用户名: 密码: 验证码:
考虑几何非线性的串联隔震体系随机响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪九十年代至今,隔震技术在我国得到了广泛的应用。在现有已经开发的结构控制技术中,基础隔震被认为是概念简单、性能稳定、造价相对低廉的一种结构被动减震控制手段。随着建筑功能和立面效果的日益提高,一种叠层橡胶支座与悬臂柱串联的隔震结构设计方案油然而生,其主要优点是能够充分利用空间、便于隔震支座维修。伴随而来的关键问题就是悬臂柱尺寸的确定,以及串联隔震体系的安全性和稳定性问题,隔震结构设计遇到了新的挑战。目前我国建筑抗震设计规范2010版仅从宏观上界定了串联隔震体系属于层间隔震范畴,提出了隔震层以下地面以上结构罕遇地震作用下层间弹塑性位移角限制,但串联隔震体系是一种变刚度强非线性的构件,动力学特性复杂,尚需进一步研究。因此,本文以隔震工程中常见的叠层橡胶支座与悬臂柱串联的隔震体系为研究对象,建立了该体系的几何非线性动力学方程,应用微分求积单元法,分析了串联隔震体系的固有振动特性和地震响应行为,探讨了串联隔震体系的随机响应,进行了多个缩尺比例模型的振动台试验,主要内容如下:
     (1)建立叠层橡胶支座与悬臂柱串联的隔震体系几何非线性动力响应偏微分方程。基于匀质柱假定,考虑串联隔震体系的几何非线性,分别应用Hamilton变分原理和微元体分析方法,推导了叠层橡胶支座几何非线性动力响应运动方程;结合有限单元法,将该动力学模型扩展得到了叠层橡胶支座与悬臂柱串联的隔震体系几何非线性控制方程和边界条件
     (2)分析串联隔震体系固有振动特性。应用微分求积原理离散串联隔震体系的非线性控制方程和边界条件,选择替换法处理边界条件,采用微分求积与有限元相结合的方法——微分求积单元法,编制matlab程序求解分析了叠层橡胶支座与悬臂柱串联隔震体系的固有振动特性,并研究了支座刚度、竖向荷载和悬臂柱长细比等因素对串联隔震体系频率的影响,探讨了三类因素和两种因素联合作用下对体系频率的不利情况。
     (3)研究叠层橡胶支座与悬臂柱串联隔震体系的几何非线性时域响应行为。针对串联隔震体系几何非线性控制方程,提出了联合使用微分求积单元法、时域微分求积逐步积分法求解串联隔震体系非线性动力响应的有效方法。首先将其在各单元空间域上进行微分求积离散,然后采用时域微分求积逐步积分法将其在时间域内离散,应用方程替换法处理边界方程,最后编制迭代程序求解分析串联隔震体系在远场罕遇水平地震动作用下的地震响应,综合4种支座类型、3种竖向荷载值、36种长细比等因素,通过计算结果讨论悬臂柱长细比对串联隔震体系稳定性的影响。
     (4)探讨考虑几何非线性串联隔震体系的随机响应。在串联隔震体系数学模型的基础上,针对三自由度耦合的几何非线性偏微分方程,提出了串联隔震体系随机响应数学模型。以双过滤白噪声地震动功率谱模型为基础,构造串联隔震体系随机响应输入激励,联合应用微分求积单元法、时域微分求积逐步积分法求解串联隔震体系随机响应控制方程,研究了不同支座类型、不同竖向荷载值、不同悬臂柱长细比等因素对串联隔震体系“大震”下随机响应行为的影响。
     (5)针对串联隔震体系的地震响应,进行了模拟地震动振动台试验研究。结合实际隔震工程,设计并制作了九种串联隔震体系缩尺模型,其中隔震垫类型三种,悬臂柱类型九种,最终进行了4组共60个工况的振动台试验,得到了串联隔震体系模型四个测点的加速度响应值(测点分别为台面、悬臂柱高度1/2处、悬臂柱顶部、隔震垫顶部)。对比分析了不同支座不同悬臂柱组成的串联隔震体系的地震响应,并且将模型按照相似比换算回原型中,与理论计算的结果进行对比研究,为足尺串联隔震体系模型振动台试验提供一定的参考依据。
The seismic isolation technique has been widely applied in our country since1990s. In the existing developed structure-control technology, basic seismic isolation is considered as a kind of structurally passive seismic control method, which has a simple concept, stable performance and cost effective. With the daily improvement of building function and elevation effects, the designing scheme of a seismic isolation structure with a rubber bearing serially connected with cantilever column is born. Its main advantage is to make full use of the space and make the maintenance of the seismic isolation bearing convenient. The incident key problems are how to confirm the size of the cantilever column and the safety and stability of the serially connected isolation system. Therefore, new challenges are posed to the design of seismic isolation structure. Currently, the2010-year version of regulation on national building anti-seismic design only defines that serially connected isolation system belongs to story isolation on the macro level, proposes the story elastoplasticity displacement angle restriction under the influence of rare earthquake below the isolation layer and above the ground. But, serially connected isolation system is a strongly nonlinear construction member with variable stiffness and complicated dynamics characteristics, which needs further research. Therefore, this paper takes serially connected isolation system with a rubber bearing and cantilever column as the research object. It establishes the geometric nonlinearity dynamic equation of this system, applies the differential quadrature element method, analyzes the natural vibration performance and seismic response behavior of the serially connected isolation system, discusses the random response of serially connected isolation system and conducts shaking table tests on several models. The main content is as follows:
     (1) Establish the partial differential equation of geometric nonlinearity dynamic response of the serially connected isolation system with a rubber bearing and cantilever column. Based on the assumption of homogeneous column, deduce the equation of motion of geometric nonlinearity dynamic response of the rubber bearing by considering the geometric nonlinearity of the serially connected isolation system and applying the Hamilton variational principle; combined with the finite element method, expand this dynamic model and get the geometric nonlinearity governing equation and boundary conditions of the serially connected isolation system with a rubber bearing and cantilever column.
     (2) Analyze the natural vibration performance of the serially connected isolation system. Apply the DQ principle to disperse the governing equation and boundary conditions of the serially connected isolation system, choose the interchange method to handle the boundary conditions, adopt the method of combining DQ and finite element——differential quadrature element method (DQEM), formulate the matlab program to solve and analyze the natural vibration performance of the serially connected isolation system, study on the influence of factors like the stiffness of the bearing, vertical load and the slenderness ratio of the cantilever post on the frequency of the series seismic isolation system and discuss the negative effects on the frequency of the system by the combined effects of three kinds of factors and two kinds of factors.
     (3) Make use of time-domain DQEM to analyze the geometric nonlinearity seismic response of the serially connected isolation system with a rubber bearing and cantilever column. Aiming at the geometric nonlinearity governing equation of the serially connected isolation system, disperse it by DQ in the spatial domain first, then disperse it in the time domain by time-domain DQ step by step, formulate the iterative program to solve and analyze the seismic response of the serially connected isolation system under the influence of rare pulse horizontal earthquake in near field, calculate the result comprehensively and discuss the influence of slenderness ratio of cantilever post on the stability of the serially connected isolation system.
     (4) Discuss the analysis on the random response of the serially connected isolation system on the basis of geometric nonlinearity. Adopt the model of vibration power spectrum of the dual filtered white noise, solve and analyze the random response of the series seismic isolation system of the different slenderness ratio of the cantilever subjected in the'major earthquake'and compare it with the response result of the far field earthquake in the relevant the serially connected isolation system.
     (5) Aiming at the seismic response of the series seismic isolation system, conduct the research of the simulative shaking table test. Combining the practical seismic isolation project, design and formulate nine kinds of scale model of the serially connected isolation system, among which three are isolator nine are cantilever column. Finally, conduct the shaking table tests of60working conditions and conclude the acceleration reacting value of four measuring points of the series seismic isolation system model (the measuring points are table facet, the1/2height of the cantilever column, the top of the cantilever column and the top of the rubber bearing respectively). Make compared analysis of the seismic response of the series seismic isolation systems with different bearings and different cantilever columns, converse the model into the original system according to the ratio of similitude and make contrastive research of the results to provide certain reference for the shaking table tests of the full size serially connected isolation system model.
引文
[1]周福霖,冼巧玲,高向宇等.我国首栋橡胶垫隔震房屋的设计与试验研究[R].第三届全国结构减震控制学术研讨会,1995.
    [2]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [3]杜永峰,李慧.关于四川汶川5.12大地震时甘肃省陇南市武都区隔震建筑宏观性能的调研报告[R].兰州:兰州理工大学,2008.
    [4]Gent, A. N. Elastic stability of rubber compressing springs [J]. Mech. Engrg. Sci., 1964,6(4):318-326.
    [5]Roeder, C. W., Stanton, J. F., and Taylor, A. W. Performance of elastomeric bearings. Report No.298, Nat. Cooperative Highway Res.Program,1987, Washington, D.C.
    [6]Scroggins, G. C. Stability of elastomeric bearings,1986, Thesis presented to the University of Washington, in Seattle, Wash., in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering.
    [7]Simo, J.C., and Kelly, J.M. Finite element analysis of the stability of multilayer elastomeric bearings [J]. Engrg. Struct,1984,6:162-174
    [8]Koh, C.G, and Kelly, J.M. A simple mechanical model for elastomeric isolation bearings [J]. Int. J. Mech., Sci.,1988,30(12):933-943
    [9]Koh, C.G, and Kelly, J.M. Viscoelastic stability model for elastomeric isolation bearings. [J]. J. Struct. Engrg., ASCE,1989,115(2):285-302
    [10]Staton, J, F., Scroggins, G., Taylor, A.W. and Roeder, C.W. Stability of laminated elastomeric bearings. [J]. J. Engrg. Mech.,1990,116(6):1352-1371.
    [11]Kelly, J. M. Earthquake resistant design with rubber,2nd Ed., Springer,1997, London.
    [12]Cheng-Hsiung Chang. Modeling of laminated rubber bearings using an analytical stiffness matrix [J]. International Journal of Solids and Structures,2002,39: 6055-6078.
    [13]Ian Buckle, Satish Nagarajaiah, Keith Ferrell. Stability of Elastomeric Isolation Bearings:Experimental Study [J]. Journal of Structural Engineering,2002, 128(1):3-11.
    [14]Lanzo, A. On elastic beam models for stability analysis of multilayered rubber bearings. [J] International Journal of Solids and Structures.2004,41:5733-5757
    [15]Hsiang-Chuan Tsai, Jams M. Kelly. Buckling load of seismic isolators affected by flexibility of reinforcement [J]. International Journal of Solids and Structures, 2005,42:255-269.
    [16]Hsiang-Chuan Tsai, Jams M. Kelly. Bending Stiffness of Fiber-Reinforced Circular Seismic Isolators [J]. Journal of Engineering Mechanics,2002,128(11): 1150-1157.
    [17]Hsiang-Chuan Tsai, Jams M. Kelly. Stiffness Analysis of Fiber-Reinforced Rectangular Seismic Isolators [J]. Journal of Engineering Mechanics,2002, 128(4):462-470.
    [18]James M. Kelly. Tension Buckling in Multilayer Elastomeric Bearings [J]. Journal of Engineering Mechanics,2003,129(12):1363-1368.
    [19]Schapery, A. E., Skala, D. P. Elastic stability of laminated elastomeric columns [J]. Int. J. of Solids and Struct.,1976,12(6):401-417.
    [20]Herrmann, L. R., et al.1988:"Nonlinear behavior of elastomeric bearings: PartⅠ-Theory.
    [21]Herrmann, L. R., et al.1988b:"Nonlinear behavior of elastomeric bridge bearings. "Final Report to the State of California, Dept. of Transp., Div. of Transp. Planning, Res. Tech. Agreement 13945-53B273.
    [22]Herrmann, L. R., et al. Analytical parameter study for class of elastomeric[J] Journal of Structural Engineering,1989,115(10):2415-2434
    [23]Pietro D'Ambrosio, Domenico De Tommasi and Salvatore Marzano. NONLINEAR ELASTIC DEFORMATIONS AND STABILITY OF LAMINATED RUBBER BEARINGS [J]. Journal of Engineering Mechanics,1995,121(10): 1041-1048.
    [24]Satish Nagarajaiah, Keith Ferrell. Stability of Elastomeric Seismic Isolation Bearings [J]. Journal of Structural Engineering,1999,125(9):946-956.
    [25]Iizuka, M. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings [J]. Engineering Structures,2000,22:323-334.
    [26]Keir L. Ryan, James M. Kelly, Anil K. Chopra. Nonlinear Model for Lead-Rubber Bearings Including Axial-Load Effects [J]. Journal of Engineering Mechanics,131(12):1270-1278.
    [27]张雄,刘浩吾.隔震支座的稳定性[J].地震工程与工程振动,1994,14(3):114-119.
    [28]周锡元,韩淼,马东辉,曾德民.叠层钢板橡胶垫的稳定性分析与强度验算[J].建筑科学,1997,6:13-19.
    [29]周锡元,马东辉,曾德民,韩淼.叠层橡胶支座水平刚度系数的实用计算方法[J].建筑科学,1998,6(14):3-8.
    [30]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社,1993.
    [31]张敏政,孟庆利.叠层橡胶隔震支座的动态稳定性和力学特性研究[J].地震工程与工程振动,2002,22(5):85-91.
    [32]W. G. Liu, W. F. He, D. M. Feng and Q. R. Yang. Vertical stiffness and deformation analysis models of rubber isolators in compression and compression-shear states [J]. Journal of Engineering Mechanics,2009,135(9): 945-952.
    [33]Q. R. Yang, W. G. Liu, W. F. He and D. M. Feng. Tensile stiffness and deformation model of rubber isolators in tension and tension-shear states [J] Journal of Engineering Mechanics,2010,136(4):429-437.
    [34]叶志雄,李黎,聂肃非,江宜城.铅芯橡胶支座非线性动态特性的显式有限元分析[J].工程抗震与加固改造,2006,28(6):53-60.
    [35]Zhou, F. L., et al. Mechanic Characteristics of Rubber Bearings in Column Top Isolation System[C]. In:Zhou, F.L., and Spencer Jr., B.F. Proc. Int. Workshop on Seismic Isolation, Energy Dissipation and Control of Structures. Guangzhou, May 6-8, Beijing:Seismological Press,1999,44-50.
    [36]周锡元,韩淼,曾德民等.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报,1999,12(2):157-165.
    [37]周锡元,韩淼,曾德民,马东辉.组合橡胶支座及橡胶支座与柱串联隔震系统水平刚度计算方法[J].地震工程与工程振动,1999,19(4):67-75.
    [38]周坚.也论橡胶支座与R/C柱串联隔震系统水平刚度系数[J].工程力学,2000,3(3):45-49.
    [39]Y. L. Mo, Y. F. Chang. Application of base isolation concept to soft first story buildings [J]. Computers & Structures,1995,55(5):883-896.
    [40]杉本裕志,齐藤利昭,土屋宏明.未来隔震结构实例[C].第八届中日建筑结构技术交流会议论文集,北京,2008,659-668.
    [41]徐忠根,周福霖.汕头博物馆结构动力分析[J].世界地震工程,1996,(2):33-36.
    [42]黄襄云.层间隔震减震结构的理论分析和振动台试验研究[D].西安:西安建筑科技大学,2008.
    [43]米晓玲.高层隔震结构布置方法的研究[D].广州:广州大学,2011.
    [44]马长飞,谭平,张亚辉,周福霖.考虑P-△效应的柱顶隔震结构的动力响应分析[J].土木工程学报,2010,43:230-234.
    [45]马长飞,谭平,张亚辉,周福霖.近场地震作用下考虑P-△效应的首层柱顶隔震结构地震反应分析[J].振动工程学报,2012,25(4):439-445.
    [46]吴应雄,祁皑.柱顶隔震技术在首层薄弱层框架结构中的应用[J].延边大学学报(自然科学版),2011,延边大学学报(自然科学版).37(4):349-354.
    [47]吴应雄,祁皑,颜学渊.首层薄弱层框架结构的柱顶隔震性能分析[J].南昌大学学报(工科版),2011,33(4):365-369.
    [48]吴应雄,祁皑,黄英.某综合楼层间隔震设计及分析[J].工业建筑,2012,42(3):43-48.
    [49]吴应雄.低位层间隔震技术在某框架结构的应用研究[J].福州大学学报(自然科学版),2012,40(6):1-8.
    [50]潘鹏,曹海韵,齐玉军等.底部薄弱层结构的柱顶隔震加固改造设计[J].工程抗震与加固改造,2009,31(6):69-73.
    [51]周福霖,张颖,谭平.层间隔震体系的理论研究[J].土木工程学报,2009,42(8):1-8.
    [52]张颖,谭平,周福霖.分段隔震新体系的参数设计与减震性能研究[J].土木工程学报,2010,43:270-275.
    [53]刘文光,刘阳,杨巧荣等.高层隔震结构单质点模型的地震响应单纯质点法研究[J].振动工程学报,2012,25(6):693-698.
    [54]刘阳,刘文光,何文福,杨巧荣.高层隔震结构双质点模型的地震响应单纯质点法研究[J].振动与冲击,2013,32(1):8-13.
    [55]裴星洙,王维,王星星.基于能量原理的隔震结构地震响应预测法研究[J].工程力学,2011,28(7):65-72.
    [56]符蓉,叶昆,李绍进.基于结构设计的LRB基础隔震结构水平向减震系数研究[J].工程力学,2012,29(S1):130-135.
    [57]滕军,杨名流,幸厚冰.基础隔震结构参数优化分析[J].土木工程学报,2012,(S2):156-161.
    [58]刘海卿,祝百茹,郭瑞琪.SMA复合支座与磁流变阻尼器的双重隔震体系减震效果分析[J].土木工程学报,2012,45:177-181.
    [59]卫杰彬,谭平,匡珍等.高层装配式层间隔震结构的抗震性能及破坏失效模式研究[J].土木工程学报,2012,45:171-176.
    [60]马长飞,谭平,张亚辉,周福霖.近场地震作用下考虑P-△效应的首层柱顶隔震结构地震反应分析[J].振动工程学报,2012,25(4):439-445.
    [61]樊剑,邵丹,余倩倩.近场地震作用下隔震支座的破坏形式及防护[J].华中科技大学学报(自然科学版),2012,40(10):114-118.
    [62]谭平,殷伟希,张颖.近场地震下层间隔震偏心结构的减震控制[J].振动与 冲击,2011,30(11):281-286.
    [63]曹枚根,周福霖,谭平等.变压器及套管隔震体系地震反应及隔震层参数分析[J].中国电机工程学报,2012,32(13):166-174.
    [64]曹枚根,周福霖,谭平.变压器及套管隔震体系振动台试验及地震响应分析[J].振动与冲击,2012,31(21):22-29.
    [65]李爱群.日本东北大地震之隔减震建筑考察与思考[J].工程力学,2012,29(S2):69-77.
    [66]王涛,王飞,丁路通.核电厂三维隔震技术的理论和试验研究[J].土木工程学报,2012,45(S1):238-242.
    [67]黄尹男.核能电厂隔震系统设计[J].土木工程学报,2012,45(S2):47-52.
    [68]侯钢领,陈树华,李冬梅.核电厂安全壳隔震减振分析[J].核动力工程,2011,32:76-79.
    [69]王曙光,陆伟东,刘伟庆,等.昆明新国际机场航站楼基础隔震设计及抗震性能分析[J].振动与冲击,2011,30(11):260-265.
    [70]曾聪,吴斌,陶忠,等.昆明新国际机场主航站楼A区隔震效能分析[J].土木工程学报,2012,45:182-186.
    [71]孙建刚,蒋峰,王向楠,等.刚性储罐基底隔震的动力反应[J].哈尔滨工程大学学报,2011,32(001):38-43.
    [72]孙建刚,崔利富,王振,等.立式储罐叠层橡胶隔震3阶段设计[J].哈尔滨工业大学学报,2011,43(6):118-121.
    [73]孙建刚,崔利富,杜蓬娟,等.立式浮顶储罐基础隔震地震响应研究[J].哈尔滨工业大学学报,2011,43(8):140-144.
    [74]孙建刚,崔利富,郑建华.大型全容式LNG储罐基础隔震地震响应分析[J].哈尔滨工业大学学报,2012,44(8):136-142..
    [75]崔利富,孙建刚,赵颖华.大型立式储罐竖向基础隔震研究[J].哈尔滨工业大学学报,2012,43(12):132-137.
    [76]沈朝勇,周福霖,温留汉·黑沙,马玉宏,陈洋洋.不同桥梁隔震橡胶支座力学性能对比试验研究[J].土木工程学报,2012,45(S1):233-237.
    [77]陈令坤,蒋丽忠,王丽萍,余志武.高速铁路铅芯橡胶支座桥梁隔震研究[J].华中科技大学学报(自然科学版),2012,40(1):77-81.
    [78]胡紫东,李黎,聂肃非.考虑温度相关性的LRB隔震桥梁地震响应分析[J].振动与冲击,2011,30(9):40-45.
    [79]李黎,胡紫东,聂肃非,龙晓鸿.基于近断层地震LRB桥梁支座屈服力优化[J].振动与冲击,2011,30(6):134-138.
    [80]Liu Wenjing, Li Li, Ye Kun.. Application of LRB isolation technology in continuous girder bridges [J]. Journal of Southeast University (English Edition), 2011,27(2):196-200.
    [81]周福霖,张颖,谭平.层间隔震体系的理论研究[J].土木工程学报,2009,8:1-8.
    [82]张颖,谭平,周福霖.分段隔震新体系的参数设计与减震性能研究[J].土木工程学报,2010,43:270-275.
    [83]张颖,周福霖,谭平.层间隔震结构的非线性随机地震反应分析[J].工业建筑,20095:11-15.
    [84]樊剑,余倩倩,邵丹.地震波随机模型对隔震结构地震需求分析的影响[J].振动工程学报,2011,24(4):412-420.
    [85]孙臻,王曙光,王赞玉,等.高层隔震结构非平稳随机地震响应与动力可靠度分析[J].建筑结构学报,2012,32(12):210-216.
    [86]孙广俊,李爱群,李鸿晶.基础隔震结构抗震可靠度简化分析方法[J].防灾减灾工程学报,2012,31(5):542-547.
    [87]国巍,余志武.高速铁路客站房桥合一结构层间隔震优化策略研究[J].地震工程与工程振动,2012,32(3):157-164.
    [88]李雪红,李冰洋,徐秀丽等.随机地震动作用下减隔震支座连续梁桥可靠度分析[J].世界桥梁,2012,40(5):59-62.
    [89]刘文光,周福霖,庄学真等.柱端隔震夹层橡胶垫力学性能试验研究[J].地震工程与工程振动,1999,19(3):121-126.
    [90]周福霖,谭平,冼晓玲等.房屋隔震体系的研究与应用[J].建筑科学与工程学报,2006,23(2):1-8.
    [91]赵听,李杰,叶德传.层间隔震房屋振动台试验与分析[J].东南大学学报,2002,32:365-368.
    [92]金建敏,谭平,周福霖等.下部减震层间隔震结构振动台试验研究[J].振动与冲击,2012,31(6):104-108.
    [93]Jian Min Jin, Ping Tan, Fu Lin Zhou, et al. Shaking Table Test Study on Mid-Story Isolation Structures [C]. Advanced Materials Research. Chengdu: Trends in civil Engineering China,2012,378-381.
    [94]吴应雄,祁皑,颜学渊.某首层柱顶隔震结构动力特性测试研究[J].地震工程与工程振动,2011,31(6):147-152.
    [95]吴应雄,祁皑,颜学渊.某层间隔震实际工程动力测试与分析[J].福州大学学报(自然科学版),2011,39(6):930-935.
    [96]吴应雄.钢筋混凝土底层柱顶隔震框架结构试验及设计方法研究[D].福州大学.2012.
    [97]李娟.层间隔震结构理论与实验研究[D].西安:西安建筑科技大学,2006.
    [98]Curtis L. Earl. Effectiveness and feasibility of inter-story isolation systems[D]. Utah State University of America,2007.
    [99]黄襄云.层间隔震减震结构的理论分析和振动台试验研究[D].西安:西安建筑科技大学,2008.
    [100]祁皑,郑国琛,闫维明.考虑参数优化的层间隔震结构振动台试验研究[J].建筑结构学报,2009,30(2):8-16.
    [101]郑国琛.考虑参数优化的层间隔震结构振动台试验研究[D].福州:福州大学,2007.
    [102]曹万林,周中一,王卿,等.农村房屋新型隔震与抗震砌体结构振动台试验研究[J].振动与冲击,2011,30(11):209-213.
    [103]胥玉祥,朱玉华,卢文胜.云南省博物馆新馆隔震结构模拟地震振动台试验研究[J].建筑结构学报,2011,32(10):39-47.
    [104]陆伟东,刘伟庆,吴晓飞等.昆明新国际机场航站楼A区结构模型振动台试验研究[J].建筑结构学报,2011,32(6):27-33
    [105]邹立华,饶宇,黄凯,郭润,许志旭.预应力厚层橡胶支座隔震性能研究[J].建筑结构学报,2013,34(2):76-82.
    [106]吴波,韩力维,周福霖,等.隔震橡胶支座防火保护试验研究[J].建筑结构学报,2011,32(2):107-112.
    [107]吴波,韩力维,周福霖,等.建筑隔震橡胶支座的耐火性能试验[J].土木工程学报,2012,44(12):50-57.
    [108]何文福,刘文光,杨彦飞,等.厚层橡胶隔震支座基本力学性能试验[J].解放军理工大学学报,2011,12(3):258-263.
    [109]王斌,谭平,徐凯等.新型纤维增强工程塑料板夹层橡胶隔震支座力学性能试验研究[J].土木工程学报,2012,45:187-191.
    [110]刘文光,秦皇婷,何文福.极低温度下LRB力学性能及对高层结构地震响应的影响[J].振动与冲击,2012,31(13):85-90.
    [111]李慧,杜永峰,狄生奎,屠锦敏,杨文侠,李庆福.叠层橡胶隔震支座的低温往复试验及等效阻尼比推算[J].兰州理工大学学报,2006,32(5):116-119
    [112]李慧,姚云龙,杜永峰等.叠层橡胶支座与柱串联体系动力失稳特性探讨[J].世界地震工程,2005,3(1):18-23.
    [113]杜永峰,李慧.橡胶支座与柱串联系统的动力稳定性分析的半解析解法[J].四川建筑科学研究,2007(s1):126-129.
    [114]杜永峰,刘彦辉,李慧.串联电气设备支架隔震体系地震响应半解析法[J].力学学报,2009(3):440-448.
    [115]杜永峰,刘彦辉,李慧.高压电气设备支架串联体系地震响应半解析法[J]. 计算力学学报,2010,27(2):225-231.
    [116]杜永峰,李慧.叠层橡胶垫与RC柱串联隔震体系的随机屈曲分析[J].防灾减灾工程学报,2010,30(s1):16-21.
    [117]杜永峰,杨静成,林治丹,等.串联隔震体系静力性能有限元分析[J].工程抗震与加固改造,2010,32(4):26-31.
    [118]杜永峰,林治丹.双向水平地震作用下串联隔震结构的振动控制[J].工程抗震与加固改造,2010,32(4):32-37.
    [119]杜永峰,李慧,寇巍巍,等.叠层橡胶支座串联隔震体系抗火性能研究[J].灾害学,2010,25(10):207-211.
    [120]杜永峰,韩登.不同类型串联隔震体系竖向承载力对比分析[J].土木工程学报,2010,43(s1):249-254.
    [121]杜永峰,朱前坤,李慧.串联隔震体系的大变形力学行为分析与试验[J].振动与冲击,2011,30(11):236-239.
    [122]杜永峰,朱前坤,李慧.串联隔震系统水平刚度及对结构地震响应影响[J].振动与冲击,2011,30(11):21-24.
    [123]杜永峰,林治丹,李慧.橡胶支座与柱串联体系的动力特性分析[J].振动与冲击,2012,31(17):134-139.
    [124]杜永峰,唐能.串联隔震结构震损倒塌动态模型分析[J].工程抗震与加固改造,2012,34(1):42-46.
    [125]杜永峰,吴忠铁,杨静成,等.考虑二阶效应串联隔震体系的塑性变形分析[J].工程抗震与加固改造,2012,34(1):47-52.
    [126]杜永峰,吴忠铁,范萍萍.地震作用下不同混凝土柱端叠层橡胶支座的应力和变形分析[J].工业建筑,2012,42(3):39-42.
    [127]杜永峰,朱前坤,李慧.加连梁柱串联隔震系统的弹性屈曲[J].中南大学学报(自然科学版),2012,43(5):1902-1907.
    [128]杜永峰,吴忠铁.考虑初始位移的串联隔震体系竖向承载力有限元分析[J].土木工程学报,2012,45(s2):128-132.
    [129]韩建平,王洪涛,刘云帅,等.环境激励下基础隔震结构的主要动力特性研究[J].振动与冲击,2011,30(11):266-271.
    [130]党育.复杂隔震结构的分析与软件实现[D].武汉:武汉理工大学,2011.
    [131]D. Thambiratnam, Y. Zhuge. FREE VIBRATION ANALYSIS OF BEAMS ON ELASTIC FOUNDATION [J]. Computers & Structures,1995,60(6):971-980.
    [132]J. N. REDDY, C. M. WANG, K. H. LEE. RELATIONSHIPS BETWEEN BENDING SOLUTIONS OF CLASSICAL AND SHEAR DEFORMATION BEAM THEORIES [J]. Int. J. Solids Structures,1996,34(26):3373-3384.
    [133]J. Dario Aristizabl-Ochoa. Column Stability and Minimum Lateral Bacing: Effects of Shear Deformations [J]. Journal of Engineering Mechanics,2004, 130(10):1123-1132.
    [134]Aristizabal-Ochoa, J. Dario. Large deflection and postbuckling behavior of Timoshenko beam-columns with semi-rigid connections including shear and axial effects [J]. Engineering Structures,2007,29(6):991-1003.
    [135]Carlos E.N. Mazzilli. Buckling and post-buckling of extensible rods revisited: Amultiple-scale solution[J]. International Journal of Non-Linear Mechanics, 2009,44:200-208.2
    [136]张燕,卢华勇.线性弹性Timoshenko梁的屈曲与分叉[J].东北师大学报自然科学版,2004,36(3):42-51.
    [137]张燕,卢华勇.Timoshenko梁理论应用于结构损伤的动力分析[J].力学季刊,2005,26(2):322-328.
    [138]Ma Lian-Sheng. Analytical solutions for vibration of thermal buckled beams [J]. Engineering Mechanics,2012,29(10),1-4.
    [139]Yang Fan. Ma Lian-Sheng. Effect of pre-buckling coupling deformation on stability of a functionally graded circular plate [J]. Engineering Mechanics, 2010,27(4),68-72.
    [140]Niu Mu-Hua, Ma Lian-Sheng. Nonlinear mechanicl behaviors of FGM beams based on the physical neutral surface [J]. Engineering Mechanics,2011,28(6), 219-225.
    [141]Ma Lian-Sheng, Wang Tie-Jun. Analytical relations between eigenvalues of circular plate based on various plate theories [J]. Applied Mathematics and Mechanics,2006,27(3),279-286.
    [142]Ma Lian-Sheng, Gu Chun-Long. Exact soultions for thermal post-buckling of shear deformable beams [J]. Engineering Mechanics,2012,29(2),172-176.
    [143]程昌钧,卢华勇.粘弹性Timoshenko梁的变分原理和静动力学行为分析[J].固体力学学报,2002,23(2):190-196.
    [144]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [145]边东洋Timoshenko梁理论的缺陷及其运动方程的修正[D].上海:同济大学,2008.
    [146]黄坤,屈本宁.非线性弹性梁的动力模型[J].昆明理工大学学报,2007,32(1):68-76.
    [147]李俊,刘见华,金咸定.轴向受载的Timoshenko薄壁梁的弯扭耦合动力响应[J].计算力学学报,2003,20(2):184-188.
    [148]刘见华,王晓宇,李俊.薄壁Timoshenko梁弯扭耦合振动的动态有限元法[J].噪声与振动控制,2009,6:116-121.
    [149]李世荣,范亮亮.Timoshenko梁在热冲击下的瞬态动力响应[J].振动与冲击,2008,27(70):122-126.
    [150]李世荣.非线性柔韧梁板结构的热过屈曲和振动[D].兰州大学,2003.
    [151]徐小辉.部分水下弹性支承梁的自由振动及非线性动力响应分析[D].上海:上海大学,2009.
    [152]R. E. Bellman and J. Casti. Differential quadrature and Long-term integration [J]. J. Math. And Anal. Appl.,1971,34:235-238.
    [153]Quan, J. R. and Chang, C. T. New insights in solving distributed system equations by the quadrature methods-Ⅰ [J]. Comput. Chem. Engrg.,1989,13: 779-788.
    [154]Quan, J. R. and Chang, C. T. New insights in solving distributed system equations by the quadrature methods-Ⅱ[J]. Comput. Chem. Engrg.,1989,13: 1017-1024.
    [155]刘剑,王鑫伟.基于微分求积法的逐步积分法与常用时间积分法的比较[J].力学季刊,2008,29(2):304-309.
    [156]Wang X. Differential quadrature element method and its applications to structural analysis [C]. SES.32nd Annual Technical Meeting, New Orleans, USA.1995. Nov.1.
    [157]Striz A G, Chen W L, Bert C W. Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct,1994,31:2807-2818.
    [158]Wang X, Gu H Z. Static analysis of frame structures by the differential quadrature element method [J]. Int. J. Numer. Methods Engng,1997,40: 759-772.
    [159]Gu H Z, Wang X. On the free vibration analysis of circular plates with stepped thickness over a concentric region by the differential quadrature element method [J]. J. Sound and Vibration,1997,202(3):452-459.
    [160]Striz A G, Chen W L, Bert C W. Static analysis of structures by the quadrature element method[J]. Int. J. Solids Structures,1994,30(20):2807-2818.
    [161]Chen C N. The two-dimensional frames model of the differential quadrature element method[J]. Computers & Structures,1997,62(3):555-571.
    [162]聂国隽,仲政.微分求积单元法在结构工程中的应用[J].力学季刊,2005,26(3):421-427.
    [163]Sherbourne A N, Pandey M D. Differential quadrature method in the buckling analysis of beams and composite plates [J]. Comp. and Struct.,1991,40(4): 903-913.
    [164]Shu, C., Richards, B. E. Parallel simulation of incompressible viscous flows by generalized differential quadrature [J]. Computing Systems in Engineering, 1992,3:271-281.
    [165]Striz, A. G., Wang, X., Bert, C. W. Harmonic Differential Method and Applications to Structure Components [J]. Acta Mechanica,1995,111:85-94.
    [166]Chang, C. T., Tasi, C. S., Lin, T. T. Modified differential quadrature and their application to structure components [J]. Acta Mechanica,1995,111:85-94.
    [167]Wang, X., Bert, C. W. A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates [J]. J. Sound and Vibration,1993,162:566-572.
    [168]王鑫伟.调和微分求积法权系数矩阵的一种显式计算式[J].南京航空航天大学学报,1995,27(4):496-501.
    [169]B. G. Kashef and R. E. Bellman. Solution of the partial differential equation of the Hodgekins-Huxley model using differential quadrature [J]. Math. Biosci., 1974,19:1-8.
    [170]J. O. Mingle. Computational considerations in nonlinear diffusion [J]. Int. J. Numer. Methods Engrg.,1973,7:103-116.
    [171]R. Bellman, B. Kashef and R. Vasadevan. The Verse Problem of Estimating Heart Parameters from Cardigrams [J]. Math. Biosci.,1974,19:221-230.
    [172]L. C. Hu and C. Hu. Identification of Rate Constants by Differential Quadrature in Partly Measurable Compartmental Models [J]. Math. Biosci.,1974,21: 71-76.
    [1/3]J. O. Migle. The method of differential quadrature for transient nonlinear diffusion [J]. J. Math. Anal. Appl.,1977,60:559-569.
    [174]R. E. Bellman and R. S. Roth. System identification with partial differential [J]. J. Math. Anal. Appl.,1979,68:321-333.
    [175]R. E. Bellman and R. S. Roth. A scanning technique for system identification [J]. J. Math. Anal. Appl.,1979,71:403-411.
    [176]F. Civan and C. M. Sliepcevich. Application of differential quadrature to transport processes [J]. J. Math. Anal. Appl.,1983,93:206-221.
    [177]F. Civan and C. M. Sliepcevich. Solution of the passion equation by differential quadrature [J]. Int. J. Num. Mathods Engrg.,1983,19:711-724.
    [178]F. Civan and C. M. Sliepcevich. Differential quadrature for multidimensional problems [J]. J. Math. Anal. Appl.,1984,101:423-443.
    [179]Charles W. Bert and Moinuddin Malik. Differential quadrature method in computational mechanics:A review [J]. American Society of Mechanical Engineers,1996,49:1-27.
    [180]C.-N. Chen. The Timoshenko beam model of the differential quadrature element method [J]. Computational Mechanics,1999,24:65-69.
    [181]T. Y. Wu and G. R. Liu. The generalized differential quadrature rule for fourth-order differential equations [J]. Int. J. Numerical Methods in Engineering,2001,50:1907-1929.
    [182]G. R. Liu and T. Y. Wu. VIBRATION ANALYSIS OF BEAMS USING THE GENERALIZED DIFFERENTIAL QUADRATURE RULE AND DOMAIN DECOMPOSITION [J]. J. Sound and Vibration,2001,246(3):461-481.
    [183]G. Karami, P. Malekzadeh. A new differential quadrature methodology for beam analysis and the associated differential quadrature element method [J]. Comput. Methods Appl. Mech. Engrg.,2002,191:3509-3526.
    [184]P. Malekzadeh, G. Karami, M. Farid. DQEM for free vibration analysis of Timoshenko beams on elastic foundations [J]. Computational Mechanics,2003, 31:219-228.
    [185]O. Sepahi, M. R. Forouzan and P. Malekzadeh. Differential quadrature application in post-buckling analysis of a hinged-fixed elastic under terminal forces and self-weight [J]. J. Mechanical Science and Technology,2010,24: 331-336.
    [186]O. Sepahi, M. R. Forouzan and P. Malekzadeh. Post-Buckling Analysis of Variable Cross-Section Cantilever Beams under Combined Load via Differential Quadrature Method [J]. KSCE Journal of Civil Engineering,2010, 14(2):207-214.
    [187]T. C. Fung. Solving initial value problems by differential quadrature method-Part Ⅰ:first-order equations [J]. International Journal for Numerical Methods in Engineering,2001,50:1411-1427.
    [188]T. C. Fung. Solving initial value problems by differential quadrature method-Part Ⅱ:second- and higher- order equations [J]. International Journal for Numerical Methods in Engineering,2001,50:1429-1457.
    [189]C. Shu, Q. Yao and K. S. Yeo. Block-marching in time with DQ discretization: an efficient method for time-dependent problems [J]. Comput. Methods Appl. Meth. Engrg,2002,191:4587-4597.
    [190]C. W. Bert, Xinwei Wang and Alfred G. Striz. Differential Quadrature for Static Free Vibration Analysis of Anisotropic Plates [J]. Int. J. Solid Structure,1993, 30:1737-1744.
    [191]王鑫伟.中国首届博士后学术大会论文集[C],1993,上册:876-879.
    [192]陈文.微分求积法及其在结构工程中的应用[D].上海交通大学.1994
    [193]Chen Wen and Yu Yongxi. Differential Quadrature Method for High order Boundary Value Problems [C]. Proc. Of the 1st Pan-Pacific Conference on Computational Engineering,1993,162-168.
    [194]王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240.
    [195]王永亮.微分求积法和微分求积单元法——原理与应用[D].南京航空航天大学博士学位论文,2001.
    [196]王永亮.边缘弹性约束圆薄板的大挠度分析[J].江苏力学,1995,10:6-12.
    [197]王永亮,王鑫伟.多外载联合作用下圆板的非线性弯曲.南京航空航天大学学报,1996,28:53-58.
    [198]王永亮,刘人怀,王鑫伟.弹性支承环形板的非线性弯曲[J].固体力学学报,1998,19:107-110.
    [199]Wang Y L, Liu R H, Wang X. Free vibration analysis of truncated conical shells by the differential quadrature method [J]. J. Sound and Vibration,1999,224(2): 387-394.
    [200]王永亮,王鑫伟.高精度微分求积曲梁单元的建立与应用[J].南京航天航空大学学报,2001,33(6):516-520.
    [201]Xinwei Wang, Feng Liu, Xinfeng Wang and Lifei Gan. New approaches in application of differential quadrature method to fourth-order differential equations [J]. Commun. Numer. Meth. Engng.,2005,21:61-71.
    [202]Wang Y L, Liu R H, Wang X. On free vibration analysis of nonlinear piezoelectric circular shallow spherical shells by the differential quadrature element method [J]. J. Sound and Vibration,2001,224(2):387-394.
    [203]Wang X. Wang Y L, Chen R B, Static and free bibration analysis of rectangular plates by the differential quadrature element method [J]. Commun. Numer. Meth. Engng.,1998,14:1133-1141.
    [204]Jian Liu, Xinwei Wang. An assessment of the differential quadrature time integration scheme for non-linear dynamic equations [J]. Journal of Sound and Vibrations,2008,314:246-253.
    [205]刘剑,王鑫伟.基于微分求积法的逐步积分法与常用时间积分方法的比较 [J].力学季刊,2008,29(2):304-309.
    [206]聂国隽,仲政.框架结构P-△效应分析的微分求积单元法[J].力学季刊,2004,25(2):195-200.
    [207]聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J].工程力学,2005,21(1):59-62.
    [208]聂国隽,仲政.微分求积单元法在结构工程中的应用[J].力学季刊,2005,26(3):423-427.
    [209]HU Y J, ZHU Y Y, CHENGC J. Differential-algebraic approach to large deformation analysis of frame structures subjected to dynamic loads [J]. Appl. Math. And Mech. Eng.,2007,29(4):441-452.
    [210]HU Y J, ZHU Y Y, CHENG C J. DQEM for large deformation analysis of structures with discontinuity conditions and initial displacements [J]. Engineering Structures,2008,30:1473-1487.
    [211]ZHU Y Y, HU Y J, CHENG C J. Large deformation analysis of piles with elastic joints [C]. Proceedings of ICNM-V. Shanghai, Shanghai University Press,2007, 588-595.
    [212]朱媛媛,胡育佳,程昌钧.弹性基础上具有初始缺陷的桩基的大变形分析[J].力学季刊,2007,28(2):310-319.
    [213]胡育佳,朱媛媛,程昌钧.求解几何非线性桩-土耦合系统的微分求积单元法[J].固体力学学报,2008,29(2):141-148.
    [214]胡育佳,朱媛媛,程昌钧.在弹性和弹塑性土体中桩基的大变形分析[J].应用力学学报,2008,25(3):398-40.
    [215]HU Y J, ZHU Y Y, CHENG C J. DQM for dynamic response of fluid-saturated visco-elastic porous media[J]. Int. J. Solids Struct.,2009,46:1667-1675.
    [216]胡育佳.桩基非线性静动力学特性研究[D].上海:上海大学,2008.
    [217]程昌钧,胡育佳,朱媛媛等.桩基的数学建模和理论分析与计算方法[M].北京:科学出版社,2009.
    [218]李晶晶,胡育佳,程昌钧,郑剑.粘弹性Timoshenko梁非线性动力学行为的微分求积分析[J].振动与冲击,2010,29(4):143-149.
    [219]朱媛媛,胡育佳,程昌钧.流体饱和多孔弹性柱体动力响应的微分求积法[J].计算力学学报,2010,27(5):868-873.
    [220]程昌钧,朱正佑.微分求积方法及其在力学应用中的若干新进展[J].上海大学学报,2009,15(6):551-559.
    [221]王通,李鸿晶.欧拉梁动力反应初边值问题的微分求积解[J].世界地震工程,2009,25(3):75-79.
    [222]李鸿晶,王通.结构地震反应分析的逐步微分积分方法[J].力学学报,2011,43(2):430-435.
    [223]李鸿晶,廖旭,王通.结构地震反应DQ解法的两种数值格式[J].应用基础与工程科学学报,2011,19(5):758-766.
    [224]J. A. Haringx. On Highly Compressive Helical Springs and Rubber Rob and Their Applications to Free Mountings-Part Ⅰ, Ⅱ and Ⅲ, Philips Reports, 1984-1949.
    [225]M.Imbimbo and J.M.Kelly. Stability of Isolators at Large Horizontal Displacements[J]. Earthquake Spectra.1997.13(3):415-430.
    [226]Timoshenko S, Gere J.材料力学.胡人礼译.北京:科学出版社,1978.
    [227]罗祖道,李思简.各向异性材料力学.上海:上海交通大学出版社,1994.
    [228]Stephen Timoshenko,James M. Gere. Mechanics of Materials. Van Nostrand Reinhold Co.,1972.207.
    [229]S.铁摩辛柯,S.沃诺斯基.板壳理论.《板壳理论》翻译组译.北京:科学出版社,1977.
    [230]程昌钧,朱媛媛.弹性力学(修订本).上海:上海大学出版社,2005.
    [231]Luis G. Arboleda-Monsalve, David G. Zapata-Medina, J. Dario Aristizabal-Ochoa. Timoshenko beam-column with generalized end conditions on elastic foundation:Dynamic-stiffness matrix and load vector[J]. Journal of Sound and Vibration.2008.310:1057-1079.
    [232]Luis G. Arboleda-Monsalve, David G. Zapata-Medina, J. Dario Aristizabal-Ochoa. Stability and natural frequencies of a weakened Timoshenko beam-column with generalized end conditions under constant axial load[J]. Journal of Sound and Vibration.2007.307:89-112.
    [233]孙志忠.偏微分方程数值解法[M].北京:科学出版社,2005.
    [234]C.W.Bert, S.K.Jang and A.G.Striz. New methods for analyzing vibration of structrue components. Proc. AIAA Dynamics Specialist Conference, Monterey, CA, part 2B,936-943,1987.
    [235]C. W. Bert and M. Malik. Differential quadrature method in computational mechanics:a reiew. Applied Mechanics Reiew.1996,49:1-27.
    [236]Wang X, Liu F, Wang Xingfeng, et al. New approaches in application of differential quadrature method to forth-order differential equations [J]. Communications in Numerical Methods in Engineering,2005,21(2):67-71.
    [237]Wu T Y, Liu G R. The generalized differential quadrature rule for initial-value differential equations [J]. Journal of Sound and Vibration,2000,233(2): 195-213.
    [238]R. Chicurel and E. Suppiger. A tabular collocation method for beam vibration [J]. Journal of Engineering for Industry,1961,83:373-376.
    [239]S. K. Jang and C. W. Bert. Free vibration of stepped beams:exact and numerical solutions [J]. Journal of Sound Vibration,1989,130:342-346.
    [240]R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2006.
    [241]Housner, G. W. Characteristic of strong motion earthquakes[J]. Bulletin of Seismic Society, Am.,1947,37:17-31.
    [242]Kanai, K. Semi-empirical formula for seismic characteristics of the ground[J]. Bulletin of Earthquake Research Institute, University of Tokyo,1957,35: 309-325.
    [243]胡聿贤,周锡元.弹性踢死在平稳和平稳化地面运动下的反应[R].地震工程研究报告集.第一集,1962.
    [244]Clough, R. W., and Penzien, J. Dynamics of Structures[M]. New York: McGraw-Hill,1975.
    [245]Kaul, M. K. Stochastic Characterization of earthquakes through their response spectrum[J]. Earthquake Engineering and Structural Dynamics,1978,6(5): 497-510.
    [246]杜永峰.被动与智能隔震结构地震响应分析及控制算法[D].大连:大连理工大学,2003.
    [247]Shinozaka, M. Digital simulation of random processes and its applications[J]. Sound and vibration,1972,25(1):111-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700