用户名: 密码: 验证码:
光学实时水平基准测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载、舰载测控装备的动基座高精度测量是一项富有挑战性的任务,运动状态下的测控设备必须具备连续的自主定位定向的能力。传统的基于导航系统的定位定向测量方式无法满足未来导弹、航天测控体系对动基座测控装备的高精度与低成本要求,因此有必要发展新一代的基于光学测量体系的自主定位定向技术。光学实时水平基准测量技术正是基于光学测量体系的天文导航技术的研究重点之一。
     本学位论文结合总装备部重点试验技术研究项目——“动态实时光学精密水平测量方法研究”,从光学实时水平基准测量模型与浮体小幅晃运动学分析两个方面出发,对基于光学测量的水平基准测量方法进行了系统的研究。从理论研究、数值计算与试验研究三个方面对基于光学自准直——液浮平面反射镜技术的二维测角模型在小幅晃动条件下的水平基准实时测量精度进行了深入研究。论文的主要研究内容包括:
     首先,综合阐述了惯性导航系统、天文导航系统、基于GPS的定位定向系统和组合导航系统的基本工作原理、各自存在的优缺点以及目前的发展状况,说明了天文导航系统在自主定位定向技术中的重要性;对天文导航技术未来的研究和发展方向进行分析与展望,阐述高精度自主水平基准测量方法研究的重要性。介绍了粗略基准和星光折射相结合的间接水平基准测量技术的工作原理及具备的优势,并指出该技术应用方面的局限性(大气折射所带来的模型误差对导航精度的影响十分显著,因此暂不适合应用于地面设备),进一步说明了本文对光学实时水平基准测量系统进行设计研究的重要意义。
     其次,在详细分析光学实时水平基准测量系统的用途、技术指标、工作环境的基础上,提出了二维伺服跟踪转台与自准直——液浮平面反射镜测角平台耦合测量的技术方案,该方案通过耦合伺服跟踪平台和测角平台实时输出的角度信息来构建定义于系统测量点处动基座固连坐标系的水平姿态角度测量模型。简要介绍二维伺服跟踪转台的工作原理之后,分析了二维伺服跟踪转台对惯导系统水平基准输出信息进行跟踪时的角度跟踪误差,得到液浮平面反射镜所处平台的角度晃动范围;为了探讨系统测量过程中可能发生的由于外界晃动激励引起的液浮反射镜单元失稳导致测量系统实时输出数据失真难题,依据浮体初稳性理论分析液浮平面反射镜的稳定性,依据浮体动力学方程的相关理论分别对液浮平面反射镜的垂荡运动方程、横摇运动方程和纵摇运动方程进行建立和求解;依据现有船体垂荡、纵摇、横摇的运动规律求得液浮平面反射镜垂荡运动的解析解与横摇运动、纵摇运动的数值解,为后面的系统总体技术指标论证与分析提供可靠依据。
     然后,开展船舶系泊条件下的小角度范围准动态水平基准测量试验,采集试验数据,通过对比系统测量数据与惯导采集数据,说明试验所得数据的有效性;对试验结果进行谱分析,验证液浮平面反射镜运动学分析结果的正确性和系统方案的合理性、可行性,并详细分析系统测量精度,为下一步即将开展的系统测量数据实时修正模型的构建奠定基础。
     最后,对基于光学测量的水平基准测量技术及其在车载、舰载测控设备自主定位定向系统中的应用进行了展望,并对后续的研究内容提出了合理的建议。
High precision measurement of the Vehicle、carrier aircraft measurement andcontrol equipment in-motion is a challenging task, measurement and controlequipment in-motion must have the ability of independent position and orientationcontinuously. The traditional position and orientation measuring method based onthe navigation system cannot meet the requirements of high precision and low costto the measurement and control equipment in-motion of the future missile、spacemeasurement and control system, so it is necessary to develop a new generation oftechnology in independent position and orientation based on optical measurementsystem. Optical real-time horizontal reference measuring technology is one ofresearch priorities on independent position and orientation based on opticalmeasurement system. Key Laboratory of the General Armament Department of thesubject comes from research projects the level of dynamic real-time optical precisionmeasurement method. Optical real-time benchmarks measuring technology researchis based on optical measurement systems directed autonomous positioningtechnology research priorities.
     The thesis combines the key technology research project of the GeneralEquipment Department--"research on dynamic real-time optical precision levelmeasuring method", from two aspects that Optical real-time horizontal referencemeasuring model and the floating body slightly sloshing mechanical analysis, horizontal reference measuring method based on optical measurement was studiedsystematically. Optical collimation——that horizontal reference real-time measuringprecision of liquid floating plane mirror two-dimension angle model under theconditions of slightly sloshing was studied deeply from three aspects of theorystudy, numerical calculation and experimental research. The main contents wereincluded in the paper:
     Firstly, comprehensive inertial navigation system, celestial navigationsystem, based on the basic working principle of the GPS positioning andorientation systems and integrated navigation system, the advantages anddisadvantages of each existing as well as the current state of development,indicating a celestial navigation system in the autonomous positioning directionaltechnologythe importance of analysis and Prospect on the importance ofhigh-precision level of autonomy reference measurement method; celestialnavigation technology for future research and development direction. Roughbenchmarks and stellar refraction combined indirect the horizontal referencemeasurement technology works and have the advantage, and pointed out thelimitations of the technology applications (atmospheric refraction model error ofnavigation accuracy is very significant, not suitable for ground equipment in),further illustrates the significance of this paper, on the basis of optical real-timelevel measurement system designed research.
     Secondly, a detailed analysis of the use of the optical real-time level of thereference measurement system, technical indicators, the work environment on thebasis of the two-dimensional servo tracking turntable with autocollimation-liquidfloat plane mirror angle measurement platform coupled measurement technologyprograms,the program, through the the coupled servo tracking platform and anglemeasurement platform real-time output angle information to build a base fixedlyconnected with the coordinate system defined in the system at the measuring pointmoving horizontal attitude angle measurement model. Brief introduction to theworking principle of the two-dimensional servo tracking turntable, the analysis of two-dimensional servo tracking turntable reference output information on the levelof inertial navigation system to track the angle tracking error, the liquid floatingplatform in which a plane mirror swaying range; to the measurement process in thediscussion of the system may occur due to external shaking excitation caused by theliquid floating the mirror unit the instability cause distortion problems of real-timeoutput data of the measurement system, based on floating bodies metacentrictheoretical analysis the liquid float plane mirror stability, based on the floatingbody dynamics equation theory floating on the fluid the heave equation of motion ofthe plane mirror, the equations of motion of the roll and pitch equations of motionfor setting up and solving; based on existing hull heave, pitch, roll law of motionobtained liquid floated the plane mirror heave movement of the analytical solutionand roll motion, the numerical solution of the vertical roll motion, and provide areliable basis for the behind the system overall technical indicators of argumentationand analysis.
     Thirdly, carrying out the the ship mooring under the conditions of small-anglequasi-dynamic range Datum measurement test, collecting test data, measurementdata by comparing the system with the INS data collection, illustrate theeffectiveness of the test data obtained; spectral analysis of the test results,verifyreasonableness of the liquid float plane mirror kinematic analysis of thecorrectness of the results and system solutions, feasibility and detailed analysis ofthe precision of the system for the next upcomingthe system carried outmeasurement data real-time correction model to build the foundation and to build themeasurement mode.
     Finally, the application of the system based on the level of the opticalmeasurement the reference measurement technology and its in-vehicle,carrier-based monitoring and control equipment autonomous positioning directionalreasonable proposal, and follow-up research.
引文
[1]何炬.国外天文导航技术发展综述[J].中国造船工程学会电子技术学术委员会2006学术年会论文集,2006
    [2] Ohno, A., Kurokawa, A., Kumagai, T., Nakamura, S., et al.,Application sand Technical Progress of Fiber Optic Gyros in Japan, in18thInternational Conference on Optical Fiber Sensors.2006: Cancún,México.
    [3]何炬.国外天文导航技术发展综述[J].舰船科学技术,2005
    [4] Z F Syed, P.A., C Goodall, X Niu and N El-Sheimy. A new multi-positioncalibration method for MEMS inertial navigation systems. Measurement science andtechnology, May2007. Published15.
    [5]刘真.基于天文导航的无人机定位方法研究[D]:[硕士学位论文].西安:西安电子科技大学,2009
    [6] Shin, E.-H. Accuracy Improvement of Low Cost INS/GPS for LandApplications. THE DEGREE OF MASTER OF SCIENCE. ALBERTA: Calgary,2001.
    [7]杨永刚.亚轨道飞行器导航系统方案研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2010
    [8]王昊京.三视场恒星识别天文导航方法研究[D]:[硕士学位论文].北京:中国科学院研究生院(长春光学精密机械与物理研究所)-,2012
    [9]曾伟一,林训超,曾友州,贺银平.组合导航技术的发展趋势[J].成都航空职业技术学院学报,2011
    [10]高春雷.基于天文观测的高空长航无人机组合导航技术研究[D]:[硕士学位论文].南京:南京航空航天大学,2010
    [11]陈霞.天文/惯性组合导航模式研究[J].光学与光电技术,2003
    [12]朱筱虹,徐瑞,张俊艳.天文导航标准体系建设现状与未来发展[J].地理空间信息,2011
    [13]杜习奇. GPS与捷联惯导组合导航系统研究[D]:[硕士学位论文].南京:南京航空航天大学,2010
    [14]陈金枝.天文导航与星光制导[J].舰船科学技术,2001
    [15]何晓峰.北斗/微惯导组合导航方法研究[D]:[博士学位论文].长沙:国防科学技术大学,2009
    [16]郁丰,熊智,屈蔷.基于多圆交汇的天文定位与组合导航方法[J].宇航学报,2011
    [17]王光辉,郭正东,朱海,莫军.偏振光天文导航定位能力分析[J].光子学报,2012
    [18]王光辉,郭正东,朱海,莫军.偏振光天文导航定位能力分析[J].光子学报,2012
    [19]林琳. SINS/GPS组合导航方法研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2009
    [20]周海.星光/惯性组合制导系统设计[J].战术导弹控制技术,2006
    [21]贺楠.综合导航显控台设计及信息融合技术应用研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2008
    [22]刘洋.导弹G NSS/INS组合导航方法研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2010
    [23]杨爽.实时射电高精度天文导航技术研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2010
    [24]Ye fi me v MV. Ballistic Missile Aiming Systems.Missile and Rockets,1970,123(4):23-25.
    [25]William M Arkin. what’s“new”.The Bulletin of Atom ic Scientists.1997,14(5):33.
    [26] William M Arkin.Dangerous directions.The Bulletin of the Atomi c Scientists,1998,145(4):22.
    [27]Held KJ.and Barry J.D.Precisi on OpticalPointing and Tracking from Spacecraftwith Vibration Noise. SPIE.1991,Vol.616,160-173(1986).
    [28]A.D.Nashift, T.Nicholas.Vibration Control by a Multiple Layered DampingTreaqtment.Shock andVibration Bulletion,1984.
    [29]文仲辉等.战术导弹系统分析.北京:国防工业出版社,2000.
    [30]张谦.星光-惯性复合制导系统.导弹与航天运载技术,1993,203(3):37-41.
    [31]何照才,胡保安等.光学测量系统.北京:国防工业出版社.2002.
    [32]王小军.顶空无盲区跟踪的舰载倾斜三轴雷达的研究[J].哈尔滨工程大学学报,2002,23(2):37-42.
    [33] Lt.Marcus Schulthess, Steve Baugh. Attitude control and trajectory estimationfor high altitude balloon experiment [A]. SPIE,1994,2221:590-609.
    [34]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989,81:3-34.
    [35]马佳光.复合控制及等效复合控制原理及应用[J].光学工程,1988,77(5):1-16.
    [36]郭劲.地基激光反卫星跟踪望远镜瞄准控制系统分析[J].光机电信息,1996,No.5.
    [37]郭劲.对美国陆军激光反卫星情况及技术的综合分析[J].光机电信息,1998,No.6.
    [38]吉桐伯,陈娟,杨秀华,陈涛.地平式光电望远镜天顶盲区影响因素[J].光学精密工程,2003,11(3):296-300.
    [39] JI Tong-bo, YANG Xiu-hua, CHEN Juan, CHEN Tao. Altitude-azimuthtracking performance and method around the zenith[A].5th International Symposiumon Test and Measurement(ISTM’2003),Vol.5:3731-3734.
    [40] Dario Mancini.Italian National Galileo Telescope(TNG) Control System:hardware,software andmethods adopted to improve the performance of the fullydigital drive system[A]. SPIE,1995,Vol.2479:245-252.
    [41] Mancini D.,Brescia M., Schipani, P..Avariable structure control law fortelescopes pointing and tracking[A]. Acquistion, Tracking, and Pointing, SPIE,1997,Vol.3086:72-84.
    [42] Mancini D., Cascone E., Schipani P..Telescope control system stability studyusing a variable structure controller[A].SPIE,1998,Vol.3351:165-171.
    [43] Foltz C.B.; Williams J.T.; West S.C.; etc. The rebirth of the MMT[A].Instrumentation and Measurement Technology Conference,1999. IMTC/99.Proceedings of the16th IEEE,1999, Vol.2:633-638.
    [44] Darry J.Pines etc.Alight weight Hight Performance Dual Axis Gimbal for spaceApplication[A].SPIE,Vol.2468,1995.
    [45] Jan L.F. M.Garry etc. Large apertare high accuracy satelite laser tracking[A].SPIE,Vol.641,1986.
    [46] Steve Baugh etc. Altitude and trajectory estimateon for High Altitude BalloonExperiment[A]. SPIE,Vol.222:659-701.
    [47] Larry A.Stockum, James Burge.Electro-mechanical Design for PrecisionPointing and Tracking Systems[A].SPIE, Vol.779,1987.
    [48] JI Tong-bo, YANG Xiu-hua, CHEN Juan, CHEN Tao. Analysis of trackingperformance for altitude-azimuth pedestal near the zenith[A].5th InternationalSymposium on Instrumentation and Control Technology (ISICT’2003), SPIEVol.5253:398-401.
    [49] John Murray Fitts.Aided Tracking as Applied to High Accuracy PointingSystems[A]. IEEE Trans. On Aerospace and Electronic Systems,1973,9(3).
    [50] A.K.Rue. Stabilization of Precision Electro-optical Pointing and TrackingSystems[A].IEEE Trans. On Aerospace and Electronic Systems,1969,5(5).
    [51] Michael K.Masten, J.M. Hilkert. Electromechanical System Configurations forPointing, Tracking, and Stabilization Applications[A]. SPIE, Vol.779,1987.
    [52] D.D.Phinney. Representative pointed optics andassociated gimbalcharacteristics[A]. SPIE, Vol.887,1988.
    [53] James Downs, Steve Smith. High Performance Gimbal Control forSelf-Protection Weapon Systms[A].SPIE, Vol.3365,1998.
    [54]曾东.箱式浮体在波浪中的运动分析[D]:[硕士学位论文].武汉:华中科技大学,2009
    [55]王曦. Wigley船在波浪中的运动分析[D]:[硕士学位论文].武汉:华中科技大学,2009
    [56]谢建华.关于浮体的平衡与稳定性[J].力学与实践,2010
    [57]赵文斌. Spar平台水动力载荷及垂荡—纵摇耦合运动分析[D]:[硕士学位论文].天津:天津大学,2009
    [58]颜瓅.基于海况的船舶运动仿真关键技术研究[D]:[硕士学位论文].上海:上海交通大学,2008
    [59]曾东,叶恒奎,孙江龙.箱式浮体在波浪中的运动分析[J].中国舰船研究,2009
    [60]付丽丽.挖泥船定位桩系统在波浪载荷作用下的疲劳强度分析[D]:[硕士学位论文].天津:天津大学,2011
    [61]Haskind M D.The oscillation of a shipin still water.Izv.Akad.Nauk SSSR.Otd.Tekh.Nauk,19461:23-24.(Engl.transl.Tech.Rea.Bull. No.1-12).
    [62]陈小邹.船舶在波浪中频域分析[J].舰船科学技术,2009
    [63]CHUANG J M, QIU W, PENG H. On the evaluation of time-domain Greenfunction[J]. Ocean Engineering,2007,34(7):962-969.
    [64]刘辉.基于多梁模型的三体船波激响应[D]:[硕士学位论文].大连:大连理工大学,2009
    [65]刘亿.油船极限强度的共同规范及与短期海况相关性研究[D]:[硕士学位论文].武汉:华中科技大学,2009
    [66]RA Lbrahim, VN Pilipchuk. Recent advances in liquid sloshing dynamics [J].Applied Mechanics Reviews,2001,54(2):133~199.
    [67]卓峰.多功能伤员后送袋研制[D]:[硕士学位论文].北京:第一军医大学,2008
    [68]徐学军.深海Spar平台垂荡—纵摇耦合非线性运动响应研究[D]:[硕士学位论文].青岛:中国海洋大学,2011
    [69]Baoyin Hexi,Li Junfeng,Gao Yunfeng,Wang Zhaolin.Damping Computationof liquid sloshing in containers aboard spacecraft [J]. ACTA Mechanica Sinica,2003,19(2):189~192.
    [70]王高峰.筒型基础平台的自摇运动和拖航过程中的响应研究[D]:[硕士学位论文].天津:天津大学,2009
    [71]马强.多体船破舱稳性研究[D]:[硕士学位论文].上海:上海交通大学,2008
    [72]栾文辉.筒型基础平台气浮拖航研究[D]:[硕士学位论文].天津:天津大学,2007
    [73]郭汝绯.基于VB.NET的船舶性能计算分析软件开发[D]:[硕士学位论文].武汉:武汉理工大学,2008
    [74]李在鹏.半潜式海洋潮流电站系统性能研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2010
    [75]RAO Qun-li, WANG Hao-wei, ZHOU Yao-he. Influ-ence of surfacemorphology on the microhardness of electroless Ni-B deposit revealed by AFMobservation[J].Journal of Shanghai Jiaotong University,2002,
    [76]韩云辉.万吨级舰船横倾补偿控制及虚拟仿真研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2011
    [77]牟涵.桁架式Spar平台非线性耦合运动响应特性研究[D]:[硕士学位论文].大连:大连理工大学,2007
    [78]崔东坡.吊艇架被动式抗摆技术研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2009
    [79]Kobayashi0.Definition system and criteria related to thestatic stability ofairplanes(first report)[J].Trans.Jpn.Soc.Aeronaut.Space Sci.,2002,45(148):116—123.
    [80]Kobayashi0.Definition svstern and ctiteria related to thestatic stability ofairplanes(second report)[J].Trans.Jpn.Soc.Aeronaut.Space Sci.,2002,45(148):124—131.
    [81]Kobayashi0.Definition system and criteria related to thestatic stability ofairplanes(third report)[J].Trans.Jpn.Soc.Aeronaut.Space Sci.,2002,45(148):131—138.
    [82]徐鑫福.飞行器飞行操纵系统[M].北京:北京航空航天大学出版社,1989.
    [83]关世义.放宽静稳定性原理及其在现代飞行器设计中的应用[J].战术导弹技术,1985,(2):33—50.
    [84]Bellur L Nagabhushan.Directional control of an advanced airship[J].Journal ofAircraft,1996,33(5):895—900.
    [85]周慧钟,李忠应.放宽飞行器纵向静稳定度问题的分析研究[J].飞航导弹,1998,(2):8—13.
    [86]王志.水平式机架结构设计要素[J].长春理工大学学报,2011
    [87]费业泰.误差理论与数据处理[M].北京:机械工业出版社,1995.
    [88]贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报,2001,20(3):45-50.
    [89]张勇,史忠科,戴冠中.离散系统的鲁棒卡尔曼滤波新方法[J].控制理论与应用,2000,17(4):505-508.
    [90]毛英泰.误差理论与精度分析[M].北京:国防工业出版社,1982.
    [91]Dr.Robert D.CulP,Dr.Don Mackison, Fu Ho-Ling.Satellite othit Determinationby Tracking Data from Ground Station with Statistical Kalman Filter Algorithm[A].AIAA-91-2679-CP.
    [92]杨秀华,吉桐伯,陈涛,陈娟.预测滤波技术在光电跟踪系统的应用[J].电光与控制,2003,10(3):11-15.
    [93]Borretlo, M.A.; Leslie, D.;Hyman, H. Shipboard disturbance control for therapid optical beam steering (ROBS) pointing and tracking system[A]. AmericanControl Conference,2002. Proceedings of the2002,2002, Vol.4:3186-3190.
    [94]Huybrechts, S.; Wegner, P.; Maji, A.; Kozola, B.; Griffin, S.; Meink,T. Structural design for deployable optical telescopes[A]. Aerospace ConferenceProceedings,2000,IEEE, Vol.4:367-372.
    [95]D.D.Phinney. Representative pointed optics and associated gimbalcharacteristics[A]. SPIE, Vol.887,1988.
    [96]李文成.车载光电经纬仪的测角精度分析[D]:[硕士学位论文].北京:中国科学院研究生院(长春光学精密机械与物理研究所),2010
    [97]王晓东.地基光测设备误差修正[D]:[博士学位论文].天津:天津大学,2007
    [98]韩雪冰等.水平式光电望远镜目标定位误差的预测[J].光学精密工程,2010
    [99]王家琪.光学仪器总体设计[M].长春:长春光学精密机械与物理研究所
    [100]程云鹏.矩阵论[M].西安:西北工业大学出版社.
    [101]王西京.飞行器轨道确定与机动研究[D].西北工业大学博士论文,2000.
    [102]易照华.天体力学基础[M].南京:南京大学出版社,1993.
    [103]胡明城,鲁福.现代大地测量学[M].北京:测绘出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700