用户名: 密码: 验证码:
基于智能算法的目标威胁估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对空中来袭目标进行威胁估计是光电防御系统指挥决策活动中的重要环节,它是在目标识别的基础上,通过对目标的定性定量分析而进行的综合评价活动,为指挥员进行兵力部署和火力分配提供重要依据。现代防空作战环境要求目标威胁判断准确实时,若判断不准确,将导致目标分配失误,影响防空作战效能;判断不迅速,就会贻误战机。本文针对威胁估计的特性,采用现代智能算法,重点研究了光电对抗武器攻防中威胁估计技术及算法,本文的主要工作如下:
     介绍了信息融合与威胁估计技术的基本理论和功能框架,对威胁估计技术的研究现状进行了归纳总结,阐述了威胁等级排序的内容和处理步骤,结合项目,通过分析光电防御系统作战过程,明确了系统决策的基本任务,并且由指挥控制系统功能,确定了辅助决策单元的内容。重点对威胁估计子模块的设计进行了研究,分析了威胁要素的提取方法,确定了威胁排序算法的工作流程及排序准则。
     对经典智能算法,如微分进化算法(DE)、生物地理学优化算法(BBO)、粒子群算法(PSO)、布谷鸟搜索算法(CS)、蝙蝠算法(BA)和萤火虫算法(FA),进行了深入的研究。在此基础上,结合其它智能优化技术,提出了DE/CS、HS/BA、MFA和BAM等新算法,实验结果表明,这些新算法明显提高了原算法的准确性。
     针对神经网络在求解威胁估计时网络结构选择困难、过学习及泛化能力差的缺点,建立了Elman_AdaBoost强预测器目标威胁估计模型,并提出了基于该模型的算法。首先,根据AdaBoost算法和Elman神经网络的特点,提出了Elman_AdaBoost强预测器;然后,建立了一种新的Elman_AdaBoost强预测器目标威胁估计模型;最后,提出了基于Elman_AdaBoost强预测器目标威胁估计模型的算法。
     针对萤火虫优化算法(GSO)和BP神经网络的特点,建立了一种基于GSO算法优化BP神经网络(GSOBP)的目标威胁估计模型,并提出了基于该模型的算法。该方法采用萤火虫算法优化BP神经网络的初始权值和阈值,优化后的BP神经网络能够更好地预测输出。结果表明,该方法的预测误差明显小于BP和PSO_SVM。
     在对基本小波神经网络进行研究的基础上,采用改进小波神经网络-MWFWNN网络来解决威胁估计问题。提出了一种基于最小均方差选择小波基函数的方法,并构造了MWFWNN网络。建立了MWFWNN网络的目标威胁估计模型,提出了基于该模型的算法。首先建立小波基函数库,采用库中的小波基函数分别构造小波神经网络,根据相关公式更新小波基函数参数和网络权值。达到迭代次数后,采用训练集测试构造的小波神经网络,从中选择最优的小波基函数,构造MWFWNN网络。实验表明,该方法均方差为1.23×10-3,明显优于小波神经网络、BP网络及PSO_SVM。
Target threat assessment is a key issue in the collaborative multi-target attack. Itis a comprehensive assessment activity based on the qualitative and quantitativeanalyses of target, which can provide significant evidence for the commander tomake firepower allocation. In case of modern high-tech air defense combatenvironment, threat assessment of air target must be accurate and rapid. Aninaccurate judgment will lead to mistakes in decision-making and impact efficiencyof air defense operations. Adversely, prompt judgments affect the opportunity ofbattle. This dissertation provides an in-depth technical study of threat assessmenttechnology in the offensive and defensive of countermeasures of optoelectroniccountermeasure weapons using modern intelligent algorithms.
     The main contributions of this dissertation are described as follows:
     The basic theory of information fusion and threat assessment are introduced,and research and development status of threat assessment technology aresummarized. Workflow of threat assessment module and guidelines of threatsequencing are given according to application analyses of decision-making tasks andassistance decision-making in command and control system.
     The in-depth research of classic intelligent algorithms, such as differentialevolution (DE), biogeography-based optimization (BBO), cuckoo search (CS),particle swarm optimization (PSO), bat algorithm (BA), and firefly algorithm (FA), is conducted. On this basis, several new hybrid algorithms, like DE/CS (differentialevolution/cuckoo search), HS/BA (harmony search/bat algorithm), MFA (modifiedfirefly algorithm), and BAM (bat algorithm with mutation), are initially proposed incombination with other intelligent optimization technology. The experimental resultson benchmarks show that these novel methods significantly improve theperformance of the original methods.
     To improve the accuracy and usefulness of the target threat assessment in the aircombat, a target threat assessment model and algorithm based on Elman_AdaBooststrong predictor is originally proposed. Firstly, the Elman_AdaBoost strongpredictor is introduced; secondly, a target threat assessment model based onElman_AdaBoost strong predictor is established; at last, an algorithm is described.The experimental results show that the prediction error for Elman_AdaBoost strongpredictor algorithm is notably lower than the weak predictor.
     Moreover, to further enhance the accuracy and feasibility of the target threatassessment in the aerial combat, another target threat assessment model andalgorithm based on back-propagation (BP) neural network optimized by glowwormswarm optimization (GSOBP) algorithm is initially proposed. In GSOBP, GSO isused to simultaneously optimize the initial weights and thresholds of BP neuralnetwork. Target threat database is adopted to study the target threat predictionperformance of GSOBP, and the proposed method is also compared with BP andPSO_SVM. The experiment indicates that GSOBP has higher target threat predictionaccuracy than the normal BP and PSO_SVM.
     A variant of wavelet neural networks (WNN)-MWFWNN network is firstlyproposed to solve threat assessment more accurately, efficiently and effectively inthe aerial combat. How to select the appropriate wavelet function is adifficult-to-solve problem when constructing wavelet neural network. Thisdissertation proposes a wavelet mother function selection algorithm in terms ofminimum mean squared error, and then constructs MWFWNN network using theabove algorithm. Firstly, a wavelet function library is established; secondly, wavelet neural network is constructed with each wavelet mother function in the library, andupdate wavelet function parameters and the network weights according to therelevant modifying formula. The constructed wavelet neural network is trained withtraining set, and then optimal wavelet function with minimum mean squared error ischosen to build MWFWNN network. Experimental results show that the meansquared error is1.23×10-3, which is better than WNN, BP and PSO_SVM.
引文
[1] C. G. Looney, L. R. Liang. Cognitive situation and threat assessments ofground battlespaces [J]. Information Fusion,2003,4(4):297-308
    [2] M. S. Cohen, L. Adelman, M. A. Tolcott, T. A. Bresnick, M. F. Freeman. Acognitive framework for battlefield commanders' situation assessment [R].DTIC Document,1994
    [3] P. Gonsalves, G. Rinkus, S. K. Das, N. T. Ton. A hybrid artificial intelligencearchitecture for battlefield information fusion [C]. Proceedings of the SecondInternational Conference on Information Fusion, Sunnyvale, CA, USA,International Society of Information Fusion, Sunnyvale, CA, USA.1999.463-468
    [4] I. Kadar, P. Svensson, H. I. Christensen, A. Steinberg, M. M. Kokar, R. P.Mahler, J. Llinas. Panel discussion on Challenges in Higher Level Fusion:Unsolved, Difficult, and Misunderstood Problems/Approaches in Levels2-4Fusion Research [R].2004
    [5] D. L. Hall, J. Llinas. An introduction to multisensor data fusion [J].Proceedings of the IEEE,1997,85(1):6-23
    [6] M. E. Liggins, D. L. Hall, J. Llinas. Handbook of multisensor data fusion:theory and practice [M]. Washington DC, NY: CRC Press,2008
    [7] T. Miller, S. Wolf, M. Thordsen. A decision-centered approach tostoryboarding anti-air warfare interfaces [R].1992
    [8] B. K. Rummel. Subjective Evaluation of Human-Computer Interface Optionsfor a Tactical Decision Support System [R]. DTIC Document,1995
    [9] V. P. Kirillov. Constructive stochastic temporal reasoning in situationassessment [J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(8):1099-1113
    [10]王三民.模糊推理及态势估计研究[D]:[博士学位论文].西安:西安电子科技大学计算机学院,2004
    [11] R. T. Antony. Principles of data fusion automation [M]. Norwood: ArtechHouse, Inc.,1995
    [12] G. A. Klein, C. E. Zsambok. Naturalistic decision making [M]. Mahwah, NJ:Lawrence Erlbaum Associates,1997
    [13] S. Mulgund, G. Rinkus, C. Illgen, J. Friskie. OLIPSA: on-line intelligentprocessor for situation assessment [C]. Second Annual Symposium andExhibition on Situational Awareness in the Tactical Air Environment. Citeseer,1997
    [14] B. Chalmers. On the design of computer-based C2decision support for amodern frigate [C]. Proceedings of the4th International Command andControl Research and Technology Symposium.1998.14-16
    [15] M. Liebhaber, C. Smith. Naval Air Threat Assessment [C]. Command andControl Research and Technology Symposium.1999
    [16] M. J. Liebhaber, D. A. Kobus, C. A. P. Smith. Empirical Investigation of AirThreat Assessment [R]. San Diego, CA: Pacific Science and EngineeringGroup,2000
    [17] M. J. Liebhaber, B. Feher. Description and evaluation of an air defense threatassessment algorithm [R]. San Diego, CA: Pacific Scientific and EngineeringGroup, Inc.,2001
    [18] M. J. Liebhaber, B. Feher. Air threat assessment: Research, model, and displayguidelines [R]. DTIC Document,2002
    [19] D. A. Lambert. Assessing situations [C]. Information, Decision and Control,1999IDC99. IEEE,1999.503-508
    [20] D. A. Lambert. Situations for situation awareness [C]. Proceedings of Fusion2001.2001
    [21] J. W. Choi, J. W. Joo, D. L. Cho. Situation/threat assessment fusion system(STAFS)[C]. Proceedings of the Fifth International Conference onInformation Fusion. IEEE,2002.1374-1380
    [22] P. Gonsalves, R. Cunningham, N. Ton, D. Okon. Intelligent threat assessmentprocessor (ITAP) using genetic algorithms and fuzzy logic [C]. Proceedings ofthe Third International Conference on Information Fusion. IEEE,2000.18-24
    [23] M. J. Liebhaber, C. A. P. Smith. Naval air defense threat assessment:Cognitive factors and model [R]. DTIC Document,2000
    [24] C. G. Looney. Exploring fusion architecture for a common operational picture[J]. Information Fusion,2001,2(4):251-260
    [25] X. T. Nguyen. Threat assessment in tactical airborne environments [C].Proceedings of the Fifth International Conference on Information Fusion.IEEE,2002.1300-1307
    [26] M. L. Hinman. Some computational approaches for situation assessment andimpact assessment [C]. Proceedings of the Fifth International Conference onInformation Fusion.2002.687-693
    [27] A. Gad, M. Farooq. Data fusion architecture for maritime surveillance [C].Proceedings of the Fifth International Conference on Information Fusion.IEEE,2002.448-455
    [28] P. G. Gonsalves, J. E. Burge, K. A. Harper. Architecture for geneticalgorithm-based threat assessment [C]. Proceedings of the Sixth InternationalConference of Information Fusion.2003.965-971
    [29] N. Okello, G. Thoms. Threat assessment using Bayesian networks [C].Proceedings of International Conference on Information Fusion.2003.1102-1109
    [30] G. Chen, D. Shen, C. Kwan, J. B. Cruz, M. Kruger. Game theoretic approachto threat prediction and situation awareness [J]. Journal of Advances inInformation Fusion,2006,2(1):1-8
    [31] N. P. Rao, S. K. Kashyap, G. Girija. Situation assessment in air-combat: Afuzzy-bayesian hybrid approach [C]. Proceedings of the InternationalConference on Aerospace Science and Technology.2008
    [32] F. Johansson, G. Falkman. A Bayesian network approach to threat evaluationwith application to an air defense scenario [C]. Proceedings of the11thInternational Conference on Information Fusion. IEEE,2008.1352-1358
    [33] J. Salerno, M. Hinman, D. Boulware, P. Bello. Information fusion forsituational awareness [R]. DTIC Document,2003
    [34] K. Wallenius. Support for situation awareness in command and control [C].Proceeding of the Seventh International Conferemce on Information Fusion.2004.1117-1124
    [35] J. Brynielsson, S. Arnborg. Bayesian games for threat prediction and situationanalysis [C]. Proceedings of the Seventh International Conference onInformation Fusion.2004.1125-1132
    [36] D. McMichael, G. Jarrad. Grammatical methods for situation and threatanalysis [C]. Proceedings of the8th International Conference on InformationFusion. IEEE,2005
    [37] D. J. Bryant. Modernizing our cognitive model [C]. Command and ControlResearch and Technology Symposium, CCRTS2004.2004
    [38] M. K. Allouche. Real-time use of Kohonen's self-organizing maps for threatstabilization [J]. Information Fusion,2005,6(2):153-163
    [39] E. Blasch, S. Plano. DFIG level5(user refinement) issues supportingsituational assessment reasoning [C]. Proceedings of the8th InternationalConference on Information Fusion. IEEE,2005
    [40] L. D. Strater, L. A. Faulkner, J. R. Hyatt, M. R. Endsley. Supporting SituationAwareness Under Data Overload in Command and Control Visualizations [C].International Ergonomics Association2006Congress.2006
    [41] J. J. Salerno. Where's level2/3fusion-a look back over the past10years [C].Proceedings of the10th International Conference on Information Fusion. IEEE,2007
    [42] S. Ahlberg, P. H rling, K. Johansson, K. J red, H. Kjellstr m, C. M rtenson,G. Neider, J. Schubert, P. Svenson, P. Svensson, J. Walter. An informationfusion demonstrator for tactical intelligence processing in network-baseddefense [J]. Information Fusion,2007,8(1):84-107
    [43] A.-C. Boury-Brisset. Ontological engineering for threat evaluation andweapon assignment: a goal-driven approach [C]. Proceedings of10thInternational Conference on Information Fusion. IEEE,2007
    [44] A. Benavoli, B. Ristic, A. Farina, M. Oxenham, L. Chisci. An approach tothreat assessment based on evidential networks [C]. Proceedings of the10thInternational Conference on Information Fusion. IEEE,2007
    [45] Q. Liang, X. Cheng. KUPS: Knowledge-based ubiquitous and persistentsensor networks for threat assessment [J]. IEEE Transactions on Aerospaceand Electronic Systems,2008,44(3):1060-1069
    [46] J. M. Beaver, R. A. Kerekes, J. N. Treadwell. An information fusionframework for threat assessment [C]. Proceedings of the12th InternationalConference on Information Fusion. IEEE,2009.1903-1910
    [47] L. Baxter, R. Simpson, J. Prebola, M. Smotherman, D. K. Moore, R. Goldflam,D. Battles, D. Higham, D. Perkes. Spiral1Space Threat Assessment Testbed(STAT) Development [J]. ITEA Journal,2009,30(3):345-353
    [48] F. Johansson, G. Falkman. A testbed based on survivability for comparingthreat evaluation algorithms [C]. SPIE Defense, Security, and Sensing.International Society for Optics and Photonics,2009
    [49] M. M. Kokar, C. J. Matheus, K. Baclawski. Ontology-based situationawareness [J]. Information Fusion,2009,10(1):83-98
    [50] J. Barwise. Scenes and other situations [J]. Journal of Philosophy,1981,78(7):369-397
    [51] J. Barwise, J. Perry. Situations and Attitudes [M]. Cambridge, MA: MIT Press,1983
    [52] K. Devlin. Logic and Information [M]. Cambridge, UK: Cambridge UniversityPress,1991
    [53] D. A. Lambert. A blueprint for higher-level fusion systems [J]. InformationFusion,2009,10(1):6-24
    [54] K. Sycara, R. Glinton, B. Yu, J. Giampapa, S. Owens, M. Lewis, L. T. C. C.Grindle. An integrated approach to high-level information fusion [J].Information Fusion,2009,10(1):25-50
    [55] G. Gross, R. Nagi, K. Sambhoos. Continuous preservation of situationalawareness through incremental/stochastic graphical methods [C]. Proceedingsof the14th International Conference on Information Fusion. IEEE,2011.1030-1037
    [56] R. R. Yager. A measure based approach to the fusion of possibilistic andprobabilistic uncertainty [J]. Fuzzy Optimization and Decision Making,2011,10(2):91-113
    [57] A. Preece, D. Pizzocaro, D. Braines, D. Mott, G. de Mel, P. Tien. Integratinghard and soft information sources for D2D using controlled natural language[C]. Proceedings of the15th International Conference on Information Fusion.2012.1330-1337
    [58] J. C. Rimland, J. Llinas. Network and infrastructure considerations for hardand soft information fusion processes [C]. Proceedings of15th InternationalConference on Information Fusion.2012.627-634
    [59] M. Kandefer, S. C. Shapiro. Evaluating spreading activation for softinformation fusion [C]. Proceedings of the14th International Conference onInformation Fusion. IEEE,2011.498-505
    [60] M. Prentice, M. Kandefer, S. C. Shapiro. Tractor: A framework for softinformation fusion [C]. Proceedings of the13th International Conference onInformation Fusion. IEEE,2010
    [61] M. Hannigan, J. Llinas, K. Sambhoos. Specificity and merging challenges insoft data association [C]. Proceedings of the14th International Conference onInformation Fusion. IEEE,2011.490-497
    [62] M. Prentice, S. C. Shapiro. Using propositional graphs for soft informationfusion [C]. Proceedings of the14th International Conference on InformationFusion. IEEE,2011.522-528
    [63] G. A. Gross, R. Nagi, K. Sambhoos, D. R. Schlegel, S. C. Shapiro, G. Tauer.Towards hard+soft data fusion: Processing architecture and implementationfor the joint fusion and analysis of hard and soft intelligence data [C].Proceedings of the15th International Conference on Information Fusion. IEEE,2012.955-962
    [64] D. McMaster, R. Nagi, K. Sambhoos. Temporal alignment in soft informationprocessing [C]. Proceedings of the14th International Conference onInformation Fusion. IEEE,2011.514-521
    [65] A. Kott, R. Singh, W. M. McEneaney, W. Milks. Hypothesis-driveninformation fusion in adversarial, deceptive environments [J]. InformationFusion,2011,12(2):131-144
    [66] A. Srivastav, Y. Wen, E. Hendrick, I. Chattopadhyay, A. Ray, S. Phoha.Information fusion for object&situation assessment in sensor networks [C].American Control Conference (ACC). IEEE,2011.1274-1279
    [67] R. Dapoigny, P. Barlatier. Formal foundations for situation awareness based ondependent type theory [J]. Information Fusion,2013,14(1):87-107
    [68] B. Khaleghi, A. Khamis, F. O. Karray, S. N. Razavi. Multisensor data fusion:A review of the state-of-the-art [J]. Information Fusion,2013,14(1):28-44
    [69]孔祥忠.战场态势估计和威胁估计[J].火力与指挥控制,2003,28(6):91-94
    [70]姚春燕,杨宏文,胡卫东,郁文贤,庄钊文.态势估计中一种模糊时间推理方法[J].模糊系统与数学,2000,14(3):66-71
    [71]高尚.基于神经网络威胁判断模型[J].系统工程理论与实践,2000,20(7):49-51
    [72]邱浪波,刘作良,刘明.一种应用神经网络技术的威胁估计算法[J].空军工程大学学报(自然科学版),2002,3(6):25-28
    [73]马海涛.基于神经网络和遗传算法的威胁度估计算法[J].军事运筹与系统工程,2005,19(3):71-74
    [74]罗艳春,郭立红,王凤仙,吕雪燕.基于神经网络的光电系统空中目标威胁估计[J].计算机测量与控制,2008,16(2):212-215
    [75]张文华,宁庶亮,麻勇.基于神经网络和遗传算法对反装甲目标威胁度评估研究[J].指挥控制与仿真,2008,30(1):60-62
    [76]王君,娄寿春.空袭目标流威胁评估与排序模型研究[J].现代防御技术,2001,29(6):29-33
    [77]邓文运,尼喜.地面防空威胁估计模糊优化计算方法及使用[J].现代防御技术,2001,29(4):9-11
    [78]周林,娄寿春,赵杰.基于MADM的威胁评估排序模型[J].系统工程与电子技术,2001,23(1):18-19,41
    [79] Y. Yao, J. Zhao, Y. Wang, J. Sun. MADM of Threat Assessment with Attemptof Target [J]. Advances in Technology and Management,2012,171-179
    [80]张善文,刘进忙.以目标类型为主的一种威胁评估方法[J].系统仿真学报,2002,14(8):1109-1111
    [81]刘昌云,宋万德.基于数据仓库技术的目标威胁估计模型[J].空军工程大学学报(自然科学版),2001,2(4):70-73
    [82]惠剑,聂成,安芹力.一种基于改进理想解法的威胁估计方法[J].弹箭与制导学报,2003,23(4):200-201
    [83]王宏飞,姚仲舒.基于Lanchester方程的威胁评估模型[J].火力与指挥控制,2003,28(1):47-50
    [84]范春彦,韩晓明.基于最大隶属度的目标威胁评估与排序法[J].系统工程与电子技术,2003,25(1):47-48
    [85]符永军,方棉佳,张永顺.模糊多因素多层次评判在目标威胁度中的应用[J].火力与指挥控制,2004,29(3):88-90
    [86]唐雪松,郭立红,陈长喜.基于积因子方法的空中目标威胁排序研究[J].光电工程,2006,33(11):17-21
    [87]徐小来,雷英杰,谢文彪.基于UKF的自组织直觉模糊神经网络[J].电子学报,2010,28(3):638-645
    [88]雷英杰.基于直觉模糊推理的态势与威胁评估研究[D]:[博士学位论文].西安电子科技大学计算机学院,2005
    [89]雷英杰,王宝树,路艳丽.基于自适应直觉模糊推理的威胁评估方法[J].电子与信息学报,2007,29(12):2805-2809
    [90]夏博龄,贺正洪,雷英杰.基于直觉模糊推理的威胁评估改进算法[J].计算机工程,2009,35(16):195-198
    [91]陈东锋,雷英杰.空袭目标威胁程度的综合评估与排序模型[J].系统工程与电子技术,2005,27(9):1598-1560
    [92]程红斌,张晓丰,张凤鸣.基于模糊层次分析法的威胁估计[J].现代雷达,2006,28(3):22-24
    [93]李伟生,王三民,王宝树.基于计划识别的态势估计方法研究[J].电子与信息学报,2006,28(3):532-536
    [94]王晓帆,王宝树.基于直觉模糊与计划识别的威胁评估方法[J].计算机科学,2010,37(5):175-177
    [95]冯卉,邢清华,宋乃华.一种基于区间数的空中目标威胁评估技术[J].系统工程与电子技术,2006,28(8):1201-1203
    [96]高尚,杨静宇.基于支持向量机的威胁判断模型[J].火力与指挥控制,2006,31(2):55-59
    [97]高尚.基于主成分分析和支持向量机的威胁判断模型[J].数学的实践与认识,2008,38(4):1-6
    [98]唐立军,王建中.一种基于支持向量机的防空目标威胁估计方法[J].中北大学学报(自然科学版),2008,29(4):338-342
    [99]郭辉,徐浩军,刘凌.基于回归型支持向量机的空战目标威胁评估[J].北京航空航天大学学报,2010,36(1):123-126
    [100]罗艳春,郭立红,姜晓莲,邵丽颖.基于模糊神经网络的空中目标威胁估计[J].微计算机信息,2007,23(1):268-270
    [101]张发强,由大德,蒋敏.基于RBF神经网络的空袭目标威胁评估模型研究[J].舰船电子对抗,2010,33(6):85-88
    [102]王俊,姜长生.基于LSRBF神经网络的空战目标威胁评估[J].电光与控制,2007,14(4):43-48
    [103]李俊生,梁伟,刘雪梅,齐照辉.基于离差最大化的导弹中段目标威胁度评估[J].系统工程理论与实践,2007,27(5):164-167
    [104]魏世效,费献中.多属性决策理论方法及其在C3I系统中的应用[M].北京:国防工业出版社,1998
    [105]单鑫,董文洪.基于变权SPA的空中目标威胁综合评估方法[J].现代防御技术,2007,35(5):10-14
    [106]张堃,周德云.熵权与群组AHP相结合的TOPSIS法多目标威胁评估[J].系统仿真学报,2008,20(7):1661-1664
    [107]郭辉,徐浩军,刘凌.基于区间数TOPSIS法的空战目标威胁评估[J].系统工程与电子技术,2009,31(12):2914-2917
    [108]郭辉,徐浩军,周莉.基于区间数TOPSIS法的空袭目标威胁评估[J].空军工程大学学报(自然科学版),2011,12(1):40-50
    [109]彭方明,邢清华,王三涛.基于Vague集TOPSIS法的空中目标威胁评估[J].电光与控制,2010,17(10):23-27
    [110]王光源,马海洋,庞文强.基于熵与TOPSIS法的空中目标威胁判断[J].海军航空工程学院学报,2011,26(2):233-237
    [111]谷向东,童中翔,柴世杰,袁新威,芦艳龙.基于IAHP和离差最大化TOPSIS法目标威胁评估[J].空军工程大学学报(自然科学版),2011,12(2):27-31
    [112]俞卫树,姜长生.基于Elman神经网络的空战威胁排序研究[J].电光与控制,2008,15(8):1-5
    [113]申卯兴,许进,王帅.空中目标威胁排序的灰色聚类决策方法[J].系统工程与电子技术,2008,30(9):1721-1723
    [114]王志勇,冯杰.基于灰色聚类的海上目标威胁等级评估[J].四川兵工学报,2009,30(3):46-49
    [115]刁联旺,于永生.目标威胁估计的决策树方法[J].江南大学学报(自然科学版),2009,8(5):513-515
    [116]黄大荣,郭安学,李云生,徐红兵,霍勇谋.基于专家知识属性重要度的集群目标威胁评估方法[J].兵工学报,2009,30(10):1357-1362
    [117]罗艳春,郭立红,李念峰,康长青.粗集理论在空中目标威胁等级判断中的应用[J].计算机工程与应用,2009,45(10):231-234
    [118]李金凤,钱建刚,曲彦双.基于粗糙集理论的威胁估计方法研究[J].舰船电子对抗,2009,32(5):110-113
    [119]胡杰,赵辉,黄长强,肖树臣.优势变精度粗糙集在UCAV威胁估计中的应用[J].空军工程大学学报(自然科学版),2009,10(5):27-31
    [120]付昭旺,寇英信,王琳,王凯.基于模糊综合评判法的空战多目标威胁评估[J].电光与控制,2009,16(9):29-32
    [121]刘兆丰,任雄伟.改进的灰色关联度方法在威胁评估中的应用[J].舰船电子工程,2010,30(1):78-82
    [122]姚磊,王红明,郑锋,侯飞.空中目标威胁估计的模糊聚类方法研究[J].武汉理工大学学报(交通科学与工程版),2010,34(6):1159-1162
    [123]张青苗,韩振,许小兵.基于马尔可夫链的防空作战威胁评估模型[J].四川兵工学报,2010,31(12):125-126
    [124]盛文平,杨明军,王威.基于联系数的空中目标威胁评估模型[J].舰船电子工程,2010,193(7):39-41
    [125]麻士东,韩亮,龚光红.基于云模型的目标威胁等级评估[J].北京航空航天大学学报,2010,36(2):150-153
    [126]刘顺利,陈亚生,陈琳.基于Agent的空中目标威胁度评估模型[J].弹箭与制导学报,2010,30(6):212-216
    [127]杨健,高文逸,刘军.一种基于贝叶斯网络的威胁估计方法[J].解放军理工大学学报(自然科学版),2010,11(1):43-48
    [128]张鑫,万新敏,李争,秦义.运用AHP和云重心评价法的弹道导弹威胁评估[J].空军雷达学院学报,2010,24(5):340-343
    [129]朱胜伟,周德云,李兆强.基于改进的主成分分析法的目标威胁评估[J].计算机仿真,2010,27(3):1-4
    [130]曹睿婷,章卫国,李广文.基于多层次分析方法的目标威胁估计研究[J].弹箭与制导学报,2011,31(2):30-32
    [131]耿涛,张安,郝兴国.基于组合赋权TOPSIS法的空战多目标威胁评估[J].火力与指挥控制,2011,36(3):16-19
    [132]童奇,童中翔,谷向东,芦艳龙,郭辉,柴世杰.基于信息熵的空战目标威胁评估[J].数学的实践与认识,2011,41(6):144-149
    [133]樊胜利,柏彦奇,李保国.装甲目标威胁评估智能计算方法研究[J].装备指挥技术学院学报,2011,22(2):45-50
    [134]周玉龙,何永强,张维安.红外鱼眼系统下的多目标威胁评估研究[J].光学学报,2012,32(6):53-59
    [135]姚臣,周锐,丁全心.基于面向对象概率关系模型的威胁级别评估[J].电光与控制,2012,19(5):68-73
    [136]张凤霞,王丕宏,李锋.基于神经网络的自动机动决策设计[J].电光与控制,2001,8(3):47-52
    [137] R. W. Schvaneveldt, T. E. Goldsmith, A. E. Benson, W. L. Waag. NeuralNetwork Models of Air Combat Maneuvering [R]. DTIC Document,1992
    [138] M. Dorigo, T. Stutzle. Ant Colony Optimization [M]. Cambridge: MIT Press,2004
    [139] J. Kennedy, R. Eberhart. Particle swarm optimization [C]. Proceeding of theIEEE International Conference on Neural Networks. IEEE,1995.1942-1948
    [140] X. S. Yang. Nature-inspired metaheuristic algorithms (2nd ed.)[M]. Frome:Luniver Press,2010
    [141] K. N. Krishhand, D. Ghose. Glowworm swarm optimization for simultaneouscapture of multiple local optimal of muultimodal functions [J]. SwarmIntelligence,2009,3(2):87-124
    [142] K. N. Krishnanand, D. Ghose. Glowworm swarm optimisation: a new methodfor optimising multi-modal functions [J]. International Journal ofComputational Intelligence Studies,2009,1(1):93-119
    [143] X. S. Yang. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of Bio-Inspired Computation,2010,2(2):78-84
    [144] X. S. Yang. Firefly algorithms for multimodal optimization [C]. Proceeding ofthe5th International Conference on Stochastic Algorithms:Foundations andApplications. Berlin: Springer-Verlag,2009.169-178
    [145] X.-S. Yang, S. S. S. Hosseini, A. H. Gandomi. Firefly Algorithm for solvingnon-convex economic dispatch problems with valve loading effect [J]. AppliedSoft Computing,2012,12(3):1180-1186
    [146]刘鹏,刘弘,郑向伟,丁艳辉.基于改进萤火虫算法的动态自动聚集路径规划方法[J].计算机应用研究,2011,28(11):4146-4149
    [147] G. Wang, L. Guo, H. Duan, et al. A Modified Firefly Algorithm for UCAVPath Planning [J]. International Journal of Hybrid Information Technology,2012,5(3):123-144
    [148] X. S. Yang, A. H. Gandomi. Bat algorithm: a novel approach for globalengineering optimization [J]. Engineering Computations,2012,29(5):464-483
    [149]刘长平,叶春明.具有Lévy飞行特征的蝙蝠算法[J].智能系统学报,2013,8(1):1-8
    [150] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi. Optimization by simulatedannealing [J]. Science,1983,220(4598):671-680
    [151] G. Wang, L. Guo, H. Duan, et al. Path planning for UCAV using bat algorithmwith mutation [J]. The Scientific World Journal,2012,2012, Article ID418946,15pages,2012. doi:10.1100/2012/418946
    [152] P. Barthelemy, J. Bertolotti, D. S. Wiersma. A Lévy flight for light [J]. Nature,2008,453(7194):495-498
    [153] M. F. Shlesinger. Mathematical physics: Search research [J]. Nature,2006,443(7109):281-282
    [154] X. S. Yang, S. Deb. Engineering optimisation by cuckoo search [J].International Journal of Mathematical Modelling and Numerical Optimisation,2010,1(4):330-343
    [155]李煜,马良.新型元启发式布谷鸟搜索算法[J].系统工程,2012,30(8):64-69
    [156] A. Gherboudj, A. Layeb, S. Chikhi. Solving0-1knapsack problems by adiscrete binary version of cuckoo search algorithm [J]. International Journal ofBio-Inspired Computation,2012,4(4):229-236
    [157] P. R. Srivastava, C. Sravya, S. Kamisetti, M. Lakshmi. Test sequenceoptimisation: an intelligent approach via cuckoo search [J]. InternationalJournal of Bio-Inspired Computation,2012,4(3):139-148
    [158] A. Natarajan, S. Subramanian, K. Premalatha. A comparative study of cuckoosearch and bat algorithm for Bloom filter optimisation in spam filtering [J].International Journal of Bio-Inspired Computation,2012,4(2):89-99
    [159] M. Marichelvam. An improved hybrid Cuckoo Search (IHCS) metaheuristicsalgorithm for permutation flow shop scheduling problems [J]. InternationalJournal of Bio-Inspired Computation,2012,4(4):200-205
    [160] R. Storn, K. Price. Differential evolution-a simple and efficient heuristic forglobal optimization over continuous spaces [J]. Journal of GlobalOptimization,1997,11(4):341-359
    [161] D. Simon. Biogeography-based optimization [J]. IEEE Transactions onEvolutionary Computation,2008,12(6):702-713
    [162]段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2011.107-126
    [163]段红.基于多目标粒子群算法的智能组卷研究[D]:[硕士学位论文].长春:东北师范大学计算机科学与信息技术学院,2013
    [164] G. Wang, L. Guo, H. Duan, et al. A hybrid meta-heuristic DE/CS algorithm forUCAV path planning [J]. Journal of Information and Computational Science,2012,9(16):4811-4818
    [165] G. Wang, L. Guo, H. Duan, et al. A hybrid meta-heuristic DE/CS algorithm forUCAV three-dimension path planning [J]. The Scientific World Journal,2012,2012, Article ID583973,11pages,2012. doi:10.1100/2012/583973
    [166] G. Wang, L. Guo, H. Duan, et al. Path planning for uninhabited combat aerialvehicle using hybrid meta-heuristic DE/BBO algorithm [J]. Advanced Science,Engineering and Medicine,2012,4(6):550-564
    [167]范勤勤,颜学峰.基于自适应差分进化算法的间歇反应动态优化求解[J].华东理工大学学报(自然科学版),2010,36(6):832-838
    [168]王存睿,王楠楠,段晓东,张庆灵.生物地理学优化算法综述[J].计算机科学,2010,37(7):34-38
    [169] G. Wang, L. Guo, H. Duan, et al. Dynamic deployment of wireless sensornetworks by biogeography based optimization algorithm [J]. Journal of Sensorand Actuator Networks,2012,1(2):86-96
    [170] H. Duan, W. Zhao, G. Wang, X. Feng. Test-sheet composition using analytichierarchy process and hybrid metaheuristic algorithm TS/BBO [J].Mathematical Problems in Engineering,2012,2012, Article ID712752,22pages,2012. doi:10.1155/2012/712752
    [171] X. Hong, S. Chen. The system identification and control of Hammersteinsystem using non-uniform rational B-spline neural network and particle swarmoptimization [J]. Neurocomputing,2012,82:216-223
    [172] B. Subudhi, D. Jena. Nonlinear system identification using memeticdifferential evolution trained neural networks [J]. Neurocomputing,2011,74(10):1696-1709
    [173] S.-K. Oh, W.-D. Kim, W. Pedrycz, S.-C. Joo. Design of K-meansclustering-based polynomial radial basis function neural networks (pRBF NNs)realized with the aid of particle swarm optimization and differential evolution[J]. Neurocomputing,2012,78(1):121-132
    [174] H.-C. Lu, M.-H. Chang, C.-H. Tsai. Parameter estimation of fuzzy neuralnetwork controller based on a modified differential evolution [J].Neurocomputing,2012,89:178-192
    [175] R. E. Schapire. A brief introduction to boosting [C]. Proceedings of the SixthInternational Joint on Artificial Intelligence. San Francisco: MorganKaufmann Publishers Inc,1999.1401-1406
    [176] Y. Freund, R. Schapire. A desicion-theoretic generalization of on-line learningand an application to boosting [C]. Proceedings of the Second EuropeanConference on Computational Learning Theory. Berlin: Springer,1995.23-37
    [177] Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm [C].Machine Learning-Proceedings of the Thirteenth International Conference.San Francisco: Morgan Kauffman Publishers, Inc,1996.148-156
    [178] R. E. Schapire. The strength of weak learnability [J]. Machine Learning,1990,5(2):197-227
    [179]吴暾华,周昌乐.平面旋转人脸检测与特征定位方法研究[J].电子学报,2007,35(9):1714-1718
    [180]文学志,方巍,郑钰辉.一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法[J].电子学报,2011,39(5):1121-1126
    [181]王改革,郭立红,段红,等.基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J].电子学报,2012,40(5):901-906
    [182] M. J. Kearns, U. V. Vazirani. An introduction to computational learning theory[M]. Cambridge, MA: MIT press,1994
    [183] C. C. Chang, C. J. Lin. LIBSVM: a library for support vector machines [J].ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):1-27
    [184]龚勃文,林赐云,李静,杨兆升.基于核自组织映射-前馈神经网络的交通流短时预测[J].吉林大学学报(工学版),2011,41(4):938-943
    [185]赵宏伟,齐一名,臧雪柏,张孝临,马英喆.基于系统辨识与T-S模糊神经网络的磨矿分级控制[J].吉林大学学报(工学版),2011,41(1):171-175
    [186]刘大有,张冬威,李妮娅,刘杰,金弟.基于网络聚类选择的神经网络集成方法及应用[J].吉林大学学报(工学版),2011,41(4):1034-1040
    [187]王志慧,赵保军,沈庭芝.基于MMPN和可调节链接强度的图像融合[J].电子学报,2010,38(5):1162-1166
    [188] D. E. Rumelhart, G. E. Hintont, R. J. Williams. Learning representations byback-propagating errors [J]. Nature,1986,323(6088):533-536
    [189] G. Wang, L. Guo, H. Duan. Wavelet neural network using multiple waveletfunctions in target threat assessment [J]. The Scientific World Journal,2013,2013, Article ID632437,7pages,2013. doi:10.1155/2013/632437
    [190] A. Grossmann, J. Morlet. Decomposition of Hardy functions into squareintegrable wavelets of constant shape [J]. SIAM Journal on MathematicalAnalysis,1984,15(4):723-736
    [191] Q. Zhang, A. Benveniste. Wavelet networks [J]. IEEE Transactions on NeuralNetworks,1992,3(6):889-898

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700