用户名: 密码: 验证码:
基于COUP model的三峡库区紫色砂岩林地土壤水分运动模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入、系统地研究林地土壤水分运动规律对于揭示森林流域径流形成机制、修正洪水预报模型具有十分重要的意义。本研究选择三峡库区紫色砂岩林地为研究对象,采用野外观测、室内试验、点格局分析与模型(COUP model)模拟结合的方法,探讨紫色砂岩区林地土壤水分运动影响因素及土壤优先路径对植物根系生长的响应机理,通过对观测样地土壤水分动态的耦合研究,并结合林地土壤优先路径分布特征对COUP model模型结构进行调整,最终建立适用于三峡库区紫色砂岩林地的土壤水分运动模型,促进三峡库区土壤水分运动规律研究。这对于进一步认识林地水分再分配、流域水循环机制和三峡库区洪水发生发展规律具有重要现实意义,并对深化森林水文学内容,丰富土壤物理学、流域水文学和水土保持学内容具有深远理论意义。
     主要研究结论如下:
     1)以土壤水分特征曲线为表征紫色砂岩林地土壤水分运动的指标,分别与土壤结构指标、植被类型和人为扰动进行分析,发现植被类型和人为扰动会影响紫色砂岩林地土壤水分特征曲线模型的模拟精度,导致不同林地采用同一模型模拟拟合精度不同、且同一样地底层土壤拟合精度高于表层土壤。以土壤砂、粉黏粒含量、土壤密度、毛管孔隙度和非毛管孔隙度作为土壤结构指标与土壤水分特征曲线进行偏相关分析,发现土壤水分特征曲线与土壤黏粒含量和毛管孔隙度呈显著正相关,与土壤砂粒含量显著负相关,与土壤粉粒含量、土壤密度相关关系不显著,而与非毛管孔隙度在中吸力值下呈显著负相关。
     2)紫色砂岩林地不同影响半径土壤优先路径空间分布与植物根系的关联性在表层0-20cm范围内为较显著的正关联性,说明表层土壤优先路径与浅根系植物生长有关,植物根系生长会导致表层土壤中优先路径数量增加。土壤优先路径数量及径级会影响土壤水分传导特性。
     3)考虑优先路径前,COUP model模拟值对降雨的响应在土壤表层快于实际响应,在土壤底层慢于实际响应,且模拟的土壤底层水分动态起伏较小。考虑优先路径后,底层土壤水分COUP model模拟值对降雨的响应更敏感,较好地捕捉到底层土壤水分的波动,响应速度与实测较相似。可见优先路径存在影响了不同深度土壤对降雨的响应速度,使深层土壤水分峰值发生时间提前。针阔混交林地优先路径累计产流量均高于同期针叶林地,说明针阔混交林地优先路径较发育。可能与阔叶树种蒸腾量较大有关,根系周围土壤水分变化较剧烈,引起土粒的崩塌与重组,产生了更多易于水分通过的路径。
     4)紫色砂岩区林地土壤水分对降雨的响应有一定的滞后,并呈现多峰值现象。对于针阔混交林样地,土壤水分变化主要受植物蒸腾影响,对于针叶林样地,土壤水分变化主要受土壤蒸发影响。暴雨过程下不同林地不同土层深度均发生优先流现象,随土壤含水量增加、降雨量增大,优先流现象越明显。
     考虑优先路径后COUP model对不同类型降雨过程下紫色砂岩林地土壤水分动态拟合较好,捕捉到表层土壤水分峰值较小、底层土壤水分响应较剧烈的现象。
Research on the law of soil water movement has important significance on revealing the runoff formation mechanism of forest watershed and correcting the flood forecasting model. We chose forest of purple sandstone regions as study object, field observation, laboratory test and model simulation methods (COUP model) were adopted to illuminate the influencing factors of moisture movement of forest soils and the effect of plant roots on preferencial paths in purple sandstone regions. The research could promote the research of soil moisture movement law in the three gorges reservoir area.Through the research of simulation on soil moisture dynamic of the study plots and the corrected model based on preferencial paths, a model was set up, which was appropriate for soil moisture movement simulation in forest land of purple sandstone regions in the three gorges reservoir area. It also has important practical significance on further understanding of woodland moisture redistribution, water cycle mechanism of the basin and the flood development rule in the three gorges reservoir area. At the same time, It has profound theoretical significance on riching the content of forest hydrology, soil physics, watershed hydrology and soil and water conservation. The major results in this research were as follows:
     (1) The accuracy of the model simulation is affected by soil structure, vegetation types and human disturbance. The results of correlation analysis showed that vegetation types and human disturbance had effect on the accuracy of the soil water characteristic curve model simulation. This resulted in the soil water characteristic curve simulation was different by the same model in the same forest land of purple sandstone, and the accuracy of simulation was higher in the surface soil than the bottom soil. The partial correlation analysis results showed that the soil water characteristic curve was significantly positive correlate to soil clay content, highly significant positive correlate to capillary porosity, significant negative correlate to sand content, negative correlate to soil density. And the soil water characteristic curve under the middle suction value was also negative correlate to noncapillary porosity.
     (2) Point pattern analysis indicated that the spatial position of preferential flow paths and plant roots had a significant positive correlation in the0-20cm depth soil surface layers. This may be related to the growth of shallow root system. Soil moisture conduction properties was affected by the quality and diameter class of preferrencial paths.
     (3) The response of simulation value on rainfall of the original COUP model was faster than the actual response in the surface soil, and slower than the actual response in the bottom soil. The fluctuation of the simulation value in the bottom soil was smaller. After considering the preferrencial paths, the response of simulation value of soil moisture movement in the bottom soil on precipitation was more sensitive, which was similar with the measured value. This indicated that the response speed of soil was affected by the existence of preferrencial paths, which resulted in the occurrence time of soil moisture peak in the deep soil was ahead of time. The cumulative flow of preferential flow in mixed forest plots was higher than the coniferous forest plots in the same time. This indicated that the Preferrencial paths in mixed forest plots were with better development. This may be due to the broad leaved tree species grow faster and need more water than the conifer tree species. There are more root systems of the broad leaved tree species, so the roots act frequently with the soil in the process of absorbing the moisture, which result in the collapsing and restructuring of soil particles and producing more paths that water could easily flow through.
     (4) The response of forestland soil moisture in the purple sandstone area on rainfall had certain hysteresis, and showed multimodal phenomenon. For the mixed forest, soil water loss was mainly affected by plant transpiration, but for the coniferous forest, it was mainly affected by soil transpiration. There existed preferrential flow phenomenon in different soil depth of different plant plots under the heavy rain process, which became more obvious with the increase of precipitation.
     The simulation results of soil water dynamic in forestland of purple sandstone area during different types of rainfall process by the corrected model were obviously better than the orginal model. The simulation captured the results that the surface soil moisture peak was smaller, but the response of soil moisture in the bottom soil on the precipitation was severe.
引文
[1].白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报.2000,24(6):667-673.
    [2].蔡焕杰,熊运章.计算农田蒸散量的冠层温度法的研究[M].西北水土保持研究所集刊(第13集).西安:陕西科技出版社,1991.
    [3].曹淑定,从心海,梁一民,李代琼.吴旗飞播沙打旺草地的土壤水分动态研究[J].水土保持通报,1983(5):55-60.
    [4].陈恩凤.土壤含水量对于油桐苗生长的影响[J].土壤学报,1953,2(1)
    [5].陈仁升,康尔泗,吉喜斌等.黑河源区高山草甸的冻土及水文过程初步研究[J].冰川冻土,2007,29(3):388-392.
    [6].陈伟烈,江明喜,赵常明,等.三峡库区谷地的植物与植被[M].北京:中国水利水电出版社,2008.
    [7].陈伟烈,张喜群,梁松筠,等.三峡库区的植物与复合农业生态系统[M].北京:科学出版社,1994.
    [8].陈效民,吴华山,沃飞.利用染色分析法确定农田土壤中硝态氮垂直运移的研究[IJ].水土保持学报,2007,21(5):21-24.
    [9].成向荣,黄明斌,邵明安.基于SHAW模型的黄土高原半干旱区农田土壤水分动态模拟[J].农业工程,2007,23(11):1-7.
    [10].程金花,张洪江,史玉虎,何凡.长江三峡库区优先流模型修正及验证.山东农业大学学报.2007,38(4):605-609
    [11].程金花.长江三峡花岗岩林地坡面优先流模型研究[D].北京林业大学博士论文,2005.
    [12].程云,张洪江,史玉虎,等.长江三峡花岗岩坡面土管空间分布特征[J].北京林业大学学报.2001,23(5):19-22.
    [13].樊军,王全九,邵明安.黄土高原水蚀风蚀交错区土壤剖面水分动态的数值模拟研究[J].水科学进展,2007,18(5):684-688.
    [14].范荣生,张炳勋.黄土地区流域产流计算[J].西北农林科技大学学报(自然科学版),1980(4):1-12.
    [15].傅伯杰,杨志坚,王仰麟,等.黄土丘陵坡地土壤水分空间分布数学模型[J].中国科学,2001,31(3):185-191.
    [16].高贤明,马克平,陈灵芝.暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系[J].植物生态学报,2001,25(3):283-290.
    [17].高阳华, 唐云辉, 李轲, 冉荣生.重庆市绵雨的分类与指标及其时空分布规律[J].长江流域资源与环境,2003(12):237-242
    [18].高中其,张洪江,史玉虎.长江三峡花岗岩区不同地类土壤流失量研究[J].中国水土保持科学,2004,2(4):26-29.
    [19].宫旭黎,王莉,周滨.曲率系数在评价土的级配情况中的重要意义[J].黑龙江交通科技,2002(5):16-17.
    [20].龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究[J].土壤学报,2007,44(3):571-575.
    [21].郭其强,张文辉,何景峰,等.黄龙山不同白桦林群落结构特征研究[J].西北植物学报,2007,27(1): 132-138.
    [22].和继军,蔡强国,田磊,方海燕,植被措施对土壤保育的作用及其影响因素分析,土壤通报,2010,41(3):706-707
    [23].贺康宁.林地土壤水分运动的数学模型[J].北京林业大学学报,1992,(1):77-86.
    [24].侯喜禄.实验区土壤水分动态与树种布设[J].水土保持通报,1985(4):12-13.
    [25].胡国林,赵林,李韧,吴通华,肖瑶,焦克勤,乔永平,焦永亮.基于COUPMODEL模型的冻融土壤水热耦合模拟研究.地理科学,2013,,3(3):356-362.
    [26].胡克林,李保国,陈研等.作物生长与土壤水氮运移联合模拟的研究Ⅰ-模型[J].水利学报,2007,38(7):779-783.
    [27].黄昌勇.土壤学[M].北京:中国农业出版社,2001,66,98-108.
    [28].黄冠华,沈荣开.非均质土壤中二维非饱和土壤水分运动的随机分析.水科学进展,1997,8(2):117-122.
    [29].黄冠华,叶自桐等.一维非饱和溶质随机运移模型的谱分析[J].水利学报,1995,11:1-7.
    [30].康绍忠,刘晓明,高新科,熊运章.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,(3):1-12
    [31].康绍忠,熊运章.干旱缺水条件下麦田蒸散量的计算方法.地理学报,1990(4)45-55.
    [32].康绍忠.干旱缺水条件下麦田蒸散量的计算方法研究[J].地理学报,1990,45(4):475-483.
    [33].康绍忠.土壤水分动态的随机模拟研究[J].土壤学报,1990,27(1):17-24.
    [34].来剑斌,王全九.土壤水分特征曲线模型比较分析.水土保持学报,2003.17:p.137-140.
    [35].雷相东,唐守正,李冬兰,等.影响天然林下层植物物种多样性的林分因子的研究[J].生态学杂志,2003,22(3):18-22.
    [36].雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [37].雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [38].雷志栋,杨诗秀.非饱和土壤水—维流动的数值计算[J].土壤学报,1982,19(2):141-153.
    [39].李保国,龚元石,左强,等.农田土壤水动态模型及应用[M].北京:科学出版社,2000.107-131.
    [40].李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982(4):1-10.
    [41].李阜棣,李学垣,刘武定,等.生命科学和土壤学中几个领域的研究进展[M].北京:农业出版社,1993.111-115.
    [42].李洪文,高焕文.保护性耕地土壤水分模型[J].中国农业大学学报,1996,1(2):25-30.
    [43].李小刚,杨治,谢恩波.甘肃几种旱地土壤低吸力段持水性能的初步研究.土壤通报,1994.25:p.155-157.
    [44].李笑吟,毕华兴,张建军,等.晋西黄土区土壤水分有效性研究.水土保持研究,2006.13:p.205-208,211.
    [45].李毅,王文焰.农业土壤和水资源研究中的分形理论[J].西北水资源与水工程,2000,11(4):12-17.
    [46].李毅,门旗,罗英.土壤水分空间变异性及决策的影响[J].干旱地区农业研究,2000,18(2):80-85.
    [47].李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998,142-152.
    [48].林大仪.土壤学实验指导[M].北京:中国林业出版社.2004.23-24,75-77.
    [49].刘昌明,窦清晨.土壤-植物-大气连续体模型中的蒸散发计算[J]..水科学进展,1992,(4):256-263.
    [50].刘国花,谢吉荣.重庆四面山风景区森林植被调查研究[J].渝西学院学报(自然科学版)2005,4(1):90-92.
    [51].刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展.水利学报,2004:p.68-76.
    [52].刘梦云,常庆瑞,齐雁冰.不同土地利用方式的土壤团粒及微团粒的分形特征[J].中国水土保持科学,2006,4(4):47-51.
    [53].刘淑燕,岳永杰,余新晓,刘彦.北京山区刺槐种群的空间点格局[J].东北林业大学学报,2010,38(4):33-34
    [54].刘霞,王丽,张光灿,等.鲁中石质山地不同林分类型土壤结构特征[J].水土保持学报,2005,12(6):49-52.
    [55].卢炜丽,张洪江,杜士才,等.重庆四面山地区几种不同配置模式水土保持林生物多样性研究[J].山地学报,2009,27(3):319-325.
    [56].卢玉邦.土壤水分预测模型研究[J].土壤学报,1989,26(1):51-56.
    [57].吕岁菊,李春光.土壤水—盐运移规律数值模拟研究综述[J].农业科学研究,2005,26(1):107-131.
    [58].吕文星,张洪江,吴煜禾,等.基于点格局分析的林地表层土壤优先路径水平分布特征[J].水土保持学报.2012,26(06):68-74.
    [59].马爱生,刘思春,吕家珑,等.黄土高原地区几种土壤的水分状况与能量水平.西北农林科技大学学报(自然科学版),2005.33:p.117-120.
    [60].马惠.重庆市四面山森林植物群落类型及其分布[D].北京林业大学硕士论文,2010.
    [61].马克平.生物群落多样性的测度方法[A].见:钱迎倩,马克平主编.生物多样性研究原理与方法[M].北京:中国科学技术出版社,1994:141-165.
    [62].马雪华,杨光滢.杉木、马尾松人工林土壤物理性质及水分含量变化的研究[J].林业科学研究,1990,3(1):64-65
    [63].马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [64].牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统基于KDW运动-弥散波模型的优先流研究.生态学报.2007,27(9):3541-3555
    [65].牛健植,长江上游暗针叶林生态系统的优先流机理研究,北京林业大学,2003.
    [66].潘英华,雷廷武,张晴雯,等.土壤结构改良剂影响下的土壤水分有效性研究.灌溉排水学报,2007.26:p.63-67.
    [67].彭万杰,郭异礁.虎峰镇土壤水分的动态及其随机模拟[J].安徽农业科学,2009,37(6):2622-2624.
    [68].皮尔瑞克·杰森和路易丝·卡尔伯等著.张洪江,程金花,王伟,等编译.土壤-植物-大气系统热量、物质运移综合模型理论与实践[M].北京:科学出版社,2010.
    [69].漆良华,张旭东,孙启祥等,土壤-植被系统及其对土壤健康的影响,世界林业研究,2007,20(3):1-3)
    [70].秦耀东,胡克林.大孔隙对农田耕作层饱和导水率的影响[J].水科学进展,1998,9(2):107-111.
    [71].秦耀东,任理,王济.土壤中大孔隙流研究进展与现状.水科学进展,2000,11(2):203-207.
    [72].任改,张洪江,程金花,等.重庆四面山几种人工林地土壤抗蚀性分析.水土保持学报,2009.23:p.20-24.
    [73].任理.有限解析法在求解非饱和土壤水流问题中的应用[J].水利学报,1990(10):55-61.
    [74].邵明安,王全九,黄明斌.土壤物理学.北京:高等教育出版社,2006.
    [75].申双和,周英,农田土壤水分预测模型应用研究[J].南京气象学院学报,1992,15(4):540-548.
    [76].盛丰,张仁铎,刘会海.土壤优先流运动的活动流场模型分形特征参数计算[J].农业工程学报,2011,27(03):26-32.
    [77].盛丰,张仁铎,刘会海.土壤优先流运动的活动流场模型模拟和敏感性分析[J].农业工程学报,2011,27(04):72-80.
    [78].时培建,刘杰与杨振,汶川地震的时空点格局分析.地震学报,2009(5):第506-515+596页.
    [79].时培建,郭世权,杨清培,等.毛竹的异质性空间点格局分析[J].生态学报,2010(16):4401-4407.
    [80].时培建.空间点格局分析和社会研究[J].社会,2009(5):187-205.
    [81].史东梅,吕刚,蒋光毅,等.马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,19(6):35-39.
    [82].史海滨,陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价[J].水利学报,1993,8:49-55.
    [83].水利学报[J].中国水利学会.北京,1984,8.
    [84].宋桂龙,韩烈保,李德颖.不同沙土配比根系层导水特性研究[J].北京林业大学学报.2008,30(4):89-94.
    [85].孙儒泳,李庆芬,牛翠娟,娄安如.基础生态学[M].北京:高等教育出版社,2002.
    [86].孙向阳.土壤学[M].北京:中国林业出版社,2005:145-156.
    [87].汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志.2001,20(4):55-60.
    [88].王伯荪.植物群落学手册[M].广东高度教育出版社,广州,1996.
    [89].王金平.蒸发条件下层状土壤水分运动的数值模拟[J].水利学报,1989(5):49-54
    [90].王力,邵明安,王全九.林地土壤水分运动研究述评.林业科学,2005,41(2):147-149.
    [91].王孟本,柴宝峰,李洪建.黄土区人工林的土壤持水力与有效性状况土区土壤水分有效性研究.林业科学,1999.2:p.1-11.
    [92].王巍,李庆康,马克平.东灵山地区辽东栋幼苗的建立和空间分布[J].植物生态学报,2000,24(5):595-600
    [93].王伟,张洪江,杜士才,等.重庆市四面山人工林土壤持水与入渗特性[J].水土保持通报,2009.29:p.113-117.
    [94].王伟.三峡库区紫色砂岩林地土壤优先流特征及其形成机理[D].北京:北京林业大学,2011.
    [95].王希群.马履一.贾忠奎.徐程扬.叶面积指数的研究和应用进展[J].生态学杂志.2005.24(5):537-540
    [96].王玉杰,王云琦,齐实.重庆缙云山典型林地土壤分形特征对水分入渗影响[J].北京林业大学学报.2006,28(2):73-78.
    [97].王育松,上官铁梁.关于重要值计算方法的若干问题[J].山西大学学报(自然科学版).2010,33(2):312-316.
    [98].卫晓婧,熊立华.改进的GLUE方法在水文模型不确定性研究中的应用[J].水利水电快报.2008,29(6):23-25.
    [99].吴冰,朱元俊,邵明安.降雨强度对含砾石土壤产沙及入渗的影响[J].水土保持学报,2011(6):90-91
    [100]. 吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [101]. 吴煜禾,张洪江,程金花,等.重庆四面山不同林地土壤颗粒特征及其与土壤侵蚀的关系[J].水土保持学报.2011,25(05):219-223.
    [102]. 吴煜禾,张洪江,王伟,等.重庆四面山不同土地利用方式土壤水分特征曲线测定与评价[J].西南大学学报(自然科学版),2011,33(05):102-108.
    [103]. 肖文发,李建文,于长青.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社,2000.
    [104]. 谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力.水土保持学报,2001,21(6)53-56
    [105]. 谢正辉,曾庆存,戴永久,等.非饱和流问题的数值模拟研究[J].中国科学(D辑),1998,28(2):175-180.
    [106]. 熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.122-152.
    [107]. 徐化成,易宗文.华北低山区土壤水分季节变化以及与林木生长的关系[J].林业科学,1979,15(2):97-104.
    [108]. 徐琪.三峡库区移民环境容量研究[M].北京:科学出版社,1993.
    [109]. 徐绍辉,刘建立.估计不同质地土壤水分特征曲线的分形方法[J].水利学报,2003,34(1):78-82.
    [110]. 徐绍辉,张佳宝,刘建立,等.表征土壤水分持留曲线的几种模型的适应性研究.土壤学报,2002.39:p.498-504.
    [111]. 许迪,Mermoud A.从土壤持水数据估算导水率方法的比较分析[J].水土保持学报,2001,15(5):125-129.
    [112]. 阳勇,陈仁升,吉喜斌,卿文武,刘俊峰,韩春坛.黑河高山草甸冻土带水热传输过程.水科学进展,2010(1):152-156.
    [113]. 杨邦杰.土壤蒸发过程的数值模型及其应用[M].北京:学术书刊出版社,1989.
    [114]. 杨金楼.上海地区土壤持水性的研究.土壤学报,1982.19:p.33-38.
    [115]. 杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J].水科学进展,1994,5(1):9-17.
    [116]. 杨金忠.二维饱和与非饱和水分运动的理论及实验研究[J].水利学报,1969(4):55-61.
    [117]. 杨诗秀,雷志栋,谢森传.匀质土壤一维非饱和流动通用程序[J].土壤学报,1985(1):24-34.
    [118]. 杨诗秀,雷志栋.均质土壤降雨喷洒入渗模型的数值计算[J].水利学报,1983(5):1-9.
    [119]. 姚其华,邓银霞.土壤水分特征曲线模型及其预测方法的研究进展[J].土壤通报,1992.23:p.142-144.
    [120]. 张财宝,刘目兴,王文德,等.三峡库区森林土壤优先流染色特征[J].水土保持学报,2012,26(2):80-84.
    [121]. 张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究,2003,21(4):117-120,125.
    [122]. 张尔辉.重庆四面山大型真菌调查研究初报[J].重庆师范大学学报(自然科学版).1989, 6(1):45-51.
    [123]. 张洪江,程金花,何凡,等.长江三峡花岗岩地区优先流运动及其模拟[M].北京:科学出版社,2006.
    [124]. 张洪江,杜仕才,王伟,等.重庆四面山森林植物群落及其土壤保持和水文生态功能[M].北京:科学出版社,2010:110.
    [125]. 张洪江,王礼先.长江三峡花岗岩坡面土壤流失特性及其系统动力学仿真[M].北京:中国林业出版社,1999.
    [126]. 张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报,2004(1):35-40.
    [127]. 张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):57-62.
    [128]. 张强,孙向阳,黄利江,等.毛乌素沙地土壤水分特征曲线和入渗性能的研究[J].林业科学研究,2004.17(增刊):p.9-14.
    [129]. 张强,孙向阳,张广才.土壤水分研究进展[J].林业科学研究,2004,17(增刊):105-108.
    [130]. 张伟,王根绪,周剑,刘光生,王一博.基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J].冰川冻土,2012,V34(5):1099-1109.
    [131]. 赵传燕,李守波,贾艳红等.黑河下游地下水波动带地下水与植被动态耦合模拟[J].应用生态学报,2008,19(12):2687-2692.
    [132]. 赵一.北京山地植被分类与特征分析[D].北京林业大学,2010.
    [133]. 朱学愚,谢春红等.非饱和流动问题的SUPG有限元素数值法[J].水利学报,1994,6:37-42.
    [134]. 庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3):241-247.
    [135]. 祖祥.土壤水分的能量概念及其意义[J].土壤学进展,1979,(1):1-2.
    [136]. A. Matuszkiewicz, J.C. Flamand, J.A. Borne. The bubbly-slugflow pattern transitions and instabilities of void fraction waves[J]. International Journal of Multiphase,1987,199-217.
    [137]. Ajuha.L.R.RZWQM. Components dealing with water and chemical transport in soil matrix and macropores[C].Internal Report US Dept of Agriculture-Agricultural Research Service. National Agr Water Quality Lab, Durant,1991.
    [138]. Anderson S. H., Peyton R. L., Gantzer C. J., Evaluation of constructed and natural soil macropores using x-ray computed tomography, Geoderma,1990(46):p.13-29.
    [139]. Arya L M, Leij F J. Van Genuchten M T H, et al. Scaling parameter to predict the soil water characteristicfrom particle-size distribution data [J]. Soil Sci,1999,63:510-519.
    [140]. Aubertin G. M., Nature and extend of macropores in forest soils and their influence on subsurface water movement. U. S. D. A. Forest Service Research Paper, NE-192,1971.
    [141]. B. T. Lukey, J. Sheffield, J. C. Bbathurst, R. A. Hiley, N. Mathys, Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France, Journal of Hydrology,2000 (235):p.44-62;
    [142]. Baddeley A, Turner R. Practical maximum pseudolikelihood for spatial point patterns (with discussion) [J]. Australian and New Zealand Journal of Statistics,2000,42(3):283-322.
    [143]. Barenblatt G. I, Iu P. Zheltov, I. N. Kochina. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. J. Appl. Math. Mech.1960,24:1286-1303.
    [144]. Benven K J, P Germann. Macropores and water flow in soils[J]. Water Resoure Res.1982, 18:1300-1325.
    [145]. Benven K J, P Germann. Water flow in soil macropores, A combined flow model[J]. J Soil Sci.1981,32:15-29.
    [146]. Beven, K. J., and A. M. Binley. The future of distributed models:Model calibration and uncertainty prediction[J]. Hydrol. Processes,1992,6,279-298.
    [147]. Beven. K. J. Kinematic subsurface stormflow:Predictions with simple kinematic theory for saturated and unsaturated flows[J]. Water Resour.1982.18:1627-1633.
    [148]. Beven.K.J. Modeling preferential flow:A nuncerta infuture, in Preferential Flow[M].Edited by TJGish, AShirmohammadi.American Society of Agricultural Engineers, StJoseph, Mich, 1991:p.1-11.
    [149]. Booltink H. W. G., Field-scale distributed modeling of bypass flow in a heavily textured clay soil, J. Hydrology,1994(163):p.65-84,;
    [150]. Booltink H.W.G., HatanoR, etal. Measurement and simulation of bypass flow in a structured clay soil:A physical morphological approach[J].Journal of Hydrology,1993(148):p.149-168.
    [151]. Bouwer H. Infiltration of water into nonuniform soil[J]. Irrigation and Drainage Division of ASCE,1969,95:451-462.
    [152]. BrakensiekDL, Rawls WJ, LogsdonSE, EdwardsWM. Fractal description of macroporosity[J].Soil Science Society of America Journal of Soil Science,1992(56):p.1721-1723.
    [153]. Brazier, R E., K. J. Beven, S. G. Anthony, and J. S. Rowan. Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions[J]. Earth Surf. Processes Landforms,2001,26,1333-1352.
    [154]. Brooks R H, Corey A T. Hydraulic properties of porous media[J]. Colorado States University Hydrol,1964 (3):27.
    [155]. Chen.C, Thomas.D.M, Green.R.E, etal.Two-domaine stimation of hydraulic in macropore soils[J].Soil Sci Soc AmJ,1993(57):p.680-686.
    [156]. Chen.C, Wagenet. R.J. Simulation of water and chemicals in macropore soils,2.application of linear filter theory[J].JHydrol,1992b,130:p.127-149.
    [157]. Chen.C, Wagenet.R.J. Simulation of water and chemicals in macropore soils, 1.representation of the equivalent macropore influence and its effect on soil-water flow[J].JHydrol,1992a,130:p.105-126.
    [158]. Coats JC, Smith BD. Dead-end pore volume and dispersion in porous and unsaturated sandst one[J]. Soil Sci. Soc. Am. Proc.,1964,27:258-262.
    [159]. Corwin.D.L, Waggoner.B.L, Rhoades.J.D. A functional mode of solute transport that accounts for by pass[J].JEnvQual,1991,20:p.647.
    [160]. Curtis J T and Mcintosh R P. An upland forest continuum in the prairie-forest border region of Wisconsin [J]. Ecology.1951,32:476-496.
    [161]. D. Hill. Environmental soil physics. Academic press,1998:p.188-190;
    [162]. D.希勒尔.土壤和水—物理原理和过程[M].华孟,叶和才,译.北京:农业出版社,1981.
    [163]. Dane J H, Mathis F H. An adaptive finite difference scheme for the one dimensional water flow equation [J]. Soil Sci,1981,45:1048-1054.
    [164]. Dane JH, Topp GC. Methods of soil analysis Part 4. Physical methods[J]. Soil Sci. Soc. Am., Inc. Madison, Wisconsin, USA,2002.1253-1531.
    [165]. Daniel Hillel. Environmental soil physics[M].Academic Press,1998:p.188-190.
    [166]. Diggle P J. Statistical analysis of spatial point patterns[M]. New York:Academic Press, 1983.
    [167]. Droogers P, Stein A, Bouma J, et al. Parameters for describing soil macroporosity derived from staining patterns [J]. Geoderma.1998,83:293-308.
    [168]. Edwards. W. M, Norton. L. D, Redmond. C. E. Characterizing macropores that affect in filtration into nontilled soil[J].Soil Science Society of America Journal,1988,52(2):p.483487.
    [169]. Ehlers.W, Kopke.U, Hesse.F, etal. Penetration resistance and root growth of oatsin tilled andun tilled loose soil[J]. Soil Tillages,1983,2 (3):p.261-275.
    [170]. Flury M, Fluhler H. Modeling solute leaching in soils by diffusion limited aggregation:Basic concepts and applications to conservative solutes [J]. Water Resources Research,1995,31(10): 2443-2452.
    [171]. Flury.M, Fluhler.H. Susceptibity of soils to preferential flow of water:A field study [J]. Water Resoures,1994,30:p.1945-1954.
    [172]. Fork R L., Ward W C. Brazoo River Bar:Astudy in the significance of grain size parameters. J Sedim Petro,1957,27:3-27.
    [173]. Franks, S. W., K. J. Beven, P. F. Quinn, and I. R. Wright. On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes:equifinality and the problem of robust calibration[J].Agric. For. Meteorol.,1997,86,63-75.
    [174]. Friedman GM. Comparison of moment measures for serving and thin-section data in sedimentary petrological Studies. J Sedim Petro,1962,32:15-25.
    [175]. G.B. Wallis. One-dimensional Two-phase Flow[M]. McGraw-Hill,New York,1969.
    [176]. Gerke.H.H, van Genuchten. M.T. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[J]. Water Resoures Research,1993a, 19(2):p.305-319.
    [177]. Gerke.H.H, van Genuchten. M.T. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models[J].Water Resoures Research,1993b,29(4):p.1225-1238.
    [178]. Germann.P. F, Beven.K. Kine mafic wave approximation to infiltration to soils with sorbing macropores [J]. Water Resoures,1985,21:p.990-996.
    [179]. Germann.P. Preferential flow and generation of runoff,1, boundary layer flow theory [J]. Water Resoures Research,1990,26:p.3055-3063.
    [180]. Germann.P.F, BevenK. Water flow in soil macropores, I. An experimental approach [J].Soil Scince,1981,32:p.1-13.
    [181]. Gish T J, Jury W A. Effect of plant roots and root channels on solute transport [J]. Transactions of the American Society of Agricultural Engineers,1983,26:440-444.
    [182]. Green W H, Ampt G A. Studies on soil physics:l. Flow of air and water through soils[J]. J Agric Sci,1911,4(1):1-24.
    [183]. Grochulska J, Kldivko E. J. A two-region model of preferential flow of chemicals using a transfer function approach[J]. Journal of Environmental Quality,1994,23:498-507.
    [184]. H. van den Bosch, C. J. Ritsema, J. J. T. I. Boesten, L. W. Dekker, W. Hamminga, Simulation of water flow and bromide transport in a water repellent sandy soil using a one-dimensional convection-dispersion model, Journal of Hydrology,1999,215:p.172-187;
    [185]. Hankin, B. G., R. Hardy, H. Kettle, and K. J. Beven. Using CFD in a GLUE framework to model the flow and dispersion characteristics of a natural fluvial dead zone[J]. Earth Surf. Processes Landforms,2001,26(6):667-687.
    [186]. Hanks R J, Bowers S B. Numerical solutions of the diffusion equation for the movement of water in soils[J]. Soil Science Socioty of American Journal,1962,26:530.
    [187]. Hansson, K., and C. Lundin. Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data[J]. Cold Regions Science and Technology,2006,44,20-37.
    [188]. Heijs Anton W.J. Ritsema Coen J. Dekker Louis W. Three-dimensional visualization of perferential flow patterns in two soils[J]. Geoderma,1996,70(2):101-116.)
    [189]. Helling.C.S, Gish.T.J. Physical and chemical processes affecting Preferential flow[A].In Preferential flow Proc National Symposium[C].TJGish, Shirmohammadi, eds.American Society of Agricultural Engineers, StJoseph, MI,1991:p.77.
    [190]. Hillel.D.Application of Soil Physics.Academic Press, NewYork,1980:P.312.
    [191]. Inman D L. Measures for describing the size distribution of sediments. J Sedim Petro, 1952,22:125-145.
    [192]. J.G. Flores, X.T. Chen, Cem Sarica, J.P. Brill. Characterizationof oil-water flow patterns in vertical and deviated wells[J]. in:1997SPE Annual Technical Conference and Exhibition in SanAntonio, Texas,1997,601-610.
    [193]. J.L Trallero, Cem Sarica, J.P. Brill. A study of oil/water flowpatterns in horizontal pipes[J]. in:SPE Production & Facilities,1997,165-172.
    [194]. Jarvis N. J. Stabli M. Bergstrom L. et al. Simulation of dichlorprop and bentazon leaching in soils of contrasting texture using the MACRO model[J]. Journal of Environmental Science and Health.1994,29(6):1255-1277.
    [195]. Jarvis.N.J, Bergstrom.L., PEDik. Modelling water and solute transport in macroporous soils,, chloride break through under non-steady flow[J].JSoilSci,1991b,42:p.71-81.
    [196]. Jarvis.N.J, Janssson..P.E., PEDik, etal. Modelling water and solute transport in macroporous soils, I, modeldes cription and sensitivity analysis[J].J Soil Sci,1991a,42:p.59-70.
    [197]. Jurg Hosang. Modelling preferential flow of water in soils-a two phase approach for field conditions [J]. Geoderma,1993,58:p.149-163.
    [198]. Kitahara Hikaru.The study history between pipe flow and macropores[J].Japan.hydraulic science,1996,227:p.81-114.
    [199]Kitahara, Hikaru.The property of pipe flow in forest stand[J].Journal of Japan Soc.Hydrol.& WaterRes.,1992,5(1):p.15-25.
    [200]. Krumbein W C, Pettijohn F J. Manual of sedimentary petrography. Appleton-Croffs:Inc. NY,1938:228-268.
    [201]. Kutilek M, Nielsen D R. Soil Hydrology[M].Germany:Catena-Verlag,1994.
    [202]. Leaney.F.W, Smettsm.K.R.J, Chittleborough.D.J. Estimating the contribution of preferrntial flow to subsurfacw runoff from a hill slope using deuterium and dchloride [J]. J Hydrol,1993, 147:p.83-103.
    [203]. Lii Wenxing, Zhang Hongjiang, Wu Yuhe, et al. The impact of plant hedgerow in Three Gorges on the soil chemicophysical properties and soil erosion[A]. Proceedings of Advanced Materials in Microwaves and Optics, AMMO2011 [C]. Piscataway:IEEE Press,2012,v 500:142-148. Source:Key Engineering Materials.
    [204]. Lv Wenxing, Zhang Hongjiang, Cheng Jinhua, Wu Yuhe, Wang Haiyan, Li Jianqiang. Effect of a hedgerow agroforestry system on the soil properties of sloping cultivated lands in the Three-Gorges area in China[J]. J Food Agric Environ.2012,10(3-4):1368-1375.
    [205]. M. H. Larsson, N. J. Jarvis, Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil, Journal of Hydrology,1999,215:p.153-171;
    [206]. M. K. Landon, G. N. Delin, S. C. Komor, C.P.Regan, Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone, Journal of Hydrology,1999,224:p.45-54;
    [207]. M. R. Cameira, L. Ahuja, R. M. Fernanolo, L. S. Pereira, Evaluating field measured soil hydrautic properties in water transport simulations using the RZWQM, Journal of Hydrology, 2000,236:p.78-90.
    [208]. M. R. Gautom, K. Watanabe, H. Saegiss, Runoff analysis in humid forest catchment with artificial neural network, Journal of Hydrology,2000,235:p.117-136.
    [209]. M.J. Lighthill, G.B. Whitham.On the kinematic waves I and II[J].Proceedings of the Roral Society London A 229,1955,281-316.
    [210]. Marcel G S, Feike J L. Using neural networks to predict soil water retention and soil hydraulic conductivity[J]. Soil & Tillage Research,1998,47:37-42.
    [211]. Mein R. G, C L Larson. Modeling infiltration during a steady rain[J]. Water Resource Research,1973,9(2):384-394.
    [212]. Mertens, J., H. Madsen, L. Feyen, D. Jacques, and J. Feyen. Including prior information in the estimation of effective soil parameters in unsaturated zone modelling[J]. J. Hydrol.,2004, 294(4),251-269.
    [213]. Mikhailova E A, Bryant R B, Schwager S J, Smith S D. Precdicting railfall erosivity in Honduras[J].Soil Sci Soc.Am.J.1997,61:273-279.
    [214]. Montas.H.J, Eigel.J.D, Engel.B.A, etal. Deterministic modeling of solute transportion soils with preferential flow pathways, Part 1. model development [J]. American Society of Agricultureal Engineers,1997,40(5):p.1245-1256.
    [215]. Mooney, S. J., Morris, C.,2008. Morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography. Catena 73,204-211.
    [216]. Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research,1976.12:p.513-522.
    [217]. N. Zuber, J. Hench. Steady state and transient void fraction of bubbling systems and their operating limits[J]. Part II:transient response,1962.
    [218]. N. Zuber, J.A. Findlay. Average volumetric concentration in two phase systems. Transaction ASME[J]. Journal of Heat Transfer,1965,87(3):453-468.
    [219]. N.D.Jin, X.B. Nie, J. Wang, Y.Y Ren. Flow pattern identification of oil/water two-phase flow based on kinematic wave theory[J]. Flow Measruement and Instumentation,2003,14:177-182.
    [220]. Nieber J. L., Warner G. S., Soil pipe contribution to steady subsurface storm flow, Hydrological Processes 5,1991:p.329-344.
    [221]. Nielsen. Soil Water[M]. American Society of Agronomy and Soil Science Society of Ameirca,1972.
    [222]. Omoti.U, Wild.A. Use off luorescentdyes to mark the path ways of solute movement through soils under leaching condition,2, fieldex-periment[J]. Soil Science,128:98-104.
    [223]. P. Angeli, G.F. Hewitt. Flow Structure in Horizontal Oil-WaterFlow[J]. International Journal of Multiphase Flow 26 (2000)1117-1140.
    [224]. Panl, Warrick A W, Wierenga P J. Finite elements methods for simulation water flow in variably saturated porous media:numerical oscillation and mass distributed Schemes[J]. Water Resources Research,1996,32:1883-1889.
    [225]. Philip J R. The theory of infiltration about sorptivity and algebraic infiltration equations[J].Soil Sci,1957,84 (4):257-264.
    [226]. R. P. Silberstein, M. Sivapalan, A. Wyllie. On the validation of a coupled water and energy balance model at small catchment scales. Journal of Hydrology,1999,220:p.149-168.
    [227]. Rip ley BD. Spatial Statistics[M]. New York:John Wiley and Sons,1981.
    [228]. Ripley B D. Mapped point patterns [M]. John Wiley & Sons, Inc.,1981:144-190.
    [229]. Ripley, B.D., Field Methods for Point Patterns.1981:John Wiley & Sons, Inc.130-143.
    [230]. Roberta-Serena Blasone, Jasper A. Vrugt, Henrik Madsen,Dan Rosbjerg, Bruce A. Robinson, George A. ZyvoloskiGeneralized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling[J]. Advances in Water,2008.
    [231]. Saxena R.K. Jarvis N.J. Bergstrom L. Interprepting non-steady state tracer breakthrough experiments in sand and clay soils using a dual-porosity model[J]. Jounal of Hydrology, 1994,162(3):279-298.
    [232]. Schlichting, H.. Boundary layer theory[M]. McGraw-Hill, New York,1979.
    [233]. Selim HM, Sparks DL. Physical and chemical processes of water and solute transport/retenti on in soils[J]. SSSA Special Publication No.56. Soil Sci. Soc. Am., Inc. Madison, Wisconsin,200 1.
    [234]. Shalit.G, Steenhuis.T.S. A simple mixing layer model predicting solute flow to drainage lines under preferential flow[J]. J Hydrol,1996,183:139-149.
    [235]. SidleRC, KitaharaHikaru, TerajimaT, NakaiY. Experimental studies on the effects of pipe flow on through flow partitioning[J] Journal of Hydrology,1995,165:207-219.
    [236]. Simunek, J., van Gencuhten, M.Th., Sejna, M.,2008. Development and applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J.7, 587-600.
    [237]. Sissom, L.E., and Pitts, D.R.. Elements of transport phenomena[M]. McGrawiHill,1972.
    [238]. Smith R E.The infiltration envelope results from a theoreticalinfiltrometer[J].Journal of Hydrology,1972,17(1):1-21.
    [239]. Steenhuis.T.S, Boll.J, Shalit.G, etal. Simple equations for predicting preferential flow solute concentration.[J]. J Environ Qual,1994,23:1058-1064.
    [240]. Steenhuis.T.S, Parlange.J.Y, Andreini.M.S. An umerical model for preferential solute movement instructured soils[J].Geoderma,1990,46:193-208.
    [241]. Sten Bergstrom, L. Phil Graham, On the scale problem in hydrological modelling, Journal of Hydrology 211(1999) 253-265.
    [242]. Sterner R. W. Testing for life historical changes in spatial patterns of four tropical tree species[J]. Journal of Ecology,74:621-633.
    [243]. Strudley M W, Green T R, Ascough H J C. Tillage effects on soil hydraulic properties in space and time:State of the science [J]. Soil and Tillage Research,2008,99:4-48.
    [244]. T. Karvonen, H. Koivusalo, M. Jauhiainen, J. Palko, K. Weppling, Ahydrological model for predicting runoff fome different land use, Journal of Hydrology,217(1999) 253-265.
    [245]. Tsuyohi, Miyazaki. Preferential Flow[J].Water Flow in Soils,1992.134-143.
    [246]. Van Genuchten, F J Leig, L Jlund. Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soil. Proceedings of the International Work shop on Indirection Method for Estimating the Hydraulic Properties of Unsaturated Soil [M]. California, USA,1992.468P.
    [247]. van Genuchten M TH. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980(44):892-898.
    [248]. Van Genuchten, Wierenga P J.Two-site/two-region models for pesticide transport and degradation:theoretical development and analytical solution[J]. Soil Science Society of America Journal,1989,53:1303-1310.
    [249]. Vermeul.V.R, Istok.J.D, Flint.A.L, etal. An improved method for quantifying soil macroposity. Soil SciSocAmJ,1993,57:809-816.
    [250]. Vincent L, Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations [J]. IEEE transactions on pattern analysis and machine intelligence,1991,13(6): 583-598.
    [251]. Virginia A. Brown, Jeffrey J. McDonnell, Douglas A.Burns, et al. The role of event water, a repid shallow flow component, and catchment size in summer storm flow. Journal of Hydrology 217(1999)171-190;
    [252]. Wang W, Zhang H J, Wang H Y, et al. Morphological and distribution variability of preferential flow in plantation soils on the purple sandstone hillslopes using image analysis [A]. In:Luo Q (Eds.). Proceedings of IITA-GRS 2010 Volume I [C] Piscataway:IEEE Press,2010: 125-128.
    [253]. Wang.J.S.Y, T.N.Narasimhan. Hydrologic mechanisms governing fluid flow in apartially saturated, fractured, porous medium [J], Water Resources Reseach,1991,21:1861-1874.
    [254]. Wang J.S.Y. Flow and transport in fractured rocks[J].USNatl Rep Int Union Geod.Geophys. 1987-1990, Rev Geophys,29suppl,1991,254-262.
    [255]. Ward J S, Parker G R, Ferrandino F J. Long-term spatial dynamics in an old growth deciduous forest [J]. Forest Ecology and Management,1996,83:189-202.
    [256]. Weiler M, Fluhler H. Inferring flow types from dye patterns in macroporous soils [J]. Geoderma,2004,120:137-153
    [257]. Workman.S.R, Skaggs.R.W.PREFLO:A water management model capable of simulating preferential flow[J].Trans, ASAE,1990,33;1939-1948.
    [258]. Wosten J H M, Pachepsky Y A, Rawls W J. Pedotransfer functions:bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology,2001.251:p.123-150.
    [259]. Wuest S B. Comparison of preferential flow paths to bulk soil in a weakly aggregated silt loam soil [J]. Vadose Zone Journal.2009,8(3):623-627.
    [260]. Y. Mercadier. Contribution a l'etude des propagations de perturbations de vide dans les ecoulements diphasiques eau-air a bulles.Thesis[M]. University Scientifique et Medical Institut National Polytechnique de Grenoble, France,1981.
    [261]. Yuhe Wu, Hongjiang Zhang, Wenxing Lv, et al. Characteristics and aggregate stability of soil particle size distribution under four forestland types in low mountains and hills of Southwest China[J]. Journal of Food, Agriculture & Environment,2013,11 (1):850-857.
    [262], Yuhe Wu, Hongjiang Zhang, Wei Wang, et al. Controls of Land Uses on Soil Retention Curve with Fractal Dimension:theory and Modeling[A]. Proceedings of 2011 4th International Symposium on Knowledge Acquisition and Modeling, KAM 2011 [C]. Piscataway:IEEE Press, 2011:385-388.
    [263]. Zhang J T. Analysis of spatial point pattern for plant species. A cta Phytoecologica S in ica, 1998,22(4):344349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700