO14880-4, Optics and photonics-Microlens array [S]. London:The authority of the Standards Policy and Strategy Committee,2006
    [16].匡登峰,方志良,杨勇等,原子力显微镜加工红外微透镜阵列的研究[J].光子学报,2007,36(4):659-662
    [17].V. Bardinal, E. Daran, T. Leichle et al. Fabrication and characterization of microlens arraysusing a cantilever-based spotter [J]. OPTICS EXPRESS,2007,15(11):6900-6907
    [18].Dong Lianhe, Dong Yu and Sun Yanjun. FABRICATION OF QUARTZ MICROLENS ARRAY[C]. Proc. of SPIE, Vol.6149:614933
    [19].何苗,易新建,程祖海等.大F数硅微透镜阵列的制作及光学性能测试研究[J].中国激光,2000,27(12):1097-1102
    [20].石锦霞,何平笙.微热模塑法制备苯聚乙烯球面微透镜阵列[J].高等学校化学学报,2007,28(5):978-981
    [21].甘代伟.微透镜阵列制作技术研究[J].装备制作技术,2011(9):44-49
    [22].Gicherl Kim, Xuliang Han and Ray T. Chen. An8-Gb/s Optical Backplane Bus Based onMicrochannal Interconnects: Design Fabrication, and Performance Measurements [J]. Journalof Lightwave Technology,2000,18(11):1477-1486
    [23].Hyun Sup Lee, Sung-Keun Lee, Tai Hun Kwon and Seung S. Lee. Microlenses arrayfabrication by hot embossing process [J]. Optical Devices and MEMS technmology,2002:73-74
    [24].许乔,叶钧,包正康等.热熔微透镜阵列的综合性能测试[J].仪器仪表学报,1996,17(1):125-128
    [25].许乔,杨李茗,舒晓武等,微透镜阵列反应离子束刻蚀传递研究[J].光学学报,1998,18(11):1523-1527
    [26].Xinyu Zhang等.氩离子束刻蚀加工的柱体微透镜阵列[J].2006,38(3):42-48
    [27].单明广,钟志,郭黎利.用于无模光刻的连续浮雕谐衍射微透镜阵列设计[J].光学精密工程,2010,18(1):9-14
    [28].Oikawa M, Iga K. Array of distributed index planar microlens and its application [J]. Appl Opt,1982,21(9):1052-1056
    [29].Borreli N F, Morse D L, Bellman R H, Morgan W L. Photo technique for Producing Microlensin Photosensitive glass. Appl Opt,1988,24(6):2520-2525
    [30].Feng Zhao, Mingwei Zhu and Peng Zhan. Microlens arrays prepared via colloidal microspheretemplating [J].2010,8(5):508-511
    [31].尹韶云,高洪涛,杜春雷.基于亚波长金属结构的大数值孔径透镜[J].红外与激光工程,2010,39(1):116-119
    [32].周礼书,李学民,杜春雷等.形成连续微光绪元件的灰度掩膜图形生成方法[J].光电工程,2000,27(2):31-34
    [33].Gou-Jen Wang, Shuh-Yi Wang and Chi Hsian Chin. Fabrication and Modeling of theGray-Scale Mask Based Aspheric Refraction Microlens Array [C]. Proc. of SPIE,2002,Vol.4755:765-775
    [34].贺峰涛.短波长与固体浸没透镜高密度光存储技术研究[D].西安:中国科学院西安光学精密机械研究所,2004:1-2
    [35].黄峰,贾文武,汪岳峰等.多孔径光束积分激光匀束器理论与设计[J].激光与红外,2010,40(1):44-47
    [36].殷智勇,汪岳峰,贾文武等.基于微透镜阵列光束均匀化的傅里叶分析[J].激光与红外,2012,42(2):119-123
    [37].Juan M. Bueno, Eva Acosta, Christina Schwarz and Pablo Artal. Wavefront measurement ofphase combining a point-diffraction interferometer and a Hartmann-Shack sensor [J]. APPLIEDOPTICS,2010,49(3):450-456
    [38].M M Vekshin, A S Levchenko, A V Nikitin and N A Yacovenko. Glass microlens array forShack-Hartmann wavefront sensors [J]. Measurement Science and Technology,2010(21):054010
    [39].Geun Young Yoon, Takahisa Jitsuno, Masahiro Nakatsuka and Sadao Nakai. Shack Hartmannwave-front measurement with a large F-number plastic microlens array [J]. APPLIED OPTICS,1996,35(1):188-192
    [40].廖军,王海东,丁剑平,高文琦.利用微透镜阵列产生多重像[J].中国激光,2001,28(1):52-54
    [41].赵润,孙雷,王文军,杨磊.用于均匀照明的单片微透镜阵列面型设计[J].材料与器件,2011,36(12):915-919
    [42].Vinna Lin, Hsiang-Chun Wei Hsin-Ta Hsieh and Guo-Dung John Su. An Optical WavefrontSensor Based on a Double Layer Microlens Array [J]. Sensors2011,11:10293-10307
    [43].Paul D. Pulaski, James P. Roller, Daniel R. Neal and Keith Ratte. Measurement of aberrationsin microlenses using a Shack-Hartmann wavefront sensor [J]. Proc. of SPIE,2002:4647-07
    [44].Wei Huang, Dean Liu, Xuejie Zhang et al. Analysis of a digital phase retrieval method forwave-front reconstruction [J]. CHINESE OPTICS LETTERS,2011,9(8):080101
    [45].邓启凌,杜春雷,王长涛.连续表面微透镜列阵元件检测[J].光子学报,2004,33(11):1317-1320
    [46].Florian Charriere, Jonas Kuhn, Tristan Colomb et al. Characterization of microlenses by digitalholographic microscopy [J]. APPLIED OPTICS,2006,45(5):829-835
    [47].Daniel Malacara-Doblado and Didia Patricia Salas-Peimbert. Measuring the effective focallength and the wavefront aberrations of a lens system [J]. Optical Engineering,2010,49(5):053601
    [48].沈龙江.微透镜阵列注射成型复制度评价与工艺参数优化[J].长沙:中南大学,2007
    [49].Yang Xiang. Focus retrocollimated interferometry for focal-length measurements [J]. APPLIEDOPTICS,2002,41(9):3886-3889
    [50].O.Prakash and R. S. Ram. Determination of focal length of covex lenses using Newton’smethod [J]. J. Optics,1994,25(4):135-138
    [51].Yeddanapudi Pavan Kumar and Sanjib Chatterjee. Technique for the focal-length measurementof positive lenses using Fizeau interferometry [J]. APPLIED OPTICS,2009,49(4):730-736
    [52].张鹏,沈学举,牛燕雄,薛蕊.基于单缝分数傅里叶变换的透镜单色焦距测量[J].激光技术,2005,29(2):222-224
    [53].Ph Nussbaum, R Volkel, M Eisner and S Haselbeck. Design, fabrication and testing ofmicrolens for sensors and Microsystems [J]. Pure Appl. Opt.6(1997):617-636
    [54].邓启凌,杜春雷,杨泽平.衍射微透镜列阵质量评价方法研究[J].光电工程,1998,25(Sup):34-37
    [55].张晓玉,姚汉民,杜春雷等. AZ9260光刻胶制作连续非球面微透镜阵列的研究[J].微细加工技术,2003(4):22-26
    [56].I. K. Ilev. Simple fiber-optic autocollimation method for determing the focal length of opticalelements [J]. OPTICS LETTERS,1995,20(6):527-529
    [57].Shuai Zhao, Jacky Fung Wen and Po Sheun Chung. Simple focal length measurement techniquewith a curcular Dammann grating [J]. APPLIED OPTICS,2007,46(1):44-49
    [58].糜长稳,王克逸,李明,章荣平.基于光探针技术的自聚焦透镜光斑测量方法[J].光子学报,2004,33(2):244-247
    [59].李宁华,胡玉禧,王克逸.两种测量光斑的方法[J].工具技术,2002,36(4):35-36
    [60].Eliezer Keren, Kathi M. Kreske and Oded Kafri. Universal method for determining the focallength of optical systems by moiré deflectometry [J]. APPLIED OPTICS,1988,27(8):1383-1385
    [61].Madhuri Thakur and Chandra Shakher. Evaluation of the focal distance of lenses by white-lightLau phase interferometry [J]. APPLIED OPTICS,2002,41(10):1841-1845
    [62].Kiyofumi Matsuda, Thomas H. Barnes, Bob F. Oreb and Colin J. R. Sheppard. Focal-lengthmeasurement by multiple-beam shearing interferometry [J]. APPLIED OPTICS,1999,38(16):3542-3548
    [63].Priti Singh, Mohammad Shoeb Faridi, Chandra Shakher and Rajpal Singh Sirohi. Measurementof focal length with phase-shifting Talbot interferometry [J]. APPLIED OPTICS,2005,44(9):1572-1576
    [64].Wolfgang Moench and Hans Zappe. Fabrication and testing of micro-lens arrays by all-liquidtechniques [J]. Appl. Opt.6(2004):330-337
    [65].Frederic Zamkotsian and Kjetil Dohlen. Surface characterization of micro-optical componentsby Foucault’s knife-edge method: the case of a micromirror array [J]. APPLIED OPTICS,1999,38(31):6532-6539
    [66].张玉虹,刘宝元.聚合物微透镜阵列的光学性能测试[J].中国西部科技,2008,07(27):14-16
    [67].李同海.聚合物微透镜及其阵列的研究[D].西安:中国科学院西安光学精密机械研究所,2006:1-2
    [68].Ronald E. Gerber. Measurement of Focal Length Using an Optical Power Meter [J]. AppliedOptics,1995,12(1):8054-8055
    [69].BRITISH STANDARD, EN ISO14880-3, Optics and photonics-Microlens array [S]. London:The authority of the Standards Policy and Strategy Committee,2006
    [70].Stephan Reichelt and Hans Zappe, Combined Twyman-Green and Mach-Zehnderinterferometer for microlens testing, APPLIED OPTICS,2007,44(27)
    [71].SCHWEIDER J. and FALKENSTORFER O.,‘Twyman-Green interferometer for testingmicrospheres’ in Proc IOP/NPL meeting Microlens Arrays (NPL Teddington, May1995), p.60
    [72].张鹏,曹学东,吴时彬,罗名容.基于图像测量技术的微透镜定焦方法研究[J].仪器仪表用户,2008,No.5:15-16
    [73].计量测试技术手册(第10卷光学)[M].北京:中国计量出版社,1997:553-554
    [74].DANIEL MALACARA, Optical Shop Testing [M]. New York: Wiley-Interscience,2007:122-134
    [75].钱江源,明海,谢建平.双频光栅剪切干涉术在激光光场相干性测量中的应用[J].光学精密工程,1996,4(5):140-143
    [76].贺安之,王海林,苗鹏程,阎大鹏. Twyman-Green型横向剪切干涉仪的原理和应用[J].中国激光,1991,18(10):739-742
    [77].Y. Pavan Kumar and Sanjib Chatterjee. Application of Newton’s method to determine the focallength of lenses using a lateral shearing interferometer and cyclic path optical configurationsetup [J]. Optical Engineering,2010,49(5):053604
    [78].何煦,马军.共光路径向干涉仪的设计[J].光学精密工程,2011,19(9):2029-2034
    [79].李晓彤.几何光学与光学设计[M].杭州:浙江大学出版社,1997:157-162
    [80].向海波.剪切干涉的波前重建算法研究[D].哈尔滨:哈尔滨工业大学,2010
    [81].许静.剪切干涉测量光学元件的波前重建方法及其仿真研究[D].哈尔滨:哈尔滨工业大学,2010
    [82].Fengzhao Dai, Feng Tang, Xiangzhao Wang et al. Modal wavefront reconstruction based onZernike poly for lateral shearing interferometry: comparisons of existing algorithms [J].APPLIED OPTICS,2012,51(21):5028-5037
    [83].A. N. Khoroshun, A. V. Chernykh, S. V. Kucher and A. N. Tsymbaluk. Optical parameter of ashearing interferometer with a singular light source [J]. J. Opt. Technol,2012,79(1):9-11
    [84].刘丙才,田爱玲,王红军,王春慧.横向剪切干涉中剪切量的选取及分析[J].应用光学,2012,33(3):511-514
    [85].F. Lei and L. K. Dang, Measuring the focal length of optical systems by grating shearinginterferometry [J]. APPLIED OPTICS,1994,33(28):6603-6608
    [86].F. Lei and L. K. Dang, Measurement the numerical aperture and f-number of a lens system byusing a phase grating [J]. APPLIED OPTICS,1993,32(28):5689-5691
    [87].侯昌伦.基于Talbot效应的长焦距测量系统的研究[D].杭州:浙江大学,2005
    [88].Xianchang Zhu, Xuedong Cao, Shibin Wu and Fan Wu. Defocus measuring the focal length ofmicrolens-array by grating prismatic interference [C]. Proc. of SPIE,2010, Vol.7849:78491D
    [89].朱咸昌,曹学东,吴时彬等.基于光栅多缝衍射测量微透镜焦距[J].光学学报,2011,31(5):52301
    [90].Brian J. DeBoo and Jose M. Sasian. Novel method for precise focal length measurement [J].Proc. of SPIE, Vol.4832(2002):114-121
    [91].J. W. Goodman.傅里叶光学导论[M].北京:科学出版社,1976
    [92].梁铨廷.物理光学[M].北京:电子工业出版社,2009,184-189
    [93].张为国,董小春,高洪涛等.微透镜阵列衍射效应所致的串扰[J].光电工程,2010,37(5):80-84.
    [94].朱咸昌,伍凡,曹学东等.光栅衍射法测量微透镜阵列焦距时产生的光斑干扰分析[J].光学学报,2011,31(11):1112010
    [95].Murali Subbarao, Tae Choi and Arman Nikzad. Focusing Techniques [J]. Optical Engineering,1993,32(11):2824-2836
    [96].沙定国.光学测试技术[M].北京:北京理工大学出版社,2010,11-13
    [97].Xianchang Zhu, Fan Wu, Xuedong Cao et al. Focal length measurement of Microlens-array bythe clarity function of digital image [C]. Proc. of SPIE, Vol.8417:84171E
    [98].申勤.数字图像清晰度评价函数的研究与改进[J].微型机与应用,2011,30(1):32-33
    [99].欧同庚,陈志高,杨博雄,付辉清. CCD光电自准直仪工作原理及误差源分析[J].2007,27(Spec):98-100
    [100].梁春,沈建新,童桂,李邦明. Hartmann-Shack传感器结构参量的自基准标定[J].光子学报,2009,38(4):780-784
    [101].赵祥杰,骆永全,张大勇.液晶微透镜阵列在波前传感领域的应用概述[J].光电子技术,2010,30(3):145-153
    [102].吴佳杰,陈家璧,徐安成,高晓燕.基于哈特曼-夏克波前检测原理的焦距测量[J].光子学报,2011,40(6):912-915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700