用户名: 密码: 验证码:
氧还原方法学及其催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池技术能在室温附近直接将化学能高效地转换为电能,运行时几乎不排放或仅排放少量污染物。自1960年代以来,该技术一直被世界各国重视。但是该技术目前尚未实现大规模的商品化。在性能最好的铂基催化剂上,氧电催化还原的起始超电势依然在0.25V以上。氧的阴极还原反应动力学很慢,超电势高是限制燃料电池输出功率与能量效率的瓶颈。理解氧还原反应的机理、了解影响其反应动力学的关键因素以及提高催化剂的氧还原活性,是燃料电池电催化领域的重要研究课题。虽然经过半个多世纪对研究,人们对氧电极反应取得了很多原子、分子水平上的认识,但是对氧还原的高超电势的起源、催化剂的氧还原活性与结构的内在关系等问题,依然还没有清晰的认识。其主要原因是一方面氧还原反应是一个涉及4电子转移、多步骤的复杂反应,人们在研究中并没有仔细考究常用于研究纳米电催化剂的氧还原反应活性的薄膜旋转圆盘电极技术是否切实可靠。针对上述问题,本论文开展了以下工作:
     1.表征氧还原电催化剂活性的实验方法验证。由于溶液中,氧气的溶解度低,电极反应必然会受到溶液相以及催化剂层内传质的影响。同时,未补偿溶液电阻也会对估算的超电势带来影响。如何完全排除传质以及溶液内阻的影响,并获得电催化剂对氧还原反应的内在活性,是讨论氧还原催化剂的构、效关系的前提。本论文首先系统考察了溶液内阻对氧还原动力学测量的影响,并讨论了文献中有关论文在该问题上可能存在的误导,在此基础上提出了正确的溶液内阻补偿方法;然后系统地考察了催化剂的担载量,反应物在催化剂层中的传质对利用薄膜旋转圆盘电极技术获取氧还原动力学数据的影响,指出了正确利用该技术合理评价氧还原电极反应的内在活性的注意事项。
     2.为了弄清铂基催化剂上氧还原的高超电势的起源,我们系统研究电解质溶液的pH值对Pt电极上H和OH的吸、脱附反应:尤其是OHad+H++e(?)H20(酸性介质)或者OHad+e(?)OH-(碱性介质)以及氧还原动力学的影响。我们发现i)在氧还原的动力学以及动力学与传质混合控制的电位区,上述反应即是氧电催化还原反应的最后一步,又是与氧还原平行进行、竞争反应活性位点的另一个可逆反应。而且,OHad的脱附动力学非常快,OHad的覆盖度主要受热力学因素决定;ⅱ)影响氧还原动力学的关键因素是在氧还原电位区与OH吸、脱附的热力学以及动力学。一方面,OH吸、脱附可逆发生的上限电位,决定了氧还原的起始电位,OHad的覆盖度限制了用于氧还原的活性位点数:另一方面,OHad脱附作为电催化氧还原反应的最后一步,而OHad+H++e(?)H2O或OHad+e(?)OH-在氧还原的动力学与传质混合控制的电位区可逆地向着两个方向同时进行,也限制了氧还原的净速度。在此基础上,我们还尝试制备了二元的PtxY催化剂,也证实了上述观点。
Proton exchange membrane fuel cells which can directly converted chemical energy into electrical energy near room temperature, and emit almost no or just a small amount of pollutants. Therefore, since the1960s, the R&D of such fuel cells has been greatly supported worldwide. However, by now such fuel cells have been successfully commercialized on large scale. Wherein an important bottleneck is that the kinetics for oxygen cathode reaction is very slow. Understanding the mechanism of the oxygen reduction reaction (ORR) has been one of the important research topic in the fuel cell catalysis, at the best Pt based electrocatalysts available so far, the overpotential at the onset for ORR is still as high as0.25V. After60years of research, much atomic, molecular level understanding for ORR has been gained. However, no consensus on ORR mechanism and key factors which limits ORR kinetics has been reached so far.This is probably due to, on one hand, ORR is a reaction involves4electron, multiple step complex process, on the other hand, some misunderstanding exists on using thin film rotating disk electrode method, the key technique used for evaluating nanocatalysts activity for ORR. To address these problems,I have carried out the following work in my ph. D theis:
     1. ORR Methodology evaluation. Due to the low solubility of oxygen in the solution, the mass transport of02in both the solution phase and in the catalyst layer will affect the electrode reaction. At the same time, the internal resistance (IR) of solution will affect the estimation of the overpotential of the oxygen reduction reaction. To completely exclude the effects of the mass transfer and the uncompensated IR, is the prerequisite for deriving the intrinsic activity of nanocatalysts for ORR. After sysmtematic studies on the effects of the internal resistance of the solution on measurement of the oxygen reduction reaction, we have pointed out the method for correct IR compensation as well as misleading conclusions in the literature; By systematically varying the loading amount of the catalyst system, we have demonstrated the impact of mass transfer on evaluating catalysts activity for ORR. Some guidelines on how to rationally evaluate of nano-catalysts activity for ORR has been given.
     2. Even for the best Pt based electrocatalyst for ORR, the overpotential at the onset is still above0.25V. In order to figure the origin for such high overpotential, we have systematically studied the the pH of the electrolyte solution on the thermodynamics and kinetics of OHad aodsorption.desorption as well on ORR kinetics. We found that OHad+H++e(?)H2O OHad+e(?)OH-, as parallel reaction occurs during ORR in the kinetic and kinetic and mass transport limited potential region, whose thermoelectrochemistry and kinetics strongly affect ORR kinetics. As the last step for ORR, the reversible desorption of OHad, one one hand its upper potential limit for its reversibility determines the onset potential for ORR, and its coverage determines the available sites for ORR. On the other hand, the net rate beteen the forward (OHad desorption) and backward reaction (H2O→OHad+H++e or OH→Had+e) determines the net rate for ORR. We have also prepared Ti supported PtxY catalysts with various pretreatment conditions and studied their ORR behavior, which confirms the above conclusions.
引文
[1]黄倬,质子交换膜燃料电池的研究开发与应用.北京,冶金工业出版社.2000.
    [2]衣宝廉,燃料电池:原理技术应用.北京,化学工业出版社.2003:1-8.
    [3]Carrette L, Friedrich KA & Stimming U.2000. Fuel cells:Principles, types, fuels, and applications [J]. Chemphyschem,1:162-193.
    [4]Greeley J, Stephens IEL, Bondarenko AS, et al.2009. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nat Chem,1:552-556.
    [5]Gasteiger HA & Markovic NM.2009. Just a dream-or future reality?[J]. Science,324:48-49.
    [6]Gasteiger HA, Kocha SS, Sompalli B, et al.2005. Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for pemfcs[J]. Appl Catal B-Environ, 56:9-35.
    [7]Bard AJ,电化学方法c原理和应用.北京,化学工业出版社.2005.
    [8]Newman J.1966. Resistance for flow of current to a disk[J]. J Electrochem Soc,113:501-502.
    [9]Harrar JE & Shain I.1966. Electrode potential gradients and cell design in controlled potential electrolysis experiments [J]. Anal Chem,38:1148-1158.
    [10]He PX & Faulkner LR.1986. Intelligent, automatic compensation of solution resistance[J]. Anal Chem,58:517-523.
    [11]Piontelli R, Bianchi G & Aletti R.1952. Messungsmethoden der polarisationsspannungen mittels modellversuchen[J]. Zeitschrift Fur Elektrochemie,56:84-93.
    [12]Piontelli R, Bianchi G, Bertocci U, et al.1954.*messmethoden der polarisationsspannungen.2[J]. Zeitschrift Fur Elektrochemie,58:54-64.
    [13]Piontelli R, Bertocci U, Bianchi G, et al.1954.*messmethoden der polarisationsspannungen.3[J]. Zeitschrift Fur Elektrochemie,58:86-95.
    [14]Piontelli R, Rivolta B & Montanelli G.1955. Messmethoden der polarisationsspannungen.4[J]. Zeitschrift Fur Elektrochemie,59:64-67.
    [15]Barnartt S.1952. Primary current distribution around capillary tips used in the measurement of electrolytic polarization[J]. J Electrochem Soc,99:549-553.
    [16]Barnartt S.1961. Magnitude of ir-drop corrections in electrode polarization measurements made with a luggin-haber capillary[J]. J Electrochem Soc,108:102-104.
    [17]Booman GL & Holbrook WB.1963. Electroanalytical controlled-potential instrumentation [J]. Anal Chem,35:1793-1809.
    [18]Schaap WB & McKinney PS.1964. Resistance compensation in polarography- application to high-resistance nonaqueous systems + to high current-density aqueous systems [J]. Anal Chem,36:1251-1258.
    [19]Devries WT & Vandalen E.1966. Ohmic drop distortion of anodic stripping curves from a thin mercury-film electrode[J]. J Electroanal Chem,12:9-14.
    [20]Hayes M, Kuhn AT & Patefield W.1977. Techniques for determination of ohmic drop in half-cells and full cells-review[J]. J Power Sources,2:121-136.
    [21]Popkirov GS.1993. A technique for series resistance measurement and ohmic drop correction under potentiostatic control[J]. J Electroanal Chem,359:97-103.
    [22]Myland JC & Oldham KB.1993. General-theory of steady-state voltammetry[J]. J Electroanal Chem,347:49-91.
    [23]Bockris JO.1948. Recent developments in the study of hydrogen overpotential[J]. Chemical Reviews,43:525-577.
    [24]Nicholso.Rs.1965. Some examples of numerical solution of nonlinear integral equations[J]. Anal Chem,37:667-671.
    [25]Haber F.1900. On the electrical reduction of non-electrolytes[J]. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre,32:193-270.
    [26]Adzic RR, Recent advances in the kinetics of oxygen reduction. In Electrocatalysis, Lipkowski, J., Ross, P. N., editors. John Wiley & Sons, Inc.:New York,1998.
    [27]Adzic RR & Lima FHB, Platinum monolayer oxygen reduction electrocatalysts. In Handbook of fuel cells-" advances in electrocatalysis, materials, diagnostics and durability", Vielstich, W., Lamm, A., Gasteiger, H. A., editors. John Wiley & Sons, Inc.:Chichester,2009:Vol. 5&6.
    [28]Gattrell G & MacDougall B, Reaction mechanisms of the 02 reduction/evolution reaction. In Handbook of fuel cells-fundamentals, technology and applications, Vielstich, W, Lamm, A., Gasteiger, H. A., editors. John Wiley & Sons, Inc.:Chichester,2006:Vol.2.
    [29]Gottesfeld S, Electrocatalysis of oxygen reduction in polymer electrolyte fuel cells:A brief history and a critical examination of present theory and diagnostics. In Fuel cell catalysis:A surface science approach, Koper, M. T. M., Ed. John Wiley & Sons, Inc.:Hoboken, 2009:Chap 1,p1.
    [30]Stamenkovic V & Markovic NM, Oxygen reduction on platinum bimetallic alloy catalysts. In Handbook of fuel cells-"advances in electrocatalysis, materials, diagnostics and durability", Vielstich, W, Lamm, A., Gasteiger, H. A., editors. John Wiley & Sons, Inc.:Chichester, 2009:Vol.5&6.
    [31]Strasser P, Dealloyed pt bimetallic electrocatalysts for oxygen reduction. In Handbook of fuel cells-" advances in electrocatalysis, materials, diagnostics and durability", Vielstich, W., Lamm, A., Gasteiger, H. A., editors. John Wiley & Sons, Inc.:Chichester,2009:Vol.5&6.
    [32]Xu S, Shao MH, Mavrikakis M, et al., Recent developments in the electrocatalysis of the o2 reduction reaction. In Fuel cell catalysis:A surface science approach, Koper, M. T. M., Ed. John Wiley & Sons, Inc.:Hoboken,2009:Chap 9, p 271.
    [33]Appleby AJ.1970. Electrocatalysis and fuel cells[J]. catalysis Review,4:221-244.
    [34]Xu Y, Shao MH, Mavrikakis M, et al., Recent developments in the electrocatalysis of the o2, reduction reaction. In Fuel cell catalysis:A surface science approach, Koper, M. T. M., Ed. John Wiley & Sons, Inc.:Hoboken,2009.
    [35]Tarasevich MR, Sadkowski A & Yeager EB, Oxygen electrochemistry. In Comprehensive treatise of electrochemistry, Conway, B. E., Bockris, J. O. M., Yeager, E. B., editors. Plenum Press:New York,1983.
    [36]Durand R, Faure R, Gloaguen F, et al., Oxygen reductiion reaction on platinum in acidic medium:From bulk material to nanoparticles. In Proceedings of the symposium on oxygen electrochemistry, Adzic, R. R., Anson, F. C., Kinoshita, K., editors. NJ:The Electrochemical Society:Pennington,1996.
    [37]Mukerjee S, Srinivasan S, Soriaga MP, et al.1995. Role of structural and electronic-properties of pt and pt alloys on electrocatalysis of oxygen reduction-an in-situ xanes and exafs investigation[J]. J Electrochem Soc,142:1409-1422.
    [38]Boulatov R, Metalloporphyrin catalysts of oxygen reduction. In Fuel cell catalysis:A surface science approach, Koper, M. T. M., Ed. John Wiley & Sons, Inc.:Hoboken,2009:Chap 18, p 637.
    [39]Yano H, Inukai J, Uchida H, et al.2006. Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction:An electrochemical and pt-195 ec-nmr study[J]. Physical Chemistry Chemical Physics,8:4932-4939.
    [40]Shao MH, Peles A & Shoemaker K.2011. Electrocatalysis on platinum nanoparticles:Particle size effect on oxygen reduction reaction activity[J]. Nano Lett,11:3714-3719.
    [41]Yang Z, Ball S, Condit D, et al.2011. Systematic study on the impact of pt particle size and operating conditions on pemfc cathode catalyst durability [J]. J Electrochem Soc, 158:B1439-B1445.
    [42]Watanabe M, Sei H & Stonehart P.1989. The influence of platinum crystallite size on the electroreduction of oxygen[J]. J Electroanal Chem,261:375-387.
    [43]Antoine O, Bultel Y & Durand R.2001. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside nafion (r)[J]. J Electroanal Chem,499:85-94.
    [44]Greeley J, Rossmeisl J, Hellman A, et al.2007. Theoretical trends in particle size effects for the oxygen reduction reaction[J]. Z Phys Chem,221:1209-1220.
    [45]Han BC, Miranda CR & Ceder G.2008. Effect of particle size and surface structure on adsorption of o and oh on platinum nanoparticles:A first-principles study[J]. Phys Rev B,77
    [46]Tritsaris GA, Greeley J, Rossmeisl J, et al.2011. Atomic-scale modeling of particle size effects for the oxygen reduction reaction on pt[J]. Catal Lett,141:909-913.
    [47]Paulus UA, Wokaun A, Scherer GG, et al.2002. Oxygen reduction on high surface area pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes[J]. Electrochim Acta,47:3787-3798.
    [48]Kinoshita K, Electrochemical oxygen technology. John Wiley & Sons, Inc.:New York,1992.
    [49]Maillard F, Martin M, Gloaguen F, et al.2002. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition[J]. Electrochim Acta,47:3431-3440.
    [50]D'Hondt S, Jorgensen BB, Miller DJ, et al.2004. Distributions of microbial activities in deep subseafloor sediments[J]. Science,306:2216-2221.
    [51]Mayrhofer KJJ, Blizanac BB, Arenz M, et al.2005. The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electocatalysis[J]. J Phys Chem B,109:14433-14440.
    [52]Bregoli LJ.1978. The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid[J]. Electrochim Acta,23:489-492.
    [53]Sattler M & Ross PN.1986. The surface-structure of pt-crystallites supported on carbon-black and the relation to activity for oxygen reduction[J]. J Electrochem Soc, 133:C300-C300.
    [54]Kabbabi A, Gloaguen F, Andolfatto F, et al.1994. Particle-size effect for oxygen reduction and methanol oxidation on pt/c inside a proton-exchange membrane[J]. J Electroanal Chem, 373:251-254.
    [55]Takasu Y, Ohashi N, Zhang XG, et al.1996. Size effects of platinum particles on the electroreduction of oxygen[J]. Electrochim Acta,41
    [56]Mayrhofer KJJ, Strmcnik D, Blizanac BB, et al.2008. Measurement of oxygen reduction activities via the rotating disc electrode method:From pt model surfaces to carbon-supported high surface area catalysts[J]. Electrochim Acta,53:3181-3188.
    [57]Perez-Alonso FJ, McCarthy DN, Nierhoff A, et al.2012. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles[J]. Angew Chem Int Edit, 51:4641-4643.
    [58]Komanicky V, Menzel A & You H.2005. Investigation of oxygen reduction reaction kinetics at (111)-(100) nanofaceted platinum surfaces in acidic media[J]. J Phys Chem B, 109:23550-23557.
    [59]Zhdanov VP & Kasemo B.2002. Kinetics of electrochemical reactions:From single crystals to nm-sized supported particles[J]. Surf Sci,521:L655-L661.
    [60]Hayden BE & Suchsland JE, Support and particle size effects in electrocatalysis. In Fuel cell catalysis:A surface science approach, Koper, M. T. M., Ed. John Wiley & Sons, Inc.: Hoboken,2009:Chap 16, p 567.
    [61]廖玲文,陈栋,郑勇力,et al.2013.气体电极反应动力学的薄膜旋转圆盘电极方法研究[J].中国科学:化学,43:178-184.
    [62]Watanabe M, Saegusa S & Stonehart P.1988. Electro-catalytic activity on supported platinum crystallites for oxygen reduction in sulphuric acid[J]. Chem Lett,17:1487-1490.
    [63]Nesselberger M, Ashton S, Meier JC, et al.2011. The particle size effect on the oxygen reduction reaction activity of pt catalysts:Influence of electrolyte and relation to single crystal models[J]. J Am Chem Soc,133:17428-17433.
    [64]Chen D, Tao Q, Liao LW, et al.2011. Determining the active surface area for various platinum electrodes [J]. Electrocatalysis,2:207-219.
    [65]Macia MD, Campina JM, Herrero E, et al.2004. On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media[J]. J. Electroanal. Chem.,564:141-150.
    [66]Zhang J, Yang HZ, Fang JY, et al.2010. Synthesis and oxygen reduction activity of shape-controlled pt3ni nanopolyhedra[J]. Nano Lett,10:638-644.
    [67]Wu JB, Gross A & Yang H.2011. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent[J]. Nano Lett,11:798-802.
    [68]Wu JB, Zhang JL, Peng ZM, et al.2010. Truncated octahedral pt3ni oxygen reduction reaction electrocatalysts[J]. J Am Chem Soc,132:4984-4985.
    [69]Ruban AV, Skriver HL & Norskov JK.1999. Surface segregation energies in transition-metal alloys[J]. Phys Rev B,59:15990-16000.
    [70]Atli A, Abon M, Beccat P, et al.1994. Carbon-monoxide adsorption on a pt80fe20(111) single-crystal alloy[J]. Surf Sci,302:121-125.
    [71]Stamenkovic V, Schmidt TJ, Ross PN, et al.2002. Surface composition effects in electrocatalysis:Kinetics of oxygen reduction on well-defined pt3ni and pt3co alloy surfaces[J]. J Phys Chem B,106:11970-11979.
    [72]Adzic RR, Zhang J, Sasaki K, et al.2007. Platinum monolayer fuel cell electrocatalysts[J]. Top Catal,46:249-262.
    [73]Vukmirovic MB, Zhang J, Sasaki K, et al.2007. Platinum monolayer electrocatalysts for oxygen reduction[J]. Electrochim Acta,52:2257-2263.
    [74]Wakisaka M, Suzuki H, Mitsui S, et al.2008. Increased oxygen coverage at pt-fe alloy cathode for the enhanced oxygen reduction reaction studied by ec-xps[J]. J Phys Chem C, 112:2750-2755.
    [75]Stamenkovic VR, Fowler B, Mun BS, et al.2007. Improved oxygen reduction activity on pt3ni(111) via increased surface site availability [J]. Science,315:493-497.
    [76]Zhang JL, Vukmirovic MB, Xu Y, et al.2005. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angew Chem Int Edit,44:2132-2135.
    [77]Zhang J, Vukmirovic MB, Klie R, et al.2004. Platinum monolayer electrocatalysts for o2 reduction:Pt monolayer on pd(111) and on carbon-supported pd nanoparticles[J]. J Phys Chem B,108:10955-10964.
    [78]Zhang JL, Vukmirovic MB, Sasaki K, et al.2005. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. J Am Chem Soc,127:12480-12481.
    [79]Nilekar AU, Xu Y, Zhang JL, et al.2007. Bimetallic and ternary alloys for improved oxygen reduction catalysis[J]. Top Catal,46:276-284.
    [80]Stephens IEL, Bondarenko AS, Perez-Alonso FJ, et al.2011. Tuning the activity of pt(111) for oxygen electroreduction by subsurface alloying[J]. J Am Chem Soc,133:5485-5491.
    [81]Henry JB, Maljusch A, Huang MH, et al.2012. Thin-film cu-pt(111) near-surface alloys: Active electrocatalysts for the oxygen reduction reaction[J]. Acs Catal,2:1457-1460.
    [82]Strasser P, Koh S, Anniyev T, et al.2010. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nat Chem,2:454-460.
    [83]Stamenkovic V, Schmidt TJ, Ross PN, et al.2003. Surface segregation effects in electrocatalysis:Kinetics of oxygen reduction reaction on polycrystalline pt3ni alloy surfaces[J]. J Electroanal Chem,554:191-199.
    [84]Stamenkovic VR, Mun BS, Arenz M, et al.2007. Trends in electrocatalysis on extended and nanoscale pt-bimetallic alloy surfaces[J]. Nat Mater,6:241-247.
    [85]Wakabayashi N, Takeichi M, Uchida H, et al.2005. Temperature dependence of oxygen reduction activity at pt-fe, pt-co, and pt-ni alloy electrodes[J]. J Phys Chem B, 109:5836-5841.
    [86]Stephens IEL, Bondarenko AS, Bech L, et al.2012. Oxygen electroreduction activity and x-ray photoelectron spectroscopy of platinum and early transition metal alloys[J]. Chemcatchem,4:341-349.
    [87]Stamenkovic VR, Mun BS, Mayrhofer KJJ, et al.2006. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of pt-transition metal alloys: Pt-skin versus pt-skeleton surfaces[J]. J Am Chem Soc,128:8813-8819.
    [88]van der Vliet DF, Wang C, Li DG, et al.2012. Unique electrochemical adsorption properties of pt-skin surfaces[J]. Angew Chem Int Edit,51:3139-3142.
    [89]Strmcnik D, Escudero-Escribano M, Kodama K, et al.2010. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide[J]. Nat Chem,2:880-885.
    [90]Liao LW, Li MF, Kang J, et al.2013. Electrode reaction induced ph change at the pt electrode/electrolyte interface and its impact on electrode processes[J]. J Electroanal Chem, 688:207-215.
    [91]Gasteiger HA, Markovic NM & Ross PN.1995. H2 and co electrooxidation on well-characterized pt, ru, and pt-ru.1. Rotating-disk electrode studies of the pure gases including temperature effects[J]. J Phys Chem,99:8290-8301.
    [92]Gloaguen F, Andolfatto F, Durand R, et al.1994. Kinetic-study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modeling[J]. Journal of Applied Electrochemistry,24:863-869.
    [93]Susac D, Sode A, Zhu L, et al.2006. A methodology for investigating new nonprecious metal catalysts for pem fuel cells[J]. J Phys Chem B,110:10762-10770.
    [94]Chen W, Kim J, Sun S, et al.2008. Electrocatalytic reduction of oxygen by fept alloy nanoparticles[J]. J Phys Chem C,112:3891-3898.
    [95]Sode A, Li W, Yang YG, et al.2006. Electrochemical formation of a pt/zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells[J]. J Phys Chem B,110:8715-8722.
    [96]Koh S & Strasser P.2007. Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. J Am Chem Soc, 129:12624-+.
    [97]Markovic NM, Gasteiger HA & Ross PN.1995. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution-rotating ring-pt(hkl) disk studies[J]. J Phys Chem,99:3411-3415.
    [98]Perez J, Gonzalez ER & Ticianelli EA.1998. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes [J]. Electrochim Acta,44:1329-1339.
    [99]van der Vliet D, Strmcnik DS, Wang C, et al.2010. On the importance of correcting for the uncompensated ohmic resistance in model experiments of the oxygen reduction reaction[J]. J Electroanal Chem,647:29-34.
    [100]Schmidt TJ, Gasteiger HA, Stab GD, et al.1998. Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration[J]. J Electrochem Soc, 145:2354-2358.
    [101]Gloaguen F, Convert P, Gamburzev S, et al.1998. An evaluation of the macro-homogeneous and agglomerate model for oxygen reduction in pemfcs[J]. Electrochim Acta,43:3767-3772.
    [102]Markovic NM & Ross PN.2002. Surface science studies of model fuel cell electrocatalysts[J]. Surf Sci Rep,45:121-229.
    [103]Paulus UA, Schmidt TJ, Gasteiger HA, et al.2001. Oxygen reduction on a high-surface area pt/vulcan carbon catalyst:A thin-film rotating ring-disk electrode study[J]. J Electroanal Chem,495:134-145.
    [104]Schmidt TJ, Paulus UA, Gasteiger HA, et al.2001. The oxygen reduction reaction on a pt/carbon fuel cell catalyst in the presence of chloride anions[J]. J Electroanal Chem, 508:41-47.
    [105]Anderson AB, Roques J, Mukerjee S, et al.2005. Activation energies for oxygen reduction on platinum alloys:Theory and experiment[J]. J Phys Chem B,109:1198-1203.
    [106]Shih YH, Sagar GV & Lin SD.2008. Effect of electrode pt loading on the oxygen reduction reaction evaluated by rotating disk electrode and its implication on the reaction kinetics[J]. J Phys Chem C,112:123-130.
    [107]Higuchi E, Uchida H & Watanabe M.2005. Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode[J]. J Electroanal Chem,583:69-76.
    [108]Takasu Y, Ohashi N, Zhang XG, et al.1996. Effects of platinum particles on the electroreduction of oxygen[J]. Electrochim Acta,41:2595-2600.
    [109]Kinoshita K.1990. Particle-size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J]. J Electrochem Soc,137:845-848.
    [110]Genies L, Faure R & Durand R.1998. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media[J]. Electrochim Acta,44:1317-1327.
    [111]Neyerlin KC, Gu WB, Jorne J, et al.2006. Determination of catalyst unique parameters for the oxygen reduction reaction in a pemfc[J]. J Electrochem Soc,153:A1955-A1963.
    [112]Markovic NM & Ross PN.2002. Surface science studies of model fuel cell electrocatalysts[J]. Surf. Sci. Rep.,45:121-229.
    [113]Hamnett A, In Interfacial electrochemistry:Accomplishments and challenges, Schmickler, W., Santos, E., editors. Marcel Dekker Inc:New York,1999:pp 843-883.
    [114]Herrero E & Feliu JM, In Encyclopedia electrochemistry-interfacial kinetics and mass transport, Bard, A. J., Stratmann, M., Calvo, E. J., editors. VCH, Weinheim:Germany,2003.
    [115]Iwasita T & Nart FC.1997. In situ infrared spectroscopy at electrochemical interfaces[J]. Prog. Surf. Sci.,55:271-340.
    [116]Chen YX, Li MF, Liao LW, et al.2009. A thermostatic cell with gas diffusion electrode for oxygen reduction reaction under fuel cell relevant conditions[J]. Electrochem Commun, 11:1434-1436.
    [117]Kuzume A, Herrero E & Feliu JM.2007. Oxygen reduction on stepped platinum surfaces in acidic media[J]. J. Electroanal. Chem.,599:333-343.
    [118]Wakisaka M, Suzuki H, Mitsui S, et al.2009. Identification and quantification of oxygen species adsorbed on pt(111) single-crystal and polycrystalline pt electrodes by photoelectron spectroscopy[J]. Langmuir,25:1897-1900.
    [119]Stamenkovic VR, Mun BS, Arenz M, et al.2007. Trends in electrocatalysis on extended and nanoscale pt-bimetallic alloy surfaces[J]. Nat. Mater.,6:241-247.
    [120]Garcia G & Koper MTM.2008. Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution[J]. Phys Chem Chem Phys, 10:3802-3811.
    [121]Liu SX, Liao LW, Tao Q, et al.2011. The kinetics of co pathway in methanol oxidation at pt electrodes, a quantitative study by atr-ftir spectroscopy [J]. Phys Chem Chem Phys, 13:9725-9735.
    [122]Stamenkovic VR, Fowler B, Mun BS, et al.2007. Improved oxygen reduction activity on pt3ni(111) via increased surface site availability [J]. Science,315:493-497.
    [123]Garcia N, Climent V, Orts JM, et al.2004. Effect of ph and alkaline metal cations on the voltammetry of pt(111) single crystal electrodes in sulfuric acid solution[J]. Chemphyschem, 5:1221-1227.
    [124]Braunschweig B & Daum W.2009. Superstructures and order-disorder transition of sulfate adlayers onpt(111) in sulfuric acid solution[J]. Langmuir,25:11112-11120.
    [125]Kucernak AR & Offer GJ.2008. The role of adsorbed hydroxyl species in the electrocatalytic carbon monoxide oxidation reaction on platinum[J]. Phys Chem Chem Phys, 10:3699-3711.
    [126]Garcia-Araez N, Climent V & Feliu JM.2010. Analysis of temperature effects on hydrogen and oh adsorption on pt(111), pt(100) and pt(110) by means of gibbs thermodynamics[J]. J. Electroanal. Chem.,649:69-82.
    [127]Climent V, Gomez R, Orts JM, et al.2006. Thermodynamic analysis of the temperature dependence of oh adsorption on pt(111) and pt(100) electrodes in acidic media in the absence of specific anion adsorption[J]. J. Phys. Chem. B,110:11344-11351.
    [128]Markovic NM, Schmidt TJ, Grgur BN, et al.1999. Effect of temperature on surface processes at the pt(111)-liquid interface:Hydrogen adsorption, oxide formation, and co oxidation[J]. J. Phys. Chem. B,103:8568-8577.
    [129]Geng B, Cai J, Liang SZ, et al.2010. Temperature effects on co adsorption/desorption at pt film electrodes:An electrochemical in situ infrared spectroscopic study[J]. Phys Chem Chem Phys,12:10888-10895.
    [130]Peng QY & Breen JJ.1998. In situ scanning tunneling microscopy studies of thiocyanate adlayers on pt(111) single crystal electrode surfaces[J]. Electrochim. Acta.,43:2619-2626.
    [131]Aljaafgolze K, Kolb DM & Scherson D.1986. On the voltammetry curves of pt(111) in aqueous-solutions[J]. J. Electroanal. Chem.,200:353-362.
    [132]Kita H, Ye S, Aramata A, et al.1990. Adsorption of hydrogen on platinum single-crystal electrodes in acid and alkali solutions[J]. J. Electroanal. Chem.,295:317-331.
    [133]Ye S, Kita H & Aramata A.1992. Hydrogen and anion adsorption at platinum single-crystal electrodes in phosphate solutions over a wide-range of ph[J]. J. Electroanal. Chem., 333:299-312.
    [134]Tadjeddine M, Flament JP, Le Rille A, et al.2006. Sfg experiment and ab initio study of the chemisorption of cn- on low-index platinum surfaces[J]. Surf Sci,600:2138-2153.
    [135]Kim YG, Yau SL & Itaya K.1996. Direct observation of complexation of alkali cations on cyanide-modified pt(111) by scanning tunneling microscopy [J]. J. Am. Chem. Soc, 118:393-400.
    [136]Tanaka S, Yau SL & Itaya K.1995. In-situ scanning-tunneling-microscopy of bromine adlayers on pt(111)[J]. J. Electroanal. Chem.,396:125-130.
    [137]Yang YF & Denuault G.1996. Scanning electrochemical microscopy (secm):Study of the adsorption and desorption of hydrogen on platinum electrodes in na2so4 solution (ph=7)[J], J. Electroanal. Chem.,418:99-107.
    [138]Pletcher D & Sotiropoulos S.1994. Hydrogen adsorption-desorption and oxide formation-reduction on polycrystalline platinum in unbuffered aqueous-solutions[J]. J. Chem. Soc. Faraday Trans.,90:3663-3668.
    [139]Ashley K, Feldheim DL, Parry DB, et al.1994. Infrared spectroelectrochemical study of cyanide adsorption and reactions at platinum-electrodes in aqueous perchlorate electrolyte[J]. J. Electroanal. Chem.,373:201-209.
    [140]Ashley K, Samant MG, Seki H, et al.1989. Cation effects on the vibrational frequencies of adsorbed thiocyanate on platinum[J]. J. Electroanal. Chem.,270:349-364.
    [141]Climent MA, Valls MJ, Feliu JM, et al.1992. The behavior of platinum single-crystal electrodes in neutral phosphate buffered solutions[J]. J. Electroanal. Chem.,326:113-127.
    [142]Franaszczuk K & Sobkowski J.1989. The voltammetry of platinized platinum-electrodes in aqueous na2so4[J]. J. Electroanal. Chem.,261:223-227.
    [143]Paulissen VB & Korzeniewski C.1992. Infrared-spectroscopy as a probe of the adsorption and electrooxidation of a cyanide monolayer at platinum under aqueous electrochemical conditions[J]. J. Electroanal. Chem.,96:4563-4567.
    [144]Ramaswamy N & Mukerjee S.2011. Influence of inner-and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media[J]. J. Phys. Chem. C,115:18015-18026.
    [145]Yang YF & Denuault G.1996. Scanning electrochemical microscopy (seem) study of ph changes at pt electrode surfaces in na2so4 solution (ph 4) under potential cycling conditions[J]. J. Chem. Soc. Faraday Trans.,92:3791-3798.
    [146]Macdouga.B, Conway BE & Kozlowsk.Ha.1971. Anodic displacement of chemisorbed hydrogen in electrosorption of organic molecules at platinum-new effect for characterizing chemisorption at electrodes [J]. J. Electroanal. Chem.,32:A15-A20.
    [147]Lazarescu V & Clavilier J.1998. Ph effects on the potentiodynamic behavior of the pt(111) electrode in acidified naclo4 solutions[J]. Electrochim. Acta.,44:931-941.
    [148]From the residue acid left on the wall of the glass cell used in previous experiments in acidic solution which has not been rinsed carefully then after.
    [149]!!! INVALID CITATION!!!
    [150]Paulissen VB & Korzeniewski C.1992. Infrared-spectroscopy as a probe of the adsorption and electrooxidation of a cyanide monolayer at platinum under aqueous electrochemical conditions [J]. J. Phys. Chem.,96:4563-4567.
    [151]Strbac S.2011. The effect of ph on oxygen and hydrogen peroxide reduction on polycrystalline pt electrode[J]. Electrochim. Acta.,56:1597-1604.
    [152]Li MF, Liao LW, Yuan DF, et al.2013. Ph effect on oxygen reduction reaction at pt(111) electrode[J]. Electrochim Acta., in press.
    [153]Drazic DM, Tripkovic AV, Popovic KD, et al.1999. Kinetic and mechanistic study of hydroxyl ion electrosorption at the pt(111) surface in alkaline media[J]. Journal of Electroanalytical Chemistry,466:155-164.
    [154]Johnston B, Mayo MC & Khare A.2005. Hydrogen:The energy source for the 21st century[J]. Technovation,25:569-585.
    [155]Gasteiger HA, Panels JE & Yan SG.2004. Dependence of pem fuel cell performance on catalyst loading[J]. J Power Sources,127:162-171.
    [156]Tucker MC.2010. Progress in metal-supported solid oxide fuel cells:A review[J]. J Power Sources,195:4570-4582.
    [157]Gasteiger HA & Mathias MF, Fundamental research and development challenges in polymer electrolyte fuel cell technology.2005:Vol.2002.
    [158]Wagner FT, Lakshmanan B & Mathias MF.2010. Electrochemistry and the future of the automobile[J]. J Phys Chem Lett,1:2204-2219.
    [159]Wang JX, Markovic NM & Adzic RR.2004. Kinetic analysis of oxygen reduction on pt(111) in acid solutions:Intrinsic kinetic parameters and anion adsorption effects[J]. J Phys Chem B, 108:4127-4133.
    [160]Xiao L, Zhuang L, Liu Y, et al.2009. Activating pd by morphology tailoring for oxygen reduction[J]. J Am Chem Soc,131:602-608.
    [161]Hernandez J, Solla-Gullon J, Herrero E, et al.2007. Electrochemistry of shape-controlled catalysts:Oxygen reduction reaction on cubic gold nanoparticles[J]. J Phys Chem C, 111:14078-14083.
    [162]Santos LGRA, Freitas KS & Ticianelli EA.2009. Heat treatment effect of pt-v/c and pt/c on the kinetics of the oxygen reduction reaction in acid media[J]. Electrochim Acta, 54:5246-5251.
    [163]Arico AS, Bruce P, Scrosati B, et al.2005. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater,4:366-377.
    [164]Atkinson A, Barnett S, Gorte RJ, et al.2004. Advanced anodes for high-temperature fuel cells[J]. Nat Mater,3:17-27.
    [165]Strasser P, Koh S, Anniyev T, et al.2010. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nat Chem,2:454-460.
    [166]Mayrhofer KJJ & Arenz M.2009. Log on for new catalysts[J]. Nat Chem,1:518-519.
    [167]Strmcnik D, Kodama K, van der Vliet D, et al.2009. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum[J]. Nat Chem,1:466-472.
    [168]Kinoshit.K, Lundquis.Jt & Stonehar.P.1973. Potential cycling effects on platinum electrocatalyst surfaces[J]. J Electroanal Chem,48:157-166.
    [169]Zhang S, Yuan X-Z, Hin JNC, et al.2009. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. J Power Sources,194:588-600.
    [170]Mayrhofer KJJ, Ashton SJ, Meier JC, et al.2008. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment[J]. J Power Sources,185:734-739.
    [171]Debe MK, Schmoeckel AK, Vernstrorn GD, et al.2006. High voltage stability of nanostructured thin film catalysts for pem fuel cells[J]. J Power Sources,161:1002-1011.
    [172]Komanicky V, Chang KC, Menzel A, et al.2006. Stability and dissolution of platinum surfaces in perchloric acid[J]. J Electrochem Soc,153:B446-B451.
    [173]Shao Y, Wang J, Kou R, et al.2009. The corrosion of pern fuel cell catalyst supports and its implications for developing durable catalysts[J]. Electrochim Acta,54:3109-3114.
    [174]Jeon MK & McGinn PJ.2011. Carbon supported pt-y electrocatalysts for the oxygen reduction reaction[J]. Journal of Power Sources,196:1127-1131.
    [175]Yoo SJ, Lee K-S, Hwang SJ, et al.2012. Pt3y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 37:9758-9765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700