用户名: 密码: 验证码:
光活性层掺杂及新型透明电极在聚合物太阳能电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物太阳能电池(polymer solar cell, PSC)是一种新型有机薄膜太阳能电池,具有制备工艺简单、成本低廉、重量轻和可制备成柔性器件等诸多优点,近年来受到广泛关注。新型给体/受体光伏材料的合成、光活性层微观结构和形貌的调控、缓冲层的引入和电极材料的开发都是目前聚合物太阳能电池的研究热点,而如何提高电池的能量转换效率(power conversion efficiency, PCE)则是聚合物太阳能电池研究的核心问题。本论文以通过光活性层掺杂提高聚合物太阳能电池PCE以及发展可替代ITO的透明电极为出发点,开展了以下几个方面的工作:
     (1)首次将Fe3O4磁性纳米粒子掺杂到P3HTPCBM光活性层中提高了体相异质结(BHJ)结构的聚合物太阳能电池的效率。我们发现在1%的最优Fe3O4磁性纳米粒子掺杂浓度下,Fe3O4掺杂后的P3HTPCBM聚合物太阳能电池(O A-Fe3O4P3HTPCBM)的能量转换效率(PCE)相比于未掺杂的器件提高了约18%。我们系统地研究了Fe3O4纳米粒子的磁性对于PCE提高的决定性影响,证明了PCE的提高的确归功于Fe3O4纳米粒子的磁性。实验结果还表明PCE18%的提高主要是由于短路电流(Jsc)提高了约14%,而Jsc的提高是由于Fe304纳米粒子诱导的磁场效应可以增加单线态激子到三线态激子系间窜越率,使三线态激子的数量增大,提高了激子分离效率和电池的光电流。
     (2)首次将双亲性的表面活性剂油酸酰胺(Oleamide)掺杂到P3HT:PCBM光活性层中,通过其在成膜过程中的自组装在光活性层与阴极之间形成阴极缓冲层,显著地提高了电池的效率。在2.5%的最优Oleamide掺杂浓度下,P3HTPCBM电池的能量转换效率(PCE)提高了约28%,这一提高主要是填充因子(FF)的贡献(增加约22%)。通过TEM、AFM和SKPM对光活性层的微观结构和表面形貌进行了表征,结果表明油酸酰胺分子掺杂到光活性层后,在后续成膜过程中会迁移到P3HT:PCBM薄膜表面并通过自组装形成阴极缓冲层和界面偶极层,降低了Al电极的功函数,使得Al电极与PCBM之间的能垒变小,有利于电子的抽取。
     (3)通过在PEDOTPSS薄膜表面旋涂一层双亲性的表面活性剂甘油单硬脂酸酯(glycerol monostearate, GMS),制备了PEDOTPSS/GMS双层膜作为一种可以替代氧化铟锡(ITO)导电玻璃的新型透明电极。测试表明该透明电极的电导率高达1019S cm-1,方阻为98Ω sq-1;可见光区的透光率大于80%。我们提出了GMS修饰PEDOT:PSS薄膜后电导率提高的作用机理为PEDOT:PSS薄膜中构象发生了改变。当GMS甲醇溶液旋涂在PEDOT:PSS薄膜表面时,由于甲醇的溶胀作用,GMS分子会扩散到PEDOT:PSS薄膜内部并和PEDOT:PSS发生相互作用,导致了PEDOT链与PSS链的相分离,使得PEDOT链重新定向并摆脱了PSS链的缠绕,促进了PEDOT链与链之间的相互作用,因此降低了载流子在链间及相间跳跃时的能垒,有利于载流子在链与链之间的传输,从而大幅提高PEDOTPSS薄膜的电导率。进一步地,我们用PEDOTPSS/GMS双层膜替代ITO作为新型透明阳极制备了非ITO(ITO-free)聚合物太阳能电池,在PTB7:PC70BM体系中PCE达到了7.06%,这一效率与基于ITO的电池的PCE相当,也是目前为止所报道的非ITO聚合物太阳能电池的最高PCE。通过将PEDOTPSS/GMS新型透明阳极应用于不同的给体/受体电池体系,我们发现其具有很好的通用性,展示了它在大面积、高效率非ITO聚合物太阳能电池中的应用前景。
As a new type of thin-film organic solar cells, polymer solar cells (PSCs) have been receiving great attention because of its advantages in terms of the simple fabrication, low-cost, light-weight, and flexibility. Most recent studies of PSCs have been focused on using novel donor and acceptor photovoltaic materials, optimizing microphase separation structure and morphology of the photoactive layers, incorporating the buffer layers, and developing new electrode materials. To improve the power conversion efficiency (PCE) is the key issue of current PSC research. In this dissertation, we focused on enhancing the PCE of PSCs by doping in photoactive layer and developing a novel transparent electrode to substitute ITO, and carried out the following works The results are as follow:
     (1) By doping Fe3O4magnetic nanoparticles (NPs) into P3HTPCBM bulk heterojunction (BHJ) PSCs for the first time, the PCE of the OA-Fe3O4P3HTPCBM BHJ-PSC device is enhanced by~18%at the optimum OA-Fe3O4NPs doping ratio of1%. This enhancement is primarily due to the increase of short-circuit current (Jsc) by~14%, which is attributed to the magnetic field effect originated from the superparamagnetism of Fe3O4NPs, resulting in an increase of the the rate of intersystem crossing from the photogenerated singlet to the trip let state. Consequently the population of triplet excitons increases, leading to an increase of dissociated charge carriers and the photocurrent.
     (2) For the first time an amphiphilic surfactant oleamide was doped into P3HTPCBM photoactive layer, resulting in the formation of a novel cathode buffer layer (CBL) due to self-assembly of oleamide molecules, thus the PCE of P3HTPCBM PSC was enhanced dramatically. At the optimum oleamide doping ratio of2.5%, the incorporation of oleamide CBL leads to the PCE enhancement by~28%. The enhancement of PCE is primarily caused by the increase of FF. The microstructures and surface morphologies of the oleamide-incorporated P3HTPCBM photoactive films was studied by TEM, AFM, and SKPM, revealing that oleamide molecules initially doped in P3HTPCBM layer may undergo self-assembly and migrate to the surface of the P3HTPCBM layer, leading to the formation of a CBL that functioned as an interfacial dipole layer between the photoactive layer and Al electrode. Thus the energy level offset between the work function of Al and the LUMO level of the PCBM acceptor was decreased, facilitating the electron extraction by the Al cathode.
     (3) By spin-coating a glycerol monostearate (GMS) surfactant layer onto PEDOTPSS film, a PEDOT:PSS/GMS bilayer transparent electrode was fabricated, which can be used to substitute ITO. The highest conductivity of the as-prepared PEDOTPSS film reached1019Scm-1with a sheet resistance of98Ω1sq-1,and the PEDOTPSS/GMS bilayer films exhibited transparency of around80%in the visible range. The conductivity improvement was proposed to result from the GMS-induced segregation of PSS chains and the conformational change of the conductive PEDOT chains within PEDOT:PSS. When GMS in methanol was spin-coated onto PEDOTPSS film, due to the swelling effect of methanol, GMS molecules may diffuse into the PEDOTPSS film and interact with PEDOTPSS, leading to the phase separation between PEDOT and PSS chains. As a result PEDOT chains would take reorientation by getting away from the PSS chains'coils, allowing more inter-chain interactions among the PEDOT components. Thus, the energy barrier for inter-chain and inter-domain charge hopping would be lowered and charge transfer among the PEDOT chains would become easier, leading to a tremendous enhancement of the conductivity of PEDOT:PSS film. Using Clevios PH1000/GMS bilayer films as the transparent anodes substituting ITO, high-efficiency ITO-free BHJ-PSC devices based on PTB7:PC71BM systems exhibit highest PCE of7.06%, which is comparable to the corresponding devices based on the traditional ITO anode. The obtained PCE of7.06%is the highest one for ITO-free BHJ-PSC devices reported up to now. The universality of our new bilayer anode for BHJ-PSC devices based on versatile active layer materials promises its potential in the large-area high-efficiency ITO-free BHJ-PSCs.
引文
[1]L. D. Partain,1995. Solar Cells and Their Applications[M], New York John-Wiley & Sons.
    [2]R. C. Neville,1995. Solar Energy Conversion:the Solar Cell[M], Amsterdam:Elsevier.
    [3]Graetzel, M. Nature 2001,414,338.
    [4]Graetzel, M. Acc. Chem. Res.2009,42,1788.
    [5]G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K Emery and Y. Yang,2005. [J]. Nat. Mater.,4:864.
    [6]J. Peet, A. J. Heeger and G. C. Bazan,2009. [J]. Acc. Chem. Res.,42:1700.
    [7]C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and S. P. Williams,2010. [J]. Adv. Mater.,22:3839.
    [8]W. Z. Cai, X. Gong and Y. Cao,2010. [J]. Sol. Energy Mater. Sol. Cells,94:114.
    [9]M. K Siddiki, J. Li, D. Galipeau and Q. Q. Qiao,2010. [J]. Energy Environ. Sci. 3:867.
    [10]Y J. He and Y F. Li,2011. [J]. Phys. Chem. Chem. Phys.,13:1970.
    [11]W. Chen, M. P. Nikiforov and S. B. Darling,2012. [J]. Energy Environ. Sci.5:8045.
    [12]G. Li, R. Zhu and Y. Yang,2012. [J]. Nat. Photon.,6:153.
    [13]N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl,1992. [J]. Science,258:1474.
    [14]G. Yu, J. Gao, J. C. Hummefen, F. Wudl and A J. Heeger,1995. [J]. Science,270:1789.
    [15]Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu and Y Cao,2012. [J]. Nat. Photon,6:591.
    [16]http://www.polyera.com/newsflash/polyera-achieves-world-record-organic-solar-cell-perfor mance.
    [17]J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang 2013. [J]. Nat. Commun, DOI:10.1038/ncomms2411.
    [18]http://www.solarmer.com.
    [19]S. H. Park, A Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A J. Heeger,2009. [J]. Nat. Photon,3:297.
    [20]Y.Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. P. Yu,2010. [J]. Adv. Mater.,22:E135-E138.
    [21]H. Zhou, L. Yang, A C. Stuart, S. C. Price, S. Liu and W. You,2011. [J]. Angew. Chem. Int. Ed,502995.
    [22]Y. J. He and Y. F. Li,2011. [J]. Phys. Chem. Chem. Phys.,13:1970.
    [23]R. Po, C. Carbonera, A. Bernardi and N. Camaioni,2011. [J]. Energy Environ. Sci.,4:285.
    [24]R. Steim, F. R. Kogler and C. J. Brabec,2010. [J]. J. Mater. Chem.,20:2499.
    [25]L. M. Chen, Z. Xu, Z. R. Hong and Y. Yang,2010. [J]. J. Mater. Chem.,20:2575.
    [26]H.Ma,H.L. Yip, F. Huang and A. K Jen,2010. [J]. Adv. Funct. Mat.,20:1371.
    [27]H. L. Yip and A. K. Jen,2012. [J]. Energy Environ. Sci,.5:5994.
    [28]J. E. Yoo, J. E. Yoo, K S. Lee, A. Garcia, J. Tarver, E. D. Gomez, K. Baldwin, Y. Sun, H. Meng, T.Q. Nguyen and Y. L. Loo,2010. [J]. Proc. Nat. Acad. Sci.,107:5712.
    [29]J. H. Huang, D. Kekuda, C. W. Chu and K. C. Ho,2009. [J]. J. Mater. Chem.,19:3704.
    [30]S. I. Na, G. Wang, S. S. Kim, T. W. Kim, S. H. Oh, B. K. Yu, T. Lee and D. Y. Kim,2009. [J]. J. Mater. Chem.,19:9045.
    [31]Y. S. Hsiao, W. T. Whang, C. P. Chen and Y. C. Chen,2008. [J]. J. Mater. Chem.,18:5948.
    [32]J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu and Y. Yang,2005. [J]. Adv. Funct. Mater., 15-203.
    [33]J. Ouyang and Y. Yang,2006. [J]. Adv. Mater.,182141.
    [34]Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler,2004. [J]. Science,305:1273.
    [35]G. Gruner,2006. [J]. J. Mater. Chem.,16:3533.
    [36]M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R Atkinson and R. H. Baughman,2005. [J]. Science,309:1215.
    [37]P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong and Q. Qiao,2010. [J]. ACS AppL Mater. Interf.,2:3572.
    [38]X. Mei and J. Ouyang,2011. [J]. Carbon,49:5389,
    [39]K. S. Kim, Y. Zhao, H. Jang, S. Yoon Lee, J. M. Kim, K S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong,2009. [J]. Nature,457:706.
    [40]H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen,2008, [J]. ACS Nano, 2:463.
    [41]V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, 2009. [J]. Nano Lett.,9:1949.
    [42]J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans,2008. [J]. Nano Lett.,8:689.
    [43]Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu and Q. Pei,2011. [J]. Adv. Mater.,23:664.
    [44]Y. Galagan, J. E. J. M. Rubingh, R. Andriessen, C. C. Fan, P. W. M. Blom, S.C. Veenstra and J. M. Kroon,2011. [J]. Sol. Energy Mater. Sol. Cells,95:1339.
    [45]J. S. Yu, I. Kim, J. S. Kim, J. Jo, T. L. Olsen, R. R. Sondergaard, M. Hosel, D. Angmo, M. Jergensenb and F. C. Krebs,2012. [J]. Nanoscale,6:6032.
    [46]H. Spanggaard and F. C. Krebs,2004. [J]. SoL Energy Mater. Sol. Cells,83:125-146.
    [47]C. Deibel, V. Dyakonov,2010. [J]. Rep. Prog. Phys.,73:096401-1-096401-39.
    [48]Y. Kim, D.D.C. Bradley,2005. [J]. Curr. Appl. Phys.,5:222-226.
    [49]S.R. Scully, M.D. McGehee,2006. [J]. J. Appl. Phys.,100:034907-1-034907-5.
    [50]B. Xu, S. Holdcroft,1994. [J]. Thin Solid Films.,242:174-177.
    [51]D. Vacar, E. S. Maniloff, D. W. Mc Branch and A J. Heeger,1997. [J]. Phys. Rev. B, 56:4573.
    [52]C. J. Brabec,2004. [J].Sol. Energy Mater. Sol. Cells,83273-292.
    [53]P. Schilinsky, P. Waldauf, C. J. Brabec,2002. [J]. Appl. Phys. Lett.,813885.
    [54]Y. K. Kim, S. Cook, S. M. Tuladhar, S. A Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree,2006. [J]. Nat. Mater.,5:197.
    [55]G. J. Zhao, Y. J. He and Y. F. Li,2010. [J]. Adv. Mater.,22:4355-4358.
    [56]M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A J. Heeger and C. J. Brabec,2006. [J]. Adv.Mater.,18:789.
    [57]G. Dennler, M. C. Scharber and C. J. Brabec,2009. [J]. Adv. Mater.,21:1323.
    [58]N. Blouin, A Michaud, M, Leclerc,2007. [J]. Adv. Mater.,19:2295-2300.
    [59]H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P.Yu, Y. Wu and G. Li,2009. [J]. Nat. Photon,3:649.
    [60]B. C. Thompson, J. M. J. Frechet,2008. [J]. Angew. Chem. Int. Ed,47:58-77.
    [61]M. D. Irwin, D. B. Buchholz, A W. Hains, R. P. H. Chang, T. J. Marks,2008. [J]. PNAS, 105:2783-2787.
    [62]M. M. Wienk, J. M. Kroon, W. J. H Verhees, J. Knol, J. C. Hummelen, P. A van Hal and R. A J. Janssen,2003. [J]. Angew. Chem. Int. Ed,42:3371-3375.
    [63]R. B. Ross, C. M. Cardona, D. M. Guldi,2009. [J]. Nat Mater,8208-212.
    [64]Y. He, H Y. Chen, J. Hou and Y. F. Li,2010. [J]. J Am Chem Soc,132:1377-1382.
    [65]L. S. Hung, C. W. Tang, M. G. Mason,1997. [J]. Appl. Phys. Lett.,70:152-154.
    [66]G. E. Jabbour, B. Kippelen, N. R. Armstrong,1998. [J]. Appl. Phys. Lett.,73:1185-1187.
    [67]C. H Lee,1997. [J]. Synth. Met.,91:125-127.
    [68]Y. S. Lee, J. H Park, Y. H. Kwak,2003. [J]. Mol. Cryst. Liq. Cryst.,405:89-95.
    [69]J. Lee, Y. Park, D. Y. Kim,2003. [J]. AppL Phys. Lett.,82:173-175.
    [70]C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk,2002. [J]. Appl. Phys. Lett.,80:1288.
    [71]J. Y. Kim, S. H Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A. J. Heeger,2006. [J]. Adv. Mater.,18:572.
    [72]Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H B. Wu, L. W. Chen, S. J. Su and Y. Cao, 2011. [J]. Adv. Mater.,23:4636.
    [73]Y. Cao, G. Yu, C. Zhang,1997. [J]. Synth. Met.,87:171-174.
    [74]V. Shrotriya, G. Li, Y. Yao,2006. [J]. Appl. Phys. Lett.,88:073508-1-3.
    [75]S. Han, W. S. Shin, M. Seo,2009. [J]. Organic Electronics,10:791-797.
    [76]O. Inganas,2011. [J]. Nat. Photon.,5:201.
    [77]A Chipman,2007. [J]. Nature,449:131.
    [78]F. C. Krebs,2013. [J]. J. Appl. Polym. Sci., DOI:10.1002/APP.38854.
    [79]M. S. Jang, M. K. Ryu, M. H. Yoon, S. H. Lee, H. K. Kim, A Onodera, S. Kojima, 2009. [J]. Current Applied Physics,9:651-657.
    [80]Y. Xia, K. Sun and J. Ouyang,2012. [J]. Adv. Mater.,242436.
    [81]C. W. Tang,1986. [J]. AppL Phys. Lett.,48:183-185.
    [82]N. S. Sariciftci, D. Braun and C. Zhang,1993. [J]. Appl. Phys. Lett.,62:585-587.
    [83]J.Y. Kim, K Lee, N.E. Coates, D. Moses, T. Nguyen, M. Dante, AJ. Heeger,2007. [J]. Science.,317222-225.
    [84]L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang,2012. [J]. Nature Photon.6:180.
    [85]F. Padinger, R. S. Rittberger and N. S. Sariciftci,2003. [J]. Adv. Funct. Mater.,13:85-88.
    [86]T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec,2005. [J]. Adv. Funct. Mater.,15:1193-1196.
    [87]Y. J. Cheng, S. H. Yang and C. S. Hsu,2009. [J]. Chem. Rev.,109:5868-5923.
    [1]For recent reviews, see (a) S. Gunes, H. Neugebauer, N.S. Sariciftci,2007. [J]. Chem. Rev., 107:1324-1338. (b) B.C. Thompson, J.M.J. Frechet,2008. [J]. Angew. Chem. Int. Ed., 47:58-77. (c) G. Dennler, M.C. Scharber, C.J. Brabec,2009. [J]. Adv. Mater.,21:1323-1338. (d) L.M. Chen, Z.R. Hong, G. Li, Y. Yang,2009. [J]. Adv. Mater.,21:1434-1449. (e)M. Helgesen, R S(?)ndergaard, F.C. Krebs,2010. [J]. J. Mater. Chem.,20:36-60. (f) X.W. Zhan, D.B. Zhu,2010. [J]. Polym. Chem.,1:409-419. (g) C. Deibel, V. Dyakonov,2010. [J]. Rep. Prog. Phys.,73:096401-1-096401-39. (h) W.Z. Cai, X. Gong, Cao. Y,2010. [J]. Solar Energy Mater. Solar Cells.,94:114-127. (i) Y.J. He, Y.F. Li,2011. [J]. Phys. Chem. Chem. Phys.,13:1970-1983.
    [2]J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T. Nguyen, M. Dante, A.J. Heeger,2007. [J]. Science.,317:222-225.
    [3]G. Li, V. Shrotriya, Y. Yao, Y. Yang,2005. [J]. J. Appl. Phys.,98:043704-1-043704-5.
    [4]C.Q. Ma, M. Fonrodona, M.C. Schikora, M.M. Wienk, R.A.J. Janssen, P. Bauerle,2008. [J]. Adv. Funct.Mater.,18:3323-3331.
    [5]G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang,2005. [J]. Nature Mater.,4:864-868.
    [6]Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C Bradley, M. Giles, I. Mcculloch, C.S. Ha, M. Ree,2006. [J]. Nature Mater.,5:197-203.
    [7]H.W. Tang, G.H. Lu, L.G. Li, J. Li, Y.Z. Wang, X.N. Yang,2010. [J]. J. Mater. Chem., 20:683-688.
    [8]H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, G. Li, 2009. [J]. Nature Photon.,3:649-653.
    [9]M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks,2008. [J]. PNAS., 105:2783-2787.
    [10]B.Q. Sun, N.C. Greenham,2006. [J]. Phys. Chem. Chem. Phys.,8:3557-3560.
    [11]G. Ridolfi, L. Favaretto, G. Barbarella, P. Samori, N. Camaioni,2005. [J]. J. Mater. Chem., 15:1704-1707.
    [12]V.D. Mihailetchi, H.X. Xie, B.D. Boer, L.J.A. Koster, P.W.M. Blom,2006. [J]. Adv. Funct Mater.,16:699-708.
    [13]Y.S. Kim, Y. Lee, J.K. Kim, E.O. Seo, E.W. Lee, W. Lee, S.H Han, S.H. Lee,2010. [J]. Curr. AppL Phys.,10:985-989.
    [14]Y. Kim, D.D.C. Bradley,2005. [J]. Curr. Appl. Phys.,5222-226.
    [15]S.R. Scully, M.D. McGehee,2006. [J]. J. Appl. Phys.,100:034907-1-034907-5.
    [16]B. Xu, S. Holdcroft,1994. [J]. Thin Solid Films.,242:174-177.
    [17]F.Q. Guo, Y.G. Kim, J.R. Reynolds, K.S. Schanze,2006. [J]. Chem. Commun., 17:1887-1889.
    [18]A. Kohler, H.F. Wittmann, R.H. Friend, M.S. Khan, J. Lewis,1996. [J]. Synth. Met., 77:147-150.
    [19]M. Arif, K. Yang, L. Li, P. Yu, S. Guha, S. Gangopadhyay, M. Forster, U. Scherf,2009. [J]. Appl. Phys. Lett.,94:063307-1-063307-3.
    [20]Z.H. Xu, B. Hu, J. Howe,2008.[J]. J. Appl. Phys.,103:043909-1-043909-8.
    [21]P. Shakya, P. Desai, T. Kreouzis, W.P. Gillin, S.M. Tuladhar, A.M. Ballantyne, J. Nelson, 2008. [J]. J. Phys:Condens. Matter.,20:452203-1-452203-4.
    [22]B.P. Rand, C. Girotto, A. Mityashin, A. Hadipour, J. Genoe, P. Heremans,2009. [J]. Appl. Phys. Lett.,95:173304-1-173304-3.
    [23]T. Fried, G. Shemer, G. Markovich,2001. [J]. Adv. Mater.,13:1158-1161.
    [24]Y.J. Xia, L. Wang, X.Y. Deng, D.Y. Li, X.H. Zhu, Y. Cao,2006. [J]. Appl. Phys. Lett., 89:081106-1-081106-3.
    [25]Z. Xu, L.M. Chen, G.W. Yang, C.H. Huang, J.H. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, 2009. [J]. Adv. Funct. Mater.,19:1227-1234.
    [26]C.Y. Nam, D. Su, C.T. Black,2009. [J]. Adv. Funct. Mater.,193552-3559.
    [27]W.L. Wang, H.B. Wu, C.Y. Yang, C. Luo, Y. Zhang, J.W. Chen, Y. Cao,2007. [J]. Appl. Phys. Lett.,90:183512-1-183512-3.
    [28]The utmost OA doping ratio is estimated by assuming that the 1%(w/w) doping of OA-Fe3O4 NPs within P3HT:PCBM blend was all counted to OA. The actual OA doping ratio is much less because of the existence of Fe3O4NPs.
    [29]H. Ohno,2010. [J]. Nature Mater.,9:952-954.
    [30]J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori,2003. [J]. Chem. Phys. Lett., 380:710-715.
    [31]O. Mermer, G. Veeraraghavan, T.L. Francis, M. Wohlgenannt,2005. [J]. Solid State Commun.,134:631-636.
    [32]Y. Wu, B. Hu,2006. [J]. Appl. Phys. Lett,89:203510-1-203510-3.
    [33]P. Desai, P. Shakya, T. Kreouzis, W.P. Gillin, N.A Morley, M.R.J. Gibbs,2007. [J]. Phys. Rev. B.,75:094423-1-094423-5.
    [34]P. Desai, P. Shakya, T. Kreouzis, W.P. Gillin,2007. [J]. J. AppL Phys., 102:073710-1-073710-5.
    [35]T.L. Francis, O. Mermer, G. Veeraraghavan, M. Wohlgenannt,2004. [J]. New J. Phys., 6:185-1-185-8.
    [36]B.F. Ding, Y. Yao, Z.Y. Sun, C.Q. Wu, X.D. Gao, ZJ. Wang, X.M. Ding, W.C. H. Choy, X.Y. Hou,2010. [J]. Appl. Phys. Lett.,97:163302-1-163302-3.
    [37]P. Desai P.Shakya, T. Kreouzis, W.P. Gillin,2007. [J]. Phys. Rev. B., 76-235202-1-235202-5.
    [38]F.J. Wang, H. Basler, Z.V. Vardeny,2008. [J]. Phys. Rev. Lett.,101 236805-1-236805-4.
    [39]Y.L. Lei, Q.L. Song, Y. Zhang, P. Chen, R. Liu, Q.M. Zhang, Z.H. Xiong,2009. [J]. Org. Electron.,10:1288-1292.
    [1]G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,1995. [J]. Science,270:1789.
    [2]L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y J. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y Yang,2012. [J]. Nature Photon.6:180.
    [3]For selected reviews, see a) C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and S. P. Williams,2010. [J]. Adv. Mater.,22:3839; b) F. C. Krebs, J. Fyenbo and M. J(?)rgensen,2010. [J]. J. Mater. Chem.,20:8994; c) C. Deibel and V Dyakonov,2010. [J]. Rep. Prog. Phys.,73:096401; d) W. Z. Cai, X. Gong and Y Cao,2010. [J]. Solar Energy Mater. Solar Cells,94:114; e) Y. Zheng and J. G. Xue,2010. [J]. Polymer Reviews,50:420; f) Y J. He and Y F. Li,2011. [J]. Phys. Chem. Chem. Phys.,13:1970; g)M. K. Siddiki, J. Li, D. Galipeau and Q. Q. Qiao,2010. [J]. Energy Environ. Sci. 3:867; h) W. Chen, M. P. Nikiforov and S. B. Darling,2012. [J]. Energy Environ. Sci.5:8045; i) G. Li, R. Zhu and Y. Yang,2012. [J]. Nature Photon.6:153.
    [4]M. T. Dang, L. Hirsch and G. Wantz,2011. [J]. Adv. Mater.,23:3597, and references therein.
    [5]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang and T. J. Marks,2008. [J]. PNAS 105:2783.
    [6]X. H. Li, W. C. H. Choy, L. J. Huo, F. X. Xie, W. E. I. Sha, B. F. Ding, X. Guo, Y F. Li, J. H Hou, J. B. You and Y Yang,2012. [J]. Adv. Mater.,243046.
    [7]a) S. H. Park, A Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger,2009. [J]. Nature Photoa,3297; b) L. L. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y Wu, G Li, C. Ray and L. P. Yu,2010. [J]. Adv. Mater.,22:E135; c) H. Zhou, L. Yang, A C. Stuart, S. C. Price, S. Liu and W. You,2011. [J]. Angew. Chem. Int. Ed,502995; d) K. Sun, Y J. Xia and J. Y Ouyang,2012. [J]. Solar Energy Mater. Solar Cells,97:89; e) Y J. Xia, K. Sun and J. Y Ouyang,2012. [J]. Energy Environ. Sci.,5:5325.
    [8]For recent reviews, see a) R. Po, C. Carbonera, A Bernardi and N. Camaioni,2011. [J]. Energy Environ. Sci.,4285; b) R. Steim, F. R. Kogler and C. J. Brabec,2010. [J]. J. Mater. Chem.,202499; c) L. M. Chen, Z. Xu, Z. R. Hong and Y Yang,2010. [J]. J. Mater. Chem., 20:2575; d) H. Ma, H. L. Yip, F. Huang and A K. Jen,2010. [J]. Adv. Funct Mat.,20:1371; e) H. L. Yrp and A K. Jen,2012. [J]. Energy Environ. Sci,.5:5994.f) T. W. Lee, K. G Lim and D. R Kim,2010. [J]. Electronic Materials Letters,6:41. g) J. R Park, T. W. Lee, B. D. Chin, D. R Wang and O. O. Park,2010. [J]. Macromol. Rapid Commun.,312095.
    [9]a) C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk,2002. [J]. Appl. Phys. Lett.,80:1288; b) X. Chen, C. Zhao, L. Rothberg and M. K. Ng,2008. [J]. Appl. Phys. Lett., 93:123302.
    [10]a) J. Y Kim, S. R Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A J. Heeger,2006. [J]. Adv. Mater.,18:572; b) J. Y Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante and A J. Heeger,2007. [J]. Science,317:222.
    [11]a) F. Nickel, A Puetz, M. Reinhard, H. Do, C. Kayser, A Colsmann and U. Lemmer,2010. [J]. Org. Electron.,11:535; b) Y Zhao, Z. Xie, C. Qin, Y Qu, Y Geng and L. Wang,2009. [J]. Solar Energy Mater. Solar Cells,93:604.
    [12]Q. D. Tai, J. H. Li, Z. K. Liu, Z. R Sun, X. Z. Zhao and F. Yan,2011. [J]. J. Mater. Chem., 21:6848.
    [13]S. Wei, T. Nishizawa, K. Tajima and K Hashimoto,2008. [J]. Adv. Mater.,20:2211.
    [14]F. C. Chen and S. C. Chien,2009. [J]. J. Mater. Chem.,19:6865.
    [15]J. W. Jung, J. W. Jo and W. H. Jo,2011. [J]. Adv. Mater.,23:1782.
    [16]G. Fang, S. P. Wu, Z. Y. Xie, Y. H. Geng and L. X. Wang,2011. [J]. MacromoL Chem. Phys.,212:1846.
    [17]W. L. Wang, H. B. Wu, C.Y Yang, C. Luo, Y Zhang, J. W. Chen and Y Cao,2007. [J]. Appl. Phys. Lett.,90:183512.
    [18]H. L. Yip, S. K. Hau, N.S. Baek, and A. K Jen,2008. [J]. Appl. Phys. Lett.,92:193313.
    [19]W. F. Zhang, Y Xu, H. T. Wang, C. H. Xu and S. F. Yang,2011. [J]. Solar Energy Mater. Solar Cells,952880.
    [20]B. J. Briscoe, D. Tabor and V. Mustafae,1972. [J]. Wear,19:399.
    [21]A.H. Sharma and B. C. Beard,1997. [J]. Journal of Vinyl & Additive Technology,3309.
    [22]A. J. G. Allan,1959. [J]. Journal of Colloid Science,14206.
    [23]S. Gunes, H. Neugebauer and N.S. Sariciftci,2007. [J]. Chem. Rev.,107:1324.
    [24]D. Gupta, M. Bag and K S. Narayan,2008. [J]. Appl. Phys. Lett.,92:093301.
    [25]H. W. Tang, G. H. Lu, L. G. Li, J. Li, Y. Z. Wang and X. N. Yang,2010. [J]. J. Mater. Chem.,20:683.
    [26]Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu, L. W. Chen, S. J. Su and Y. Cao, 2011. [J]. Adv. Mater.,23:4636.
    [27]It should be noted that, since the thicknesses of the oleamide CBL for the lower doping ratio of 0.5 wt% and 1.25 wt%is expected to be comparable to or thinner than the roughness of the P3HTPCBM photoactive film, it is impossible to estimate the thicknesses of the oleamide CBL directly by subtracting the sum thickness of the P3HTPCBM/oleamide bilayers with that of the single P3HTPCBM layer measured by AFM.
    [28]Z. Feng, Y. Hou and D. Lei, [J].2010. Renewable Energy,35:1175.
    [29]C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan and Y Cao,2010. [J]. J. Mater. Chem.,202617.
    [30]F. L. Zhang, M. Ceder and O. Inganas,2007. [J]. Adv. Mater.,19:1835.
    [31]W. Ma, C.Yang, X. Gong, K. Lee and A. J. Heeger,2005. [J]. Adv. Funct. Mater.,15:1617.
    [32]C. Y Yang, C. Soci, D. Moses and A. J. Heeger,2005. [J]. Synth. Met.,155:639.
    [1]a) G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A J. Heeger,1995. [J]. Science,270:1789; b) G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K Emery and Y. Yang,2005. [J]. Nat. Mater.,4:864; c) J. Peet, A. J. Heeger and G. C. Bazan,2009. [J]. Acc. Chem. Res.,42:1700; d) C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and S. P. Williams,2010. [J]. Adv. Mater.,223839; e) W. Z. Cai, X. Gong and Y. Cao,2010. [J]. Sol. Energy Mater. Sol. Cells,94:114; f) M. K. Siddiki, J. Li, D. Galipeau and Q. Q. Qiao,2010. [J]. Energy Environ. Sci.3:867; g) Y. J. He and Y F. Li,2011. [J]. Phys. Chem. Chem. Phys.,13:1970;h) W. Chen, M. P. Nikiforov and S. B. Darling,2012. [J]. Energy Environ. Sci.5:8045; i) G. Li, R. Zhu and Y. Yang,2012. [J]. Nat. Photon.,6:153.
    [2]Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu, L. W. Chen, S. J. Su and Y. Cao, 2011. [J]. Adv. Mater.,23:4636.
    [3]Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu and Y. Cao,2012. [J]. Nat. Photon., 6:591.
    [4]For recent reviews, see:(a) R. Po, C. Carbonera, A. Bernardi and N. Camaioni,2011. [J]. Energy Environ. Sci.,4:285; (b) R. Steim, F. R. Kogler and C. J. Brabec,2010. [J]. J. Mater. Chem.,202499; (c) L. M. Chen, Z. Xu, Z. R. Hong and Y. Yang,2010. [J]. J. Mater. Chem., 20:2575; (d) H. Ma, H. L. Yip, F. Huang and A K Jen,2010. [J]. Adv. Funct. Mater., 20:1371; (e) H. L. Yip and A K Jen,2012. [J]. Energy Environ. Sci,5:5994; (f) M. Graetzel, R. A J. Janssen, D. B. Mitzi and E. H. Sargent,2012. [J]. Nature,488304.
    [5]W. F. Zhang, Y. Xu, H. T. Wang, C. H. Xu and S. F. Yang,2011. [J]. SoL Energy Mater. SoL Cells,95:2880.
    [6]W. F. Zhang, H. T. Wang, B. X. Chen, X. H. Bi, S. Venkatesan, Q. Q. Qiao and S. F. Yang, 2012. [J]. J. Mater. Chem.,22:24067.
    [7]H. T. Wang, W. F. Zhang, C. H. Xu, X. H. Bi, B. X. Chen and S. F. Yang,2013. [J]. ACS Appl. Mater. Interf.,5:26.
    [8]O. Inganas,2011. [J]. Nat. Photon.,5:201.
    [9]A Chipman,2007. [J]. Nature,449:131.
    [10]R. Garcia-Valverde, J. A Cherni and A Urbina,2010. [J]. Progress in Photovoltaics: Research & Applications,18:535.
    [II]N. Espinosa, R. Garcia-Valverde, A. Urbina and F. C. Krebs,2011. [J]. Energy Environ. Sci.,4:1547.
    [12]J. E. Yoo, J. E. Yoo, K. S. Lee, A Garcia, J. Tarver, E. D. Gomez, K Baldwin, Y. Sun, H. Meng, T.Q. Nguyen and Y. L. Loo,2010. [J]. Proc. Nat. Acad. Sci.,107:5712.
    [13]J. H. Huang, D. Kekuda, C. W. Chu and K. C. Ho,2009. [J]. J. Mater. Chem.,193704.
    [14]S. I. Na, G. Wang, S. S. Kim, T. W. Kim, S. H. Oh, B. K. Yu, T. Lee and D. Y. Kim,2009. [J].J. Mater. Chem.,19:9045.
    [15]Y. S. Hsiao, W. T. Whang, C. P. Chen and Y. C. Chen,2008. [J]. J. Mater. Chem.,18:5948.
    [16]J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu and Y. Yang,2005. [J]. Adv. Funct. Mater., 15:203.
    [17]J. Ouyang and Y. Yang,2006. [J]. Adv. Mater.,18:2141.
    [18]Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A F. Hebard and A G. Rinzler,2004. [J]. Science,305:1273.
    [19]G. Gruner,2006. [J]. J. Mater. Chem.,16:3533.
    [20]M. Zhang, S. Fang, A A Zakhidov, S. B. Lee, A E. Aliev, C. D. Williams, K. R. Atkinson and R. H. Baughman,2005. [J]. Science,309:1215.
    [21]P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong and Q. Qiao,2010. [J]. ACS AppL Mater. Interf.,2:3572.
    [22]X. Mei and J. Ouyang,2011. [J]. Carbon,49:5389.
    [23]K. S. Kim, Y. Zhao, H. Jang, S. Yoon Lee, J. M. Kim, K S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H, Hong,2009. [J]. Nature,457:706.
    [24]H. A Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen,2008, [J]. ACS Nano,2:463.
    [25]V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K Nelson, R. B. Kaner and Y. Yang, 2009. [J]. Nano Lett.,9:1949.
    [26]J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans,2008. [J]. Nano Lett.,8:689.
    [27]Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu and Q. Pei,2011. [J]. Adv. Mater.,23:664.
    [28]Y. Galagan, J. E. J. M. Rubingh, R. Andriessen, C. C. Fan, P. W. M. Blom, S.C. Veenstra and J. M. Kroon,2011. [J]. Sol. Energy Mater. SoL Cells,95:1339.
    [29]J. S. Yu, I. Kim, J. S. Kim, J. Jo, T. L. Olsen, R. R. S(?)ndergaard, M. Hosel, D. Angmo, M. J(?)rgensenb and F. C. Krebs,2012. [J]. Nanoscale,6:6032.
    [30]J. S. Huang, P. F. Miller, J. S. Wilson, A. J. Mello, J.C. Mello and D. C. Bradley,2005. [J]. Adv. Funct. Mater.,15:290.
    [31]Y. C. Tseng, A. U. Mane, J. W. Elamn and S. B. Darling,2012. [J]. Sol. Energy Mater. SoL Cells,99:235.
    [32]G. Heywang and F. Jonas,1992. [J]. Adv. Mater.,4:116.
    [33]L. Groenendaal, F. Jonas, D. Freitag, H. Peilartzik and J. R. Reynolds,2000. [J]. Adv. Mater.,12:481.
    [34]Y. Cao, G. Yu, R. Menon and A J. Heeger,1997. [J]. Synth. Met.,87:171.
    [35]J. Y. Kim, J. H. Jung, D. E. Lee and J. Joo,2002. [J]. Synth. Met.,126311.
    [36]J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li and J. Shinar,2004. [J]. Polymer,45:8443.
    [37]X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck and M. Berggren,2006. [J]. Chem. Mater.,18:4354.
    [38]A M. Nardes, A. J. R. Janssen and M. A Kemerink,2008. [J]. Adv. Funct. Mater.,18:865.
    [39]M. Dobbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, P. M. Carrasco, J. A Pomposo and D. Mecerreyes,2007. [J]. Chem. Mater.,192147.
    [40]B. H. Fan, X. G. Mei and J. Ouyang,2008. [J]. Macromolecules,41:5971.
    [41]L. A. A Pettersson, S. Ghosh and O. Inganas,2002. [J]. Org. Electron.,3:143.
    [42]S. K. M. Jonsson, J. Birgersonb, X. Crispinb, G. Greczynskib, W. Osikowiczb, A W. Denier van der Gone, W. R. Salaneckb and M. Fahhnan,2003. [J]. Synth. Met.,139:1.
    [43]M. Reyes-Reyes, I. Cruz-Cruz and R. Lopez-Sandoval,2010. [J]. J. Phys. Chem. C, 114:20220.
    [44]Y. Xia and J. Ouyang,2010. [J]. ACS AppL Mater. Interf.,2:474.
    [45]Y. Xia and J. Ouyang,2009. [J]. Macromolecules,42:4141.
    [46]Y. Xia, H. M. Zhang and J. Ouyang,2010. [J]. J. Mater. Chem.,20:9740.
    [47]Y. Xia and J. Ouyang,2011. [J]. J. Mater. Chem.,21:4927.
    [48]Y. Xia and J. Ouyang,2010. [J]. Org. Electron.,11:1129.
    [49]Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp and K Leo,2011. [J]. Adv. Funct. Mater.,21:1076.
    [50]Y. Xia, K Sun and J. Ouyang,2012. [J]. Energy Environ. Sci.,5:5325.
    [51]Y. Xia, K Sun and J. Ouyang,2012. [J]. Adv. Mater.,24:2436.
    [52]httpy/clevios.com/media/webmedia_local/media/datenblaetter/ White_Paper_ITO_Alternative_Solution_Deposited_Clevios_PEDOT_PSS_materials_for_tr ansparent_conductive_applications.pdf.
    [53]X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. Denier Van DerGon, F. Louwet, M. Fahhlman, L. Groenendaal, F. De Schryver and W. R. Salaneck,2003. [J]. J. Polym. Sci. Polym. Phys.,41:2561.
    [54]M. Vosgueritchian, D. J. Lipomi and Z. N. Bao,2012. [J]. Adv. Funct. Mater.,22:421.
    [55]U. Lang, E. Muller, N. Naujoks and J. Dual,2009. [J]. Adv. Funct. Mater.,19:1215.
    [56]R. Noguerol-Cal, J.M. Lopez-Vilarinoa, M.V. Gonzalez-Rodriguezc and L. Barral-Losada, 2011. [J].Talanta,85:2080.
    [57]J. C. Costa, M. Olivera and A. V. Machado,2009. [J]. J Appl Polym Sci,112:1595.
    [58]S. B. Darling,2008. [J]. J. Phys. Chem. B,112:8891.
    [59]As demonstrated before (refs.2,3), Poly [(9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) functions as a suitable cathode interlayer which is beneficial for the dramatic efficiency enhancement. Therefore in the present study PFN was incorporated as a cathode interlayer for both PCDTBTPC71BM and PTB7:PC71BM devices as well.
    [60]For high-efficiency PTB7:PC7,BM BHJ-PSCs, Clevios P Al4083 is typically used as the standard anode buffer layer, see refs.2,3.
    [61]We also made the attempt to use GMS-doped PEDOT:PSS film as transparent electrodes in the same manner generally used in literatures. Since GMS is insoluble in water, directly blending GMS into the aqueous PEDOT:PSS solution is impossible. Thus, we tried to dope GMS solution in methanol or isopropanol into the aqueous PEDOT:PSS solution, and found that, however, adding the GMS solutions in methanol or isopropanol even at a very low doping ratio (0.2 wt%) immediately resulted in a muddy mixture solution, which was not suitable for fabricating a uniform film. A plausible explanation to this phenomenon is that the interactions between GMS and PEDOT:PSS mixture would occur upon their blending.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700