用户名: 密码: 验证码:
规避卫星姿控系统故障诊断与容错控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间飞行器和垃圾废物的不断增多,卫星遭受撞击的概率越来越大,规避卫星问题已成为当前航天领域的研究热点之一。卫星在轨运行环境恶劣,遭遇高低温交变和强辐射易引发执行机构故障,规避卫星的故障检测和容错控制技术研究具有重要意义。
     针对规避卫星姿态控制系统非线性,强耦合的特点,提出了基于自组织神经网络的执行机构故障诊断方法。自组织模糊神经网络(SOFNN)可以根据系统状态在线更新权值和调整节点,优化网络结构,为解决故障诊断问题提供了一种新思路。本文针对卫星姿态控制系统中的主要故障源执行机构,开展了基于两个自组织模糊神经网络故障诊断方法研究,即采用网络SOFNN1用于健康系统的离线训练,以估计出系统的不确定项和扰动项,以网络输出结果为故障检测的阈值参考,在网络SOFNN1的基础上利用网络SOFNN2估计执行器故障。仿真结果表明,自组织神经网络可正确检测并能估计出执行机构故障,为开展系统容错控制研究奠定了基础。
     针对卫星姿态控制系统运行中遇到的大干扰和不确定情况,兼顾系统本身的非线性行为,又由于滑模观测器是解决非线性系统及干扰系统的故障诊断的有效途径,故此提出了基于滑模观测器的执行机构故障诊断方法。利用T-S模糊方法建立卫星姿态控制系统的T-S模糊模型,在此基础上设计了滑模观测器。当故障发生时,依然维持滑模运动,利用与变结构控制里等效控制概念类似的“等效输出注入”实现对故障项的估计。仿真试验表明,本文设计的滑模观测器在系统存在干扰和不确定的情况下,能够准确检测故障。该方法设计简单,工程实现性强。
     另外,本文研究了基于非线性未知输入观测器(RO-NUIO)的故障诊断方法,以解决由于卫星规避过程中模型不确定及大干扰力矩等引起的故障误判问题。其中,针对NUIO方法苛刻的设计条件,采用了坐标变换,将系统进行降阶设计,再采用线性矩阵不等式的方法求解参数,从而改进设计,弱化了条件要求,提出了非线性未知输入观测器故障诊断方法。仿真试验结果表明,本文所提出的RO-NUIO故障检测和隔离方法法不仅可以实现规避卫星执行机构的故障检测,同时也可实现故障隔离,且设计方便。
     在规避卫星实施轨道控制期间,轨道机动推力会影响卫星的姿态和挠性模态,本文针对挠性规避卫星执行机构存在的推力干扰故障问题,研究了基于反步自适应变结构方法的容错控制技术。设计了基于反步自适应变结构的被动容错控制器可达到姿态稳定目的,采用分布式智能部件作为执行器和设计补偿项以更好的抑制挠性结构的振动和常值变形。试验结果表明,本文提出的反步自适应变结构容错控制律在没有故障诊断信息基础上,也可以保证姿态稳定,且应变反应速率反馈补偿器能很好的抑制挠性结构的变形和振动。
     在实际应用中,由于规避卫星的执行机构在物理结构和输出能量的限制,使得执行机构不可能提供无限大的力矩,即存在受限问题。本文针对执行机构的物理限问题,设计了基于输入受限的变结构容错控制器。试验结果表明,本文设计的容错控制器不仅满足输入受限条件,同时保证了系统执行机构故障情况下控制器的有效性。
     在考虑输入受限方法和容错控制器设计的基础上,针对规避卫星执行机构具备配置冗余条件,研究了基于控制分配思想的执行机构在线重构技术。在控制机构部分失效情况下,该容错控制器无须改变控制算法,仅需调整相应的控制分配方案就能够实现控制输出的在线调整,提高了系统鲁棒性;在线重构技术能够直接处理执行机构的故障失效问题,降低了控制算法设计难度。仿真试验结果表明,执行机构故障情况下,控制分配算法能将伪控制指令进行在轨重分配,优化星载资源配置,并具备容错能力,是一种提高姿态控制系统运行可靠性的有效方法。
     在算法研究的基础上,为了将理论方法与工程实践相结合,研制了卫星故障检测与容错技术的半物理仿真平台,并开展了卫星姿态控制系统的故障检测与容错控制技术的半物理仿真试验,验证了所提出方法的有效性和合理性。针对规避卫星,建立了全数字规避卫星姿态控制系统容错控制技术仿真试验系统,开展了规避卫星的仿真演示、故障诊断和容错控制技术的试验及算法验证研究工作。
With the increasing number of space rubbish, satellites are being collided more easily.Now the research of satellites with collision avoidance is becoming the focus in space area.Since the environment for on-orbit satellites is severe, the actuators of satellites are inevitableto be faulty because of the changing temperature and high radiation. Fault detection andtolerant control for satellites during collision avoidance are greatly concerned.
     According to the nonlinearities and strongly coupling for satellite attitude control systems duringcollision avoidance, a fault diagnosis approach based on Self-organizing fuzzy neural network(SOFNN) is proposed. The network can update its weights on line and adjust the nodes to optimizethe network, thus providing a new method for fault diagnosis. In this dissertation, two Self-organizingfuzzy neural networks are investigated for actuator fault diagnosis. One SOFNN is designed forhealthy system training off line, which can estimate the uncertainties and nonlinearities, with theoutput as the threshold reference for fault detection. The other is to estimate the actuator fault.Simulation is carried out to show the correctness of the method for fault detection and estimation.
     Since the diagnosis approach of sliding observer is effective for systems withnonlinearities and disturbances, a fault diagnosis method based on sliding observer foractuators is studied in the presence of large disturbances, model uncertainties and nonlinearitiesfor satellite attitude control systems during collision avoidance. The observer is designed basedon the T-S fuzzy model for satellite attitude control systems. Then if the system encounters withfault, the concept of equivalent output inject, similar to sliding control, is used to estimate fault.Simulation demonstrates that the method can realize fault detection even if the system isequipped with uncertainties and nonlinearities. Besides, the method is simple and can berealized for engineering application.
     In order to avoid the false alarm caused by the model uncertainties and large disturbances,a fault diagnosis approach based on reduced nonlinear unknown input observer (RO-NUIO) isproposed. The method can relax the condition compared with nonlinear unknown observer,which can not only realizing fault detection but also realizing fault isolation. Simulation resultsprove the effectiveness of the proposed method and show that the method is suitable for thesystem considered in the paper.
     Considering the thrust may affect the attitude and flexible mode during orbit maneuvering, a backstepping adaptive variable structure method is developed for fault tolerant control. Forthe vibration suppression, the strain-rate feedback control is employed by using piezoelectricmaterials as additional sensors and actuators. Simulation results show the validation of the faulttolerant control methods and the effectiveness of the vibration suppression control which cansuppress the vibration of the flexible modes.
     Due to the physical constraint of the actuators, fault tolerant control method based on inputsaturation is presented. Since in practical application, the output of the actuators is impossibleto provide infinite torque because of the physical design and output energy constraint. Avariable fault tolerant control is designed with actuator fault and input saturation considered isgiven. The simulation result illustrates that the proposed fault tolerant controller satisfies theinput saturation condition and guarantees the effectiveness of the system to be work in faultycondition.
     If the system is equipped with redundant actuators, an on-line control allocation method isinvestigated for fault tolerant control. The fault tolerant controller can be carried out withoutreconfiguring the baseline controller, thus reducing the complexity of the designing. Simulationresults shows that control allocation method can allocate the virtual control command on line andoptimize the configuration of the resources, realizing fault tolerant control to improve the reliability ofthe attitude control system.
     At last, a semi-physical simulation system for fault detection and tolerant control is developedbased on the existing satellite attitude control simulation equipments. Fault detection and tolerantcontrol is studied combined with theory method and engineering practice to illustrate the effectivenessand reasonableness of the methods. Besides, numerical software for satellite attitude control systemsduring collision avoidance maneuver is designed to demonstrate the mechanisms of collisionavoidance, fault detection and tolerant control.
引文
[1]李春来,欧阳自远,都亨.空间碎片与空间环境.第四纪研究,2002,22(6):540-551.
    [2]康兴无,陈刚,董龙雷等.轨道快速机动期间的姿态鲁棒稳定控制方法研究.宇航学报,30(4),2009:1510-1515.
    [3]刘莹莹,周军.挠性卫星轨控期间动力学与姿态控制.空间控制技术与应用,2008,34(2):9-13.
    [4] Liu Y.Y.,Zhou J..Fuzzy Attitude Control for Flexible Satellite during OrbitManeuver.Proceedings of the the2009IEEE International Conference on Mechatronics andAutomation,Changchun,China2009:1239-1243.
    [5]胡立坤.一类簇状刚挠航天器模型与逆系统方法姿态控制研究[博士学位论文].黑龙江:哈尔滨工业大学,2007.
    [6] Utkin V.I..Variable Structure Systems with Sliding Modes.IEEE Trans on AutomaticControl,1977,22(2):212-222.
    [7]胡跃明.变结构控制理论与应用.科学出版社,2003.
    [8]王庆超,岑小锋,马兴瑞.挠性航天器旋转机动的输入成形变结构控制.系统工程与电子技术,2006,28(5):727-730.
    [9]解永春,牟小刚,吴宏鑫等.挠性航天器大角度机动的全系数自适应控制.宇航学报.1999,20(2):1-6.
    [10] Sato K.,Suzuki M..Vibration Control of Flexible Structures Using a Combined H∞FilterApproach.Journal of Guidance,Control and Dynamics,1996,19(5):1000-1006.
    [11] Mak T..A study of on-orbit spacecraft failures.Acta Astronautica,2009,64:195-205.
    [12] Castet J.F.,Saleh J.H..Satellite and satellite subsystems reliability: Statistical data analysis andmodeling.Reliability Engineering and System Safety,2009,94:1718-1728.
    [13] Harland D.M.,Lorenz R.D..Space Systems Failures:Disasters and Rescues of Satellites.Rocketsand Space Probes,Praxis Publishing,2005.
    [14] Geoffrey A.L.,Sheila G. B..Caues of Power-Related Satellite Failures. Photovoltaic EnergyConversion,Conference Record of the2006IEEE4th World Conferenceon,2007,vol.2:1943-1945.
    [15]王红茹.动态系统的鲁棒故障检测与分离方法研究[博士学位论文].黑龙江:哈尔滨工业大学,2006.
    [16] Beard R.V..Failure Accommodation in Linear Systems through Selfreorganization. ReportMVT-71-1,MIT,Cambridge, Massachusetts,1971.
    [17] Mehra R.K., Peschon J..An Innovation Appraoch to Fault Detecion and Diagnosis inDynamics.Automatica,1971,7:637-640.
    [18] Willsky A.S..A Survey of Design Methods for Failure Detection and Diagnosis inDynamics.Automatica,1976,12:601-611.
    [19] Himmelblau D.M..Fault Detection and Diagnosis in Chemical and PetrochemicalProcess.Amsterdam,Elsevier Press,1978.
    [20]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法.信息与控制,1986,15(6):27-34.
    [21]周东华,孙优贤.控制系统的故障检测与诊断技术.清华大学出版社,1994.
    [22]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法.信息与控制,1986,15(6):27-34.周东华,孙优贤.控制系统的故障检测与诊断技术.清华大学出版社,1994.
    [23] Jiang B.,Chowdhury F.Fault estimation and accommodation for linear MIMO discrete-timeSystems.IEEE Trans.On Control Systems Technology,2005,13(3):493-499.
    [24]姜斌,冒泽慧,杨浩等.控制系统的故障诊断与故障调节.国防工业出版社,2009,3.
    [25]胡龙根.基于观测器的鲁棒故障诊断方法及其应用研究[硕士学位论文].天津:天津大学,2001.
    [26] Veillette R. J., Medanic J. V., Perkins W. R.Design of reliable control systems. IEEE Trans.Automatic Control,1992,37(3):290-304.
    [27] Guan Y., Saif M.A novel approach to the design of unknown input observers.IEEE Trans. onAutomatic Control,1991,36(5):632-635.
    [28] Edwards C., Spurgeon S. K., Patton R. J.Sliding mode observers for fault detection andisolation.Automatica.2000,36(4):541-553.
    [29] Monsees G., Scherpen J. M. A.Adaptive switching gain for a discrete-time sliding modecontroller.Proceedings of American Control Conference,Chicago,USA:ACC,2000:1639-1643.
    [30] Himmelblau D. M. Fault Detection and Diagnosis in Chemical and PetrochemicalProcess.Amsterdam:Elsevier Press,1978.
    [31] Chen W., Saif M.Unknown input observer design for a class of nonlinear systems: an LMIapproach.Proceedings of the2006American Control Conference,Minneapolis,Minnesota,USA,2006:834-838.
    [32] Wu Q., Saif M.Model-based Robust Fault Diagnosis for Satellite Control Systems UsingLearning and Sliding Mode Approaches.Journal of Computers,2009,4(10):1022-1032.
    [33]刘京津.基于滑模观测器的故障诊断技术及其在飞控系统中的应用研究[硕士学位论文].南京:南京航空航天大学,2008.
    [34]栾家辉,姜兴渭,宋政吉.干扰解耦降维观测器设计的新方法.南京理工大学学报.2006,30(3):306-310.
    [35]董敏.基于模糊观测器的故障诊断和容错控制研究[硕士学位论文].南京:南京航空航天大学,2007.
    [36]姜斌,冒泽慧,杨浩,张友民.控制系统的故障诊断与故障调节,国防工业出版社,2009.3.
    [37] Liu J. H., Frank P. M. H-infinity Detection Filter Design for State-delayed LinearSystems.Proceedings of the the14th IFAC World Congress,Beijing,China.1999:229-234.
    [38] Emani N.A., Muhammad A.Effect of Model Uncertain on Failure Detection:the ThresholdSelector.IEEE Trans.on Automatic Control,1988.33(12):1106-1115.
    [39] Frank P. M., Ding S. X.Survey of Robust Residual Generation and Evaluation Methods inObserver-based Fault Detection Systems.Journal of Process Control,1997,7(6):403-424.
    [40] Zhang X. D., Polycarpou M. M, Parisini T.Design and analysis of a fault isolation schemefor a class of uncertain nonlinear systems.Annual Reviews in Control,2008,32:107-121.
    [41] Guan Y, Saif M.A novel approach to the design of unknown input observers.IEEE Trans onAutomatic Control.1991,36(5):632-635.
    [42] Yang H., Saif M.Monitoring and diagnostics of a class of nonlinear systems using a nonlinearunknown input observer.Proceedings of the the1996IEEE International Conference on ControlApplications,Dearborn,MI,USA1996:1006-1011.
    [43] Amato F., Mattei M., Lervolino R.A nonlinear UIO scheme for the FDI on a small commercialaircraft.Proceedings of the the2002IEEE International Conference on ControlApplications,2002:235-240.
    [44] Uppal F. J., Patton R. J.Neuro-fuzzy uncertainty de-coupling:a multiple-model paradigm forfault detection and isolation.International Journal of Adaptive Control and SignalProcessing,2005,19(4):281-304.
    [45] Hammouri H., Tmar Z.Unknown input observers for state affine systems:A necessary andsufficient condition.Automatica,2010,46:271-278.
    [46]郭玉英,姜斌.基于降维UIO的飞控系统鲁棒故障诊断.南京航空航天大学学报,2009,41(2):150-153.
    [47] Patton R.J.,Uppal F. J.,Simani S.Robust FDI applied to thruster faults of a satellitesystem.Control Engineering Practice,2009,222:1-17.
    [48] Patton R. J., Uppal F. J.,Simani S.Reliable fault diagnosis scheme for a spacecraft attitudecontrol system.Proceedings of the IMechE Vol222Part O:J Risk and Reliability,2007.
    [49] Shen L. C., Chang S. K., Hsu P. L.Robust Fault Detection and Isolation with UnstructuredUncertainty Using Eigenstructure Assignment.Journal of Guidance, Dynamics andControl,1998,21(1):50-57.
    [50] Patton J.,Chen J.On Eigenvalue Assignment for Robust Fault Diagnosis. International Journalof Robust Nonlinear Control,2000,10(14):1193-1208.
    [51] Niemann H., Saberi A., Stoorvogel A.Exact,Almost and Delayed Fault Detection:an ObserverBased Approach.Int. J. of Robust Nonlinear Control,1999,9(4):215-238.
    [52] Ding X.,Frank P.M. An Approach to Robust Residual Generation and Evaluation. Proceedingsof the30th conference on Decision&control,Brighton, England,1991:656-661.
    [53] Frank P.,Ding X.Frequency Domain Approach to Optimally Robust Residual Generation andEvaluation for Model-based Fault Diagnosis.Automatica,1994,30(4):789-804.
    [54] Mangoubi R.,Appleby B.,Farrell J.Robust Estimation in Fault Detection. Proceedings of theProceedings of the31'th IEEE Conference on Decision&Control, Tucson,Arizona,USA,1992:2317-2322.
    [55]王松,崔平远,张池平等.柔性航天器姿态的在线神经网络控制.飞行力学,1998,16(2):83-89.
    [56] Boyd S.P., Ghaoui L.E.,Feron E.Linear Matrix in Inequalities System and ControlTheory.Society for Industrial and Applied Mathematics (SIAM),1994.
    [57] Chen W., Saif M.Unknown input observer design for a class of nonlinear systems: an LMIapproach.Proceedings of the2006American Control Conference,Minneapolis,Minnesota,USA,2006:834-838.
    [58]冒泽慧.基于自适应观测器的故障诊断与容错控制研究[硕士学位论文].南京:南京航空航天大学,2006.
    [59]闻新,周露.神经网络故障诊断技术的可实现性.导弹与航天运载技术,2000,(2):17-22.
    [60] Terra M. H., Tinos R.Fault detection and isolation in a puma560manipulator via neuralnetworks. Proc.of IFAC World Congress99, Beijing, China,1999:175-180.
    [61] Zhang H. Y.Sensor fault diagnosis for systems with unknown nonlinearity using neural networkbased nonlinear observers.IEE Conference Publication,1998,455(2):981-986.
    [62]汤天浩,罗成汉,李杰仁.层次分类诊断模型的多重结构神经网络语应用.上海海运学院学报,1998,19(4):1-6.
    [63] Li Z.Q., Ma L.,Khorasani K.A dynamic neural network-based reaction wheel fault diagnosisfor satellites.International Joint Conference on Neural Networks,Canada,2006.
    [64] H.A.Talebi, R.V.Ptel.Fault detection and isolation for uncertain nonlinear system withapplication to a satellite reaction wheel actuator.2007IEEE:3140-3145.
    [65] N.Meskin,K.Khorasani.Fault detection and isolation in a redundant reaction wheelsconfiguration of a satellite.2007IEEE:3153-3158.
    [66] Chang J.B.Intelligent Fault diagnosis based on FNN.Proceedings of the7th World Congress onIntelligent Control and Automation,June25-27,2008, Chongqing, China.
    [67] Q.Wu, M.Saif.Robust fault diagnosis for a satellite large attitude systems using neural statespace models.IEEE International Conference on Systems: Man andCybernetics,2005:1955-1960.
    [68]王剑非.卫星姿态控制系统的故障诊断研究[硕士学位论文].江苏:南京航空航天大学,2008.
    [69]王德军.故障诊断与容错控制方法研究[博士学位论文].吉林:吉林大学,2004.
    [70]徐福祥.“风云一号”B卫星姿态控制系统.中国空间科学技术,1997,3:1-8.
    [71]王友清,周东华.非线性系统的鲁棒容错控制.系统工程与电子技术,2006,28(9):1378-1383.
    [72] Patton R. J. Fault tolerant control systems: the1997situation. Proceedings of the3rd IFACsymposium on fault detection, supervision and safety for technical processes,1997:1033-1055.
    [73] Zhang Y. M., Jiang J. Bibliographical review on reconfigurable fault-tolerant controlsystems.Annual Reviews in Control,2008,32:220-252.
    [74] Benosman M., Lum K. Y.Passive actuators' fault tolerant control for affine nonlinearsystems.Proceedings of the17th World Congress International Federati on of AutomaticControl,Seoul, Korea.2008:14229-14234.
    [75]周东华,Ding X.容错控制理论及其应用.自动化学报,2000,26(6):788-797.
    [76]陈雪芹.集成故障诊断与容错控制研究及在卫星姿态控制中的应用[博士学位论文].黑龙江:哈尔滨工业大学,2008.
    [77]栾家辉.故障重构技术在卫星姿控系统故障诊断中的应用研究[博士学位论文].黑龙江:哈尔滨工业大学,2006.
    [78]解永春,何英姿,吴宏鑫.基于系统特征的自适应被动容错控制及其应用研究.宇航学报,1998,19(3):10-15.
    [79]梁津津,王青,董朝阳.一种针对卫星执行机构故障的容错控制系统.华中科技大学学报,2009,37(S1):267-270.
    [80] Benosman M., Lum K.Y.Application of passivity and cascade structure to robust control againstloss of actuator effectiveness.Int.J. Robust Nonlinear Control,2010,20:673-693.
    [81] Hu Q. L.Robust Fault Tolerant Control for Spacecraft Attitude Stabilization under ActuatorFaults and Bounded Disturbance.IEEE Transaction on Control Systems Technology,
    [82]管宇.卫星姿态系统的鲁棒容错控制研究[博士学位论文].黑龙江:哈尔滨工业大学,2006.
    [83] Patton R. J., Uppal F.J., Simani S. Robust FDI applied to thruster faults of a satellitesystem.Control Engineering Practice,2009,222:1-17.
    [84]陈雪芹,耿云海,王峰等.卫星姿态容错控制系统的鲁棒自适应逆最优控制.中国空间科学技术,2008,4(2):35-41.
    [85]陈雪芹,耿云海,张迎春等.基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用.控制理论与应用.2008,25(1):95-99.
    [86]陈雪芹.基于控制有效性因子的卫星姿态控制系统在轨重构容错控制.宇航学报,2007.
    [87]陈雪芹.基于IMM/EA的卫星姿态控制系统重构容错控制.系统工程与电子技术,2007.
    [88] Gao Z. W., Wang H. Descriptor observer approaches for multivariable systems withmeasurement noises and application in fault detection and diagnosis.System and ControlLetters,2006,55:304-313.
    [89] Gao Z., Ding S. X.Sensor fault reconstruction and sensor compensation for a class of nonlinearstate-space systems via a descriptor system approach.IET Control TheoryAppl,2007,1(3):578-585.
    [90]解永春,何英姿,吴洪鑫.基于系统特征的自适应被动容错控制及其应用.控制工程,1997,4:12-16.
    [91]胡庆雷,马广富,姜野,刘亚秋.三轴稳定挠性卫星姿态机动时变滑模变结构和主动振动抑制.控制理论与应用,2009,26(2):122-126.
    [92] Thawar T.Arif. Adaptive Control of Flexible Satellite.Proceedings of the26th Chinese ControlConference,Hunan,China,July26-31,2007.
    [93]胡庆雷,马广富.改进型自适应变结构的挠性卫星姿态机动控制.哈尔滨工业大学学报,2008,40(1):1-5.
    [94] Song B., Ma G.F., Li C.J.Adaptive variable structure control based on backstepping forspacecraft with reaction wheels during attitude maneuver.Journal of Harbin Institute ofTechnology(New Series),2009,16(1):138-144.
    [95]朱良宽,马广富,胡庆雷.挠性航天器鲁棒反步自适应姿态机动及主动抑制控制.振动与控制,2009,28(2):132-136.
    [96] Ye J.,Hu Q.L., Ma G.F.Adaptive backstepping fault tolerant control for flexible spacecraft withunknown bounded distrubances and actuator failures.ISA Transactions,2010,49(1):57-69.
    [97] Ahmed N.U., LimS. S.Modeling and Stabilization of Flexible Spacecraft under the Influenceof Orbital Perturbation. Proceedings of the26th Conference on Decision and Control,LosAngeles, CA, December1987.
    [98]周文忠.地球同步卫星近地点变轨期间的三轴姿态稳定.航天控制,1993,2:7-15.
    [99]刘莹莹,周军.挠性多体航天器姿态动力学建模与分析.飞行力学,2005,23(3):60-63.
    [100]缪炳祺,曲广古,夏邃勤.柔性航天器动力学建模的伪坐标形式Lagrange方程.中国空间科学技术,2003,25(2):1-5.
    [101]仝西岳.挠性卫星动力学建模与控制系统研究[博士学位论文].长沙:国防科学技术大学,2001.
    [102]刘莹莹,周军.卫星轨道控制力对挠性帆板振动的影响.西北工业大学学报,2009,27(1):61-64.
    [103] Chun F. H., Kuo H. C.. Recurrent fuzzy-neural approach for nonlinear control usingdynamic structure learning scheme.Neurocomputing,2008,71(16-18):3447-3459.
    [104] Zhang Y. M., Jiang J.Bibliographical review on reconfigurable fault-tolerant controlsystems.Annual Reviews in Control,2008,32:220-252.
    [105] Harkegard O. Dynamic control allocation using constrained quadratic programming.Journalof Guidance,Control,and Dynamics,Vol.27,No.6,2004:1028-1034.
    [106]闫丹丹.基于自适应方法容错控制系统设计[硕士学位论文].吉林:吉林大学,2004.
    [107]吕新丽.时滞系统的故障诊断与最优容错控制方法研究[硕士学位论文].山东:青岛农业大学,2010.
    [108]李娟.时滞系统基于观测器的故障诊断和容错方法研究[博士学位论文].北京:中国海洋大学,2008.
    [109]王友清.非线性连续过程和间歇过程的容错控制研究[博士学位论文].北京:清华大学,2007.
    [110]王景焕.大系统分散鲁棒容错控制研究[硕士学位论文].江苏:南京理工大学,2005.
    [111]王剑非.卫星姿态控制系统的故障诊断研究[硕士学位论文].江苏:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700