用户名: 密码: 验证码:
三峡库区林草治理措施对土壤理化特征及坡面水沙的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区地貌类型复杂,是长江上游四大重点水土流失片区之一,现已成为严重危害流域生态环境和阻碍社会经济发展的一个重要因素。坡地作为三峡库区土壤侵蚀的主要地类,其土层极易完全流失或形成粗骨土,导致土地生产力下降。三峡水库建成后,库区人地矛盾更加突出,面临着以水土保持为中心的生态环境建设与社会经济持续发展的双重压力。因此,急需探寻一种符合可持续发展的水土流失综合治理措施。
     本研究以具有典型代表性的重庆市开县南山桥沟小流域为试点,通过野外调查取样、室内测定等方法,分析三峡库区小流域林草治理措施下,对土壤特性、土壤侵蚀、土壤有机碳及活性有机碳组分的影响,并与不同林草治理措施对降雨侵蚀动力的影响结果进行比较,探讨三峡库区典型植被治理类型构建后水土流失规律、表现特征,以及土壤肥力、土壤抗蚀性、土壤有机碳与活性有机碳组分间的综合响应关系,最终,根据结果筛选出防治水土流失效果较好的林草治理措施,为三峡库区的水土流失防治,合理构建水土保持防护体系提供科学依据。主要的研究结果如下:
     1.土壤侵蚀导致土壤和土壤养分的流失,而林草治理措施能够减少土壤养分流失。不同林草治理措施下0-20cm土壤中的有机质含量最高,且各种林草治理措施类型下(裸地对照除外)0-20cm表层土壤的有机质含量均与其下层土壤存在显著性差异。栾树+黄花槐、植物篱和封山育林措施下土壤剖面0-10cm、10-20cm、20-30cm三层土壤有机质的总量均比对照裸地的相应土层有明显的提高。在各种林草治理措施中,以栾树+黄花槐措施下土壤有机质含量最高。
     不同林草治理措施下土壤全氮的平均含量在0.264-0.634g·kg"1之间。0-30cm土层土壤全氮平均含量以栾树+黄花槐措施下最高,植物篱措施、封山育林措施次之,土壤剖面各层次全氮含量和总有机碳的变化趋势基本一致。土壤碱解氮除传统农作措施和对照裸地在各土壤剖面间无显著差异外,其余林草治理措施土壤剖面的碱解氮含量均表现出了表聚现象,且从表层向下呈现递减趋势。
     不同林草治理措施下土壤剖面全磷含量及分布具有一定差异,且随土层深度的增加波动较大。土壤全磷在不同林草治理措施下土壤剖面的分布状况与有机碳和全氮呈正相关。有效磷含量随土壤深度的增加呈下降趋势(对照裸地除外),植物篱措施下土壤有效磷含量在各土层均大于其他各林草治理措施。
     适宜的林草治理措施能够维持并提高土壤养分含量,本研究中以栾树+黄花槐措施最好。
     2.土壤结构稳定性直接影响土壤侵蚀的程度,土壤团聚体是维持土壤结构的重要组成。不同林草治理措施下非水稳性团聚体的百分含量基本表现为:大于5mm>5-2mm>1-0.5mm>2-1mm>0.25-1mm>0.5-1mm>小于0.1mm。各林草治理措施与传统农作和对照裸地相比,微团聚体中粒径较大(0.25-0.005mm)的土壤微团聚体含量较高,从总体上看,林草治理措施对于土壤结构的团聚作用较好,通过团聚体的进一步团聚作用,土壤团聚体含量高于传统农作和对照裸地。
     不同林草治理措施下水稳性团聚体测定结果表明,林草治理措施有利于>0.25mm水稳性大团聚体总量的增加,但不同林草措施效果不同;土壤平均重量直径在0.37-1.59mm间,栾树+黄花槐措施下在0-30cm各土层均表现最高,说明栾树+黄花槐措施下的土壤结构稳定性、抗侵蚀能力相对较强;土壤的分形维数的变化范围在2.404-2.85,除裸地对照,传统农作土壤团粒结构分形维数最大,显著高于其他措施,表明传统农作相对其他林草措施对土壤结构破坏率高,不利于土壤团聚体含量增加和土壤结构稳定性的提高。
     不同林草治理措施下土壤容重平均值在1.42g·cm-3,各土壤层次的容重均以栾树+黄花槐措施下最小,而除对照裸地外,10-30cm土层以传统农作下土壤容重最大。毛管孔隙度越大,土壤中有效水的储存容量就越大,不同林草治理措施下,各土层土壤毛管孔隙度较对照裸地有一定程度的升高;其中以自然恢复措施下最高;其次为封山育林措施;土壤非毛管孔隙度越多,土壤通透性越好,对降雨的贮存量就越大。不同林草治理措施下,土壤非毛管孔隙度基本表现为随土壤深度增加而减少,且以20-30cm土层的非毛管孔隙度下降较为剧烈。
     林草治理措施能够改善土壤结构,减缓土壤侵蚀速度,不同林草治理措施对土壤侵蚀的调节效果具有显著差异,在本研究中以栾树+黄花槐措施治理效果最好。
     3.土壤侵蚀过程中,土壤中大部分有机碳随径流、泥沙发生迁移和再分布,致使土壤有机碳含量急剧下降。不同林草治理措施下,土壤有机碳含量均表现为随着土壤深度的增加而降低的趋势。从剖面层次来看,同一土层不同林草措施下土壤有机碳均高于对照裸地,在0-10cm土层,栾树+黄花槐,植物篱、封山育林、自然恢复、经济林及传统农作措施下,土壤有机碳含量分别比对照裸地增加了249.76%、207.24%、123.09%、57.12%、46.74%和39.54%;在10-20cm土层,分别增加了199.46%、153.08%、120.93%、和13.94%。
     不同林草治理措施下土壤C/N值均随着土壤深度的增加呈下降的趋势,且不同土层间差异较大。整体上来看,在0-30cm的剖面上,以栾树+黄花槐措施下土壤的C/N值最高,其次是植物篱措施,而以传统农作和对照裸地下土壤平均C/N值最低。
     不同林草措施下土壤团聚体有机碳含量随着土层深度的增加均逐渐减少,呈现较明显的梯度变化。0-10cm土层各粒级团聚体有机碳含量,均以传统农作和对照裸地下最低:20-30cm土层各粒级团聚体有机碳含量显著低于0-20cm土层。各林草措施下大于0.25mm水稳性团聚体含量与土壤有机碳含量之间呈正相关,且达极显著水平。
     4.在土壤有机碳中,以活性有机碳对土壤侵蚀更为敏感。土壤活性有机碳组分含量大小顺序基本表现为:栾树+黄花槐>植物篱>封山育林>自然恢复>经济林>传统农作>对照裸地。同一林草治理措施下,颗粒有机碳、可溶性有机碳、易氧化有机碳和微生物生物量有机碳含量均随土层深度的增加呈下降的趋势,其中0-10cm土壤有机碳及各活性有机碳组分含量显著高于20-30cm。活性有机碳组分与土壤可蚀性K值均呈极显著负相关关系,表明通过不同林草治理措施的治理可改变土壤性状,从而影响土壤抗蚀能力,且土壤活性有机碳组分可作为表征土壤侵蚀的一个指标。
     5.通过对不同林草治理措施下野外自然降雨监测结果可以看出,林草治理措施显著影响降雨侵蚀动力,并对坡耕地径流侵蚀量产生较大的影响。林草治理措施中,均以裸地对照样地产流、产沙量最大,而以栾树+黄花槐和植物篱措施的产流、产沙最小,水土保持效果最为明显。以洪峰流量模数和径流深表示的坡面径流侵蚀功率与侵蚀产沙量呈正相关关系,说明径流侵蚀功率能够较好的模拟侵蚀动力;以径流侵蚀功率/侵蚀量表示不同林草调控措施对侵蚀结果的影响,可以成为评价植被侵蚀动力调控效应的指标。
     6.土壤侵蚀、土壤理化性质、土壤活性有机碳之间具有较强的内在作用关系,通过相关分析、主成分分析及通径分析表明,不同林草治理措施下土壤活性有机碳组分与土壤理化指标间具有较强的相关性,通过主成分分析确定土壤有机质、碱解氮、有效磷、C/N、容重、总孔隙度、毛管孔隙度、粘粒含量、MWD和分形维数可以作为不同林草治理措施下土壤活性有机碳与土壤性质关系的简化指标,且分析表明这些指标对四种土壤活性有机碳组分以有机质、总孔隙度、碱解氮的直接和间接影响较大。
As one of the four significant water loss and soil erosion areas in Changjiang upper stream and being featured by complex geomorphic type, the three gorges reservoir area is a significant factor which seriously harms the ecological environment and hinders the development of social economy. As the main field type of soil erosion in the three gorges reservoir area, the sloping fields shall easily runoff totally or form skeleton soil which shall result in declining productivity of land. By establishment of Three Gorges reservoir, the contradiction between human and land became sharper as facing the double pressure of ecological environment construction focusing on water and soil conservation as well as sustainable social economic development. Thus comprehensive management measures of water loss and soil erosion complying sustainable development are urgently needed.
     By taking the region representation into full account, the small watershed in Nanshan bridge groove, Kai County, Chongqing city was selected as pilot. In the three gorges reservoir area this watershed is typically featured by general deforesting, high coefficient of cultivated land and serious steep slope farming.
     By focusing on the treatment measures of different forest and grassland and on the basis of field investigation and sampling, laboratory analysis and statistical analysis, this study has analyzed the physical and chemical properties of runoff, sediment and soil under different treatment measures of forest and grassland, as well as the content variation of soil organic carbon and soil active organic carbon fractions. In addition, it discusses on the water loss and soil erosion discipline, presentation features, soil fertility and anticorrosion of typical plants in the three gorges reservoir area by establishment of treatment type, as well as the influence on content change of soil organic carbon and soil active organic carbon fractions of different forest and grass treatment measures. In accordance with above results, forest and grass treatment measures with better effect on prevention and control of water loss and soil erosion shall be selected thus provide important scientific basis for the prevention and control of water loss and soil erosion as well as construct rational water and soil conservation defense system. Furthermore it shall provide significant scientific support for the social economy development of the three gorges reservoir area. The main study achievements are as follows:
     1. The organic matter content of soil0-20cm under different treatment measures of forest and grassland is the highest. Meanwhile there exists significant variation between the organic matter of surface soil0-20cm under each kind of treatment measures of forest and grassland (excluding bare land control plot) and the soil layer below. The organic matter content of the three soil layers namely soil section of0-10cm、10-20cm、20-30cm under Koelreuteria bipinnata+Cassia suffruticasa and hedgerow as well as closed forest measures have been significantly improve than that of relevant soil layers of bare land control plot. According to the horizontal comparison, the best effect of improving the organic matter content of soil shall be obtained via Koelreuteria bipinnata+Cassia suffruticasa measure.
     The average content of total nitrogen of soil under different treatment measures of forest and grassland is0.264-0.634g·kg-1. The full N average content of0-30cm soil layer is highest under Koelreuteria bipinnata+Cassia suffruticasa measure while the hedgerow and closed forest measures take the second place. The variation trend of total nitrogen content of each soil layer section and the total organic carbon are almost consistent. There is not obvious change in available nitrogen in traditional planting and bare land control plot while available nitrogen declines from the surface to bottom in other treatment measures of forest and grassland.
     The total phosphorus content distribution of soil section shall be of certain difference due to different treatment measures of forest and grassland thus shall show great fluctuation with the increasing of soil layer. The distribution of soil total phosphorus content is similar with that of organic matter and total nitrogen under different treatment measures of forest and grassland. At the same time, available phosphorus content shall decline with the increasing of soil layer (excluding bare land control plot) thus the available phosphorus content of each soil layer under hedgerow measure is greater than that of other treatment measures of forest and grassland.
     2. The percentage composition of non-water stable aggregates under different treatment measures of forest and grassland is:greater than5mm>5-2mm>1-0.5mm>2-1mm>0.25-1mm>0.5-1mm>smaller than0.1mm. Comparing the different treatment measures of forest and grassland, traditional planting and bare land control plot, the soil micro-aggregates with greater grain diameter (0.25-0.005mm). Generally, the treatment measures of forest and grassland have better effect on aggregation of soil composition. Through further aggregation effect the content of aggregates shall be higher than that of traditional planting and bare land control plot.
     Test result of water-stable aggregates under different treatment measures of forest and grassland shows that it is beneficial for the increasing of>0.25mm water-stable aggregates. However, different treatment measures of forest and grassland shall gain different effects. Oelreuteria bipinnata+Cassia suffruticasa measure owns the best performance in0-30cm soil layers where the mean-weight diameter is0.37-1.59mm indicating that it has relatively stronger soil composition stability and anti-erosion ability. The changing range of fractal dimension characteristics is2.404-2.85. the soil composition fractal dimension characteristics shall be the higher than other measures excluding bare land control plot indicating that traditional planting has higher destruction rate than other measures thus is unfavorable for increasing of soil aggregates and soil composition stability.
     The mean value of soil bulk density under different treatment measures of forest and grassland is1.42g·cm-3and it is smallest under Koelreuteria bipinnata+Cassia suffruticasa measure excluding bare land control plot while greatest under traditional planting in the10-30cm soil layer. The greater capillary porosity is, the greater the storage content of effective water in soil is. Under different treatment measures of forest and grassland, the capillary porosity of each soil layer shall increase to some extent than bare land control plot. Among which it shall increase to the highest extent under natural recovery. Closed forest measure shall take the second place while the traditional planting takes the last place. The greater the non-capillary porosity is, the permeability of soil shall be better and the rainfall storage shall be greater. Under different treatment measures of forest and grassland (excluding closed forest), non-capillary porosity of soil shall be bigger in10-20cm soil layer than that of0-10cm. and the rest shall reduce with the increasing of soil depth. Stronger declining of non-capillary porosity of soil shall appear in20-30cm soil layer.
     3. Under different treatment measures of forest and grassland the soil management process and soil property shall change to some extent and then the organic carbon shall change. The organic carbon content shall decrease with the increasing of soil depth and its indicator is changing. In vertical direction, there is relevance between organic carbon and soil depth and its indicators shall decline with the increasing of soil depth.
     According to the section, the organic carbon content has increased249.76%,207.24%,123.09%,57.12%,46.74%and39.54%in0-10cm layer under oelreuteria bipinnata+Cassia suffruticasa, hedgerows, closed forest, natural restoration, economic forest, traditional planting exceeded bare land control plot. And the organic carbon content has increased199.46%,153.08%,120.93%and13.94%in10-20cm layer under Koelreuteria bipinnata+Cassia suffruticasa, hedgerows, closed forest, natural restoration, economic forest, traditional planting exceeded bare land control plot.
     Under different treatment measures of forest and grassland the C/N ratio value shall decline with the increasing of soil depth and changes greatly in different soil layers. Generally, the highest C/N ratio appears in oelreuteria bipinnata+Cassia suffruticasa measure, the hedgerows measure takes the second place and the lowest ratio appears in traditional planting and bare land control plot.
     The organic carbon content in soil aggregates shall increase with the soil layer depth under different treatment measures of forest and grassland showing obvious change of gradient. The organic carbon content in soil aggregates is lowest in0-10cm soil layer under traditional planting and bare land control plot while that in20-30cm is obvious lower than that in0-20cm. and there is not obvious variation than that in0-20cm. In accordance with the relevant analysis with the water-stable aggregates>0.25mm under different treatment measures of forest and grassland with the organic carbon content, there is positive correlation relation between them and reached up to highly significant level.
     4. The active organic carbon content is in the order of Koelreuteria bipinnata+Cassia suffruticasa> hedgerows> closed forest> natural restoration> economic forest> traditional planting> bare land control plot. Under the same treatment measures of forest and grassland, the content of POC, ROC, DOC and MBC shall decline with the increasing soil depth among which the content of organic carbon and active organic carbon in0-10cm soil is significantly high than that in20-30cm soil.
     There is negative correlation relation between active organic carbon under different soil depth and soil erodibility K-factor indicating that soil property shall be changed via different treatment measures of forest and grassland which shall influence the resistance to corrosion of soil.
     5. According to the monitoring result of natural rainfall in field under the prevention and control measures of different forest and grassland during the whole year, the prevention and control measures of forest and grassland shall greatly influence the runoff erosion amount of sloping farmland via influencing rainfall erosion power. Among the prevention and control measures on forest and grassland, the greatest runoff and sediment appeared in bare land control plot while the smallest appear in the measure of Koelreuteria bipinnata+Cassia suffruticasa and hedgerow thus the obvious effect of water and soil reservation shall be obtained. There is positive correlation relationship between slope runoff erosion power expressed with peak flow modulus as well as runoff depth and erosion and sediment amount which means the runoff erosion power shall favorably imitate erosion power. Furthermore, the influence of different treatment measures of forest and grassland on erosion result expressed by runoff erosion power/volume shall be the index for assessment on regulatory effect of vegetation erosion power.
     6. In accordance with relevant analysis, analysis on main composition and path coefficient, there is certain relativity between active organic carbon composition and soil physicochemical indexes under different treatment measures of forest and grassland. Via main composition analysis it is assured that organic matter, available nitrogen, available phosphorus, C/N, unit weight, total porosity, capillary porosity, clay content, MWD and fractal dimension characteristics are the simplified soil physicochemical indexes under different treatment measures of forest and grassland. Furthermore, the analysis indicates that there indexes have great direct or indirect influence on active organic carbon, organic matter, total porosity and available nitrogen in four types of soil.
引文
Adelaide M. Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality[J]. Physics and Chemistry of the Earth,2007,32(15/18):1135-1140.
    Anderson D W, Jong E D, Verity G E, et al. The effects of cultivation on the organic matter of soils of the Canadianprairics[J]. Trans XIII CongIntSoc Soil Sci (Hamburg),1986,7:1344-1345.
    Arrouays D, Pelissier P. Modeling carbon storage profiles in temperate forest humic loamy soils of France[J]. Soil Science,1994,157:185-192.
    Ashagrie Y, Zech W, Guggenberger Q et al. Soil aggregation, total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia[J]. Soil and Tillage Research,2007,94:101-108.
    Belay-Tedla A, Zhou X H, Su B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping[J]. Soil Biol Biochem,2009, 41:110-116.
    Bewket W, Stroosnijder L. Effeets of Areecological land use succession on soil properties in Chempga watershed, Blue Nile basin, EthioPia[J]. Gooderma,2003,111:85-98.
    Biederbeck B O, Zentner R P. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry,1994.,26(12):1647-1656.
    Biederbeck W B, Hunt H W, Woodmansee R G, et al. Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils[J]. Ecological Bulletins,1981,33:49-115.
    Bittelli M, Campbell G S, Flury M. Characterization of particle-size distribution in soil with a fragmentation model[J]. Soil Science Society of America Journal,1999,63(4):782-788.
    Blackburn W H. Factors influencing infiltration and sediment production of semiarid rangelands in Nevada[J]. Water Resources Research,1975,11:929-937.
    Blair G J, Lefory R D. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal Agricultural Research,1995,46(7):1459-1466.
    Boag B. Influence of ploughing, rotary cultivation and soil compaction on migratory plant-parasitic nematodes[R]. Proceedings of the 11th International Conference on International Soil Tillage Research Organisation,1988,1: 209-214.
    Bockheim J G, Walker, Everett L R. Soil carbon distribution in nonacidic and acidic tundra of Arctic Alaska[A]. Lal R, et al. Soil Processes and the Carbon Cycle[C]. Boca Raton:CRC Press,1997,143-155.
    Boggs G G GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia[J]. Land Degradation and Development,2001,12(5):417-434.
    Bolinder L C, Angers D A, Gregorich E Q et al. The response of soil quality indicators to conservation management[J]. Canadian Journal of Soil Science,1999,79(1):37-45.
    Bosch J M, Hewlett J D. A review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology.1982,55:3-23.
    Bouwman A F, Leemans R. The role of forest soils in the global carbon cycle[J]. Soil Science Society of America Joumal,1995,59(3):503-525.
    Braud I, Vich A I J, Zuluaga J, et al. Vegetation influence on runoff and sediment yield in the Andes region: observation and modeling[J]. J Hydrol,2001,254:124-144.
    Burger J A, Kelting D L. Using soil quality indicators to assess forest stand management[J]. For Ecol Manage,1999, 122:155-156.
    Burke I C, Yonker C M, Ponton W J, et al. Texture, climate, and cultivation effects on soil organic matter content in U.S. Grassland soils\[J].Soil Sci. Soc. Am. J.,1989,53:800-805.
    Caravaca F, Alguacil M M, Figueroa D, et al. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean land[J]. Forest ecology and Management,2003,182,49-58.
    Carroll C, Merton L, Burger P. Impact of vegetation cover and slop on run off, erosion, and water quality for field plots on a range of soil and spoil materials on central Queenlands coal mines[J]. Australia Soil Research,2000,38: 313-327.
    Carter M R, Parton W J, Rowland I C, et al. Simulation of soil organic carbon and nitrogen changes in cereal and pasture systems of southern Australia[J]. Australian Journal of Soil Research,1993,31 (4):481-491.
    Cerda A. Parent material and tation affected soil erosion in eastern Spain[J]. Soil Science Society of America Journal, 1999,63:362-368.
    Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys[J]. Soil Science,2001,166:61-67.
    Chan K Y. Consequences of changes in particulate organic carbon in verticals under pasture and cropping[J]. Soil Science Society of America Journal,1997,61(2):1374-1382.
    Chen X W, Li B L. Changes in soil carbon and nutrient storage after human disturbance of a Primary Korean Pine forest in Northeast China[J]. For Eeo Man,2003,186:197-206.
    Chen Y C, Lin Z W. Analysis and evaluation of water environmental carrying capacity in Three Groges Reservior[J]. Shui ke xue jin zhan/Advances in Water Science.2005,16(5):715-719.
    Christ M J. David M B. Dynamics of extractable organic carbon in spodosol forest floors[J]. Soil Biology and Biochemistry,1996,28:1171-1179.
    Davidson E A, Lefebvre P A. Estimating regional carbon stocks and spatially covering edaphic factors using maps at three-scale [J]. Biogeochemistry,1993,22:107-131.
    Davidson S. Cultivation and Soil organic matter[J]. Rural Research,1986,131:13-18.
    Degens B P. Macro-aggregation of soils by biological bonding and binding and the factors affecting these:a review[J]. Australian Journal of Soil Research,1997, (35):431-459.
    Dejong E, Kochanoski G. The importance of erosion in the carbon balance of prairie soils[J]. Canadian Journal of Soil Science,1988,68:111-119.
    Dexter A R. Advances in characterization of soil structure[J]. Soil and Till Research,1988,11:199-238.
    Domzal H, Hodara J, Tursk R. The effects of agricultural use on the structure and physical properties of three soil types. Soil and Tillage Research,1993,27:365-375.
    Doran J W, Jones A J, Arshad M A, et al. Determinants of soil quality and health[A]. Soil Quality and Soil Erosion[C]. CRC Press,1999.17-36.
    Doran J W, Parkin T B. Defining and assessing soil quality. In:Doran J W, et al eds. Defining Soil Quality tor a Sustainable Environment[J]. Soil Sci Soc A m.1994,35:3-21.
    Doran J W, Sarrantomo M, Liebig M A. Soil health and global sustainability[M]. Porceedings of the 16th Word Congress of soil science Montepellier. France,1998:20-26.
    Du Toit M E. Du Preez C C, Hensley M, et al. Effect of cultivation on the organic matter content of selected dryland soils in South Africa. South African Journal of Plant and Soil,1994,11(2):71-79.
    Eldridge D J. Rothon J. Run off and sediment removal on a semi-arid soil in eastern Auatrilia:the effect of pasture type[J]. Reargeland Journal,1992,14:26-39.
    Elliott E T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils[J]. Soil. Sci. Soc. Am. J,1986.50:627-633.
    Fan J R, Zhong X H, Liu S Z. Monitoring on soil erosion and sediment delivery at a typical basin of the middle and lower reaches of the Jialing River by remote seding[J]. Science In China Series Engineering & Materials Science, 2003.46:148-155.
    Fissore C. Giardina C P, Kolka R K, et al. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America[J]. Global Change Biology.2008.14: 193-205.
    Francioso O. Ciavatta C. Sanchez S, et al. Spectroscopic characterization of soil organic matter in long-term amendment trials[J]. Soil Sci..2000. (165):495-504.
    Franzluebbers A J, Stuedemann J A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont[J]. Environmental Pollution.2002,116:553-562.
    Freixo A A. Machado P L, Santos H P, et al. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil[J]. Soil and Tillage Research.2002.64(3-4): 221-230.
    Ghani A, Dexter M. Perrott K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization, grazing and cultivation[J]. Soil Biology and Biochemistry,2003,35(9):1231-1243.
    Ghidey F, Alberts E E. Plant effects on soil erodibility, splash detachment, soil strength, and aggregate stability[J]. Transaction of the American Society of Agricultural Enginner,1997,40(1):129-135.
    Golchin A. Baldock J A. Oades J M. A model linking organic matter decomposition, chemistry, and aggregate dynamics. Symposium on Carbon Sequeatration in Soils. Columbus. OH,1998:245-266.
    Golchin A. Oades J M. Skjemstad J O. et al. Soil structure and carbon cycling[J]. Australian Journal of Soil Research. 1994,32:1043-1068.
    Gordon W S. Ackson R B. Nutrient concentrations in fine roots.Ecology.2000.81:275-280.
    Grayston S J. Wang S, Campbell C D. et al. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry,1998,30:369-378.
    Gregorich E G, Greer K J, Adnerson D W, et al. Carbon distribution and losses:erosion and deposition effects[J]. Soil and Tillage Research.1998,47(3-4):291-302.
    Guffenberger G, Zech W. Soil organic matter composition under primary forest, pasture and secondary forest succession[J]. Forest Ecology and Management,1999,124:93-104.
    Gupta V V S R, Yeates G W. Soil micro-fauna as indicators of soil health[A]. In:Biological Indicators of soil Health[C]. CAB International,1997,201-233.
    Haack S K, Garchow H M, Klug J, et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology,1995, 61(4):1458-1468.
    Harden J W, Sharpe J M, Parton W J, et al. Dynamic replacement and loss of soil carbon on eroding crop land[J]. Global Biogeochem Cycles,1999,13:885-901.
    Harris W F. Comparison of belowground biomass of nature deciduous forest and loblolly pine plantations [J]. Pedobiologic,1977,17:369-381.
    Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils:an overview[J].Advances in Agronomy,2005,85:221-268.
    Hengsdijk H, Meijerink G W, Mosugu M E. Modeling the effect of three soil and water conservation practices in Tigray, Ethiopia[J]. Agriculture, Ecosystems and Environment,2005, (105):29-40.
    Hontoria C, Rodriguez-Murillo J C, Saa A. Relationship between soil organic carbon and site characteristics in Peninsular Spain [J]. Soil Sci. Soc. Am. J.,1999,63:614-621.
    Hontoria C, Rodriguez-Murillo J C, Saa A. Relationship between soil organic carbon and site characteristics in Peninsular Spain [J]. Soil Sci. Soc. Am. J.,1999,63:614-621.
    Hook P B, Burke I C. Biogeochemistry in a short grass landscape:Control by topography, soil texture, and micro climate [J]. Ecology,2000,81(10):2686-2703.
    Hui Chao D, Bin T. Study on eco-environmental monitoring and protection of the Three Gorges Project[M]. Barcelona, Spain:Taylor and Francis/Balkenma,2006.
    Iovieno P, Alfani A, Baath E. Soil microbial community structure and biomass as affected by Pinus pinea plantation in two Mediterranean areas[J]. Applied Soil Ecology,2010,45:56-63.
    Jacinthe P A, Lal R, Kimble J M. Organic carbon storage and dynamics in croplands and terrestrial deposits as influenced by subsurface tile drainage[J]. Soil Science,2001,166:322-335.
    Jackson R B, Sehenk H J, Jobbogy E G, et al. Belowground consequences of vegetation change and their treatment in models [J]. Ecol Appl,2000,10(2):470-483.
    Janzen H H. Carbon cycling in earth systems-a soil science perspective[J]. Agriculture, Ecosystems and Environment,2004,104:399-417.
    Jastrow J D, Boutton T W, Miller R M. Carbon dynamics of aggregate-associated organic matter estimated by 13C natural abundance. Sci. Soc. Am. J,1996,60:801-807.
    Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem,1996,28(4-5):665-676.
    Jeffrery S K, David P T, Dodson R F. Spatial patterns in soil organic carbon pool size in the Northwestern United States[A]. Lal R, et al. Soil Processes and the Carbon Cycle[C]. Boca Raton:CRC Press,1997.29-44.
    Jeffrey E Herrick, Michelle M Wander. Relationships between soil organic carbon and soil quality in cropped and rangeland soils:the importance of distribution, composition, and soil biological activity[A]. Lal R, et al. Soil Processes and the Carbon Cycle [C]. Boca Raton:CRC Press,1997.405-425.
    Jeffrey E Herrick, Michelle M Wander. Relationships between soil organic carbon and soil quality in cropped and rangeland soils:the importance of distribution, composition, and soil biological activity[A]. Lal R, et al. Soil Processes and the Carbon Cycle [C]. Boca Raton:CRC Press,1997.405-425.
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature,1991,351:304-306.
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emission from soil in response to global warming [J]. Science,2000,290:291-296.
    Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J]. Soil sci.,1977,123:298-305.
    Jenkinson S. An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987, 17:703-707.
    Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2002,10(2):423-436.
    Johannes M H K, David T. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology,2000,81(1):88-98.
    Kalbitz K, Solinger S, Park J H. Controls on the dynamics of dissolved organic matter in soils a review [J]. Soil Science,2000,165:277-304.
    Karlen D L, Rosek M J, Gardner J C, et al. Conservation reserve program effects on soil quality indicators [J]. Journal of Soil and Water Conservation,1999,54(1):439-444.
    Kay B. Rates of change of soil structure under different cropping systems[J]. Adv Soil Sci,1990 12,1-52.
    Laflen J M, Lane L J, Foster G R. WEPP a new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation,1991,46(1):34-38.
    Lal R, Follett R F, Kimble J, et al. Management U. S. cropland to sequester carbon in soil[J]. Journal of Soil and Water Cons,1999,54(1):374-381.
    Lal R, Griffin M, Apt J, et al. Managing soil carbon[J]. Science,2004,304(4):393.
    Lal R, Logan T J, Fausey N R. Long-term tillage effects on Mollic Ochraqualf in northwestern Ohio soil nutrient
    profile [J]. Soil Tillage Research,1990,15:371-382.
    Lal R. Global soil erosion bywater and carbon dynamics[C]//LALR, KIMBLEJ.STEWART BA. Soils and Global Change. CRC/Lewis Publishers, Boca Raton, FL,1995:131-142.
    Lal R. Soil erosion and the global carbon budget[J]. Environment International,2003,29:437-450.
    Le Bissonnais Y. Aggregate stability and assessment of soil crust-ability and erodibility I. Theory and methodology. European Journal of Soil Science,1996,47:425-437.
    Lehmann J, Cravo M S, Zech W. Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees:chemical characterization of density, aggregate, and particle size fractions[J]. Geoderma,2001, 99(122):147-168.
    Leite Luiz Fernando Carvalho. Simulating trends in soil organic of an Acrisol under no-tillage and disc-plow systems
    using the century model[J].2003. Geoderma.
    Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils,1998,26(2):88-94.
    Lobe I, Amelung W, Du Preez C C. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld[J]. Soil Sci,2001,52:93-101.
    Malley Z J U, Kayombo B, Willcocks T J. Ngoro:an indigenous, sustainable and profitable soil, water and nutrient conservation system in Tanzania for sloping land[J]. Soil and Tillage Research,2004,77:47-58.
    Mapa R B, Gunasena H P M. Effect of alley cropping on soil aggregate stability of a tropical Alfisol[J]. Agroforest Systems,1995,32(3):237-245.
    Marc D, Richard H. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec(Canada)[J]. Agriculture Ecosystems and Environment,2009,131(1/2):85-97.
    Margarita S, Fernando G P, Lillian F. Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay[J]. Applied Soil Ecology,2004,27: 125-133.
    Maria J M, Luis J, et al. Effect of vegetal cover on run off and soil erosion under light intensity events. Rainfall simulation over USLE plots[J]. Science of the Total Environment,2007,378:161-165.
    Marquez C O, Garcia V J, Cambardella C A. Aggregate size stability distribution and soil stability[J]. Soil Sci Soc Am J,2004,68(3):725-735.
    Meier C E, Grier C C, Cole D W. Below and above ground N and P use by Abies amabilis stands. Ecology,1985,66: 1928-1942.
    Mercik S, Nemeth K. Effects of 60-year N, P, K and Ca fertilization on EUF-nutrient fractions in the soil and on yields of rye and potato crops[J]. Plant and soil,1985,83(1):151-159.
    Montero E. Renyi dimensions analysis of soil particle-size distribution[J]. Ecological Modelling,2005,182(3-4): 305-315.
    Mooney H A, Vitousek P V, Matson P A. Exchange of materials between terrestrial ecosystems and the atmosphere[J]. Science,1987,238:926-932.
    Morrison I K, Foster N W. Fifteen-year change in forest floor organic and element content and cycling at the Turkey Lakes Watershed[J]. Ecosystems,2001,4:545-554.
    Mosley M P. The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion[J]. Earth Surface Processes and Landforms,1982, (7):103-107.
    Naiman R. J., H. De camps, and M. Pollock. The role of riparian corridors in maintaining regional biodiversity[J]. Ecological Applications,1993 (3):209-212.
    Nel P C, Bamard R O, Steynberg R E, et al. Trends in maize grain yields in a long-term fertilizer trial[J]. Field Crop Res,1996,47:53-64.
    Nichols J D. Relation of organic carbon to soil properties and climate in the southern Great Plains[J]. Soil Sci. Soc. Am. J.,1984,48:1382-1384.
    Nyakatawa E Z, Jakkula V, Reddy K C, et al. Soil erosion estimation in conservation tillage systems with poultry litter application using RUSLE2.0 model[J]. Soil and Tillage Research,2007,94(2):410-419.
    Oades J M. Soil organic-matter and structural stability-mechanisms and implications for management. Plant and Soil, 1984,76:319-337.
    Oechel W C, Hastings S J, Vourlitis G, et al. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to source[J]. Nature,1993,361:520-523.
    Ogutu Z A. An investigation of the influence of human disturbance on selected soil nutrients in Narok District, Kenya[J]. Environmental Monitoring and Assessment,1999,58:39-60.
    Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands[J]. Soil Science Society of America Journal,1987,51:1173-1179.
    Paul E A R, mkens A M, Van der Plicht Johannes. Evolution of CO2 and soil carbon dynamics in biologically managed, row-crop agroecosystems[J]. Appl. Soil Ecol.,1999,11:53-65.
    Percival H J, Roger L P, Scott N A. Factors controlling soil carbon levels in New Zealand grasslands:Is clay content important?[J]. Soil Sci. Soc. Am. J.,2000,64:1623-1630.
    Petts, G E. Impounded Rivers. Perspectives for ecological management. John Wiley & Sons, Chichester, UK,1984.
    Piccolo A, Mbagwu J S C. Role of hydrophobic components of soil organic matter in soil aggregate stability[J]. Soil Science Society of America Journal,1999,63:1801-1810.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones [J]. Nature,1982,298(8):156-159.
    Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon [A]. In:Powlson D S, et al eds. Evaluation of Soil Organic Matter Models [C]. Berlin, Heidelberg:Springer-Verlag, 1996,201-224.
    Powers R F, Tiarks A E, Boyle J R. Assessing soil quality:practicable standards for sustainable forest productivity in the United State. In:Adams M B, Ramakrishna K, Davidson E A eds. The Contribution of Soil Science to the Development and Implementation of Criterion and Indicators of Sustainable Forest Management [J]. Soil Sci Soc A m,1998,53:53-80.
    Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of change in total soil organic matter due to straw incorporation [J]. Soil Biology and Biochemistry,1987,19: 159-164.
    Qualls R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water[J]. Science Society of America Journal,1992,56:578-586.
    Raich J W, Nadelhoffer K J. Below Ground Carbon Allocation in Forest Ecosystems:Global Trends. Ecology,1989, 70(5):1346-1354.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus,1992,44(B):81-99.
    Roberts W P, Chan K Y. Tillage-induced increases in carbon dioxide loss from soil[J]. Soil and Tillage Research, 1990,17:143-151.
    Rovira A D, Greacen E L.The effect of aggregate disruption on the activity of microorganisms in the soil[J]. Crop and Pasture Science,1957,8:659-673.
    Rozanov B G, Targulian V, Orlov D S. Soils[C]// TURNER B L II, CLARKWC, KATES R W, et al. The earth as transformed by humans action:global and regional changes in the biosphere over the past 300 years, Cambridge Univ. Press, Cambridge,1993:203-214.
    Shaffer M J, Ma L W. Hansen S. Modeling carbon and nitrogen dynamics for soil management[M]. Boea Raton, FL: Lewis Publishers.2001,1-10.
    Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters: issues and options[J]. Journal of Environmental Quality,1994,23:437-451.
    Sikora L J, Cambardella C A, Yakivchenko V, et al. Assessing soil quality by testing organic matter[J]. In:Magdoff F R. (eds).Soil Organic Analysis and Interpretation. Soil Science Society of America,1996,41-50.
    Six J, Elliott E T, Paustian K, Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal,1999,63:1350-1358.
    Six J, Paustain K, Elliott E T, et al. Soil structure and organic matter:I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci. Soc. Am. J,2000,64:681-689.
    Six J, Elliott E T, Paustian K. Soil macro aggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry,2000,32:2099-2103.
    Smith J L,Paule A. The significance of soil microbial biomass estimations[M], In Soil Biochemistry, Bollag J M & Stotzky G(eds). New York:Marcel Dekker, inc,1991,359-396.
    Smith J L. Cycling of nitrogen through microbial activity[M]. In:Hadfield J C, Steward B A (Eds), Soil Biology: Effects on Soil Quality. Boca Raton, Florida:Lewis Publishers,1994,91-120.
    Soon Y K, Arshad M A, Haq A, et al. The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil[J]. Soil and Tillage Research,2007,95(1):38-46.
    Stevenson F J, Cole M A. Cycles of soils:carbon, nitrogen, phosphorus, sulfur micronutrients[M]. John Wiley & New York:Sons, Inc,1999.
    Stinson Q Freedman B. Potential for carbon sequestration in Canadian forests and agroecosystems[J]. Mitigation and Adaptation Strategies for Global Change,2001,6:1-23.
    Studdert G A, Echeverria H E, Cazanovas E M. Crop-pasture rotation for sustaining the quality and productivity of a typic argiudol[J]. Soil Science Society of America Journal,1997,61(5):1466-1472.
    Thenberth K E. Rural land-use change and climate[J]. Nature,2004,423-213.
    Thurow T L, Blackburn W H, Taylor C A. Hydrologic characteristics of vegetation types as affected by livestock grazing systems, Edwards Plateau, Texas[J]. Journal of Range Management,1986,39:505-509.
    Tiessen H, Stewart J W B, Betany J R. Cultivation effects on the amount and concentration of carbon, nitrogen and phosphorus in grassland soils[J]. Agron J,1982,74:831-834.
    Tisdall J M, Oades J M. Organic matter and water-stable aggregate in soil[J]. Journal of Soil Science,1982,33(2): 141-163.
    Trujillo W, Amezquita E, Fisher M J, et al. Soil organic carbon dynamics and land use in the Colobian Savannas I. Aggregate size distribution[A]. Lal R, et al. Soil Processes and the Carbon Cycle[C]. Boca Raton:CRC Press, 1997.267-280.
    Trumbore S E, Chadwick O A, Amundson R. Rapid exchanges between soil carbon and atmospheric carbon dioxide driven by temperature [J].Science,1996,272(19):393-396.
    Trumbore S E, Chadwick O A, Amundson R. Rapid exchanges between soil carbon and atmospheric carbon dioxide driven by temperature [J]. Science,1996,272(19):393-396.
    Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distribution:Analysis and limitations[J]. Soil Science Society of America Journal,1992,56:362-369.
    Vance G F, David M B. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest central Maine, USA[J]. Geochimica et Cosmochimica Acta,1991,55:3611-3625.
    Vitousek P M, Goaz J R, Grier C C, et al. Nitrate losses from disturbed ecosystes [J]. Science,1979,204:469-474.
    Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:How can it occur[J]. Biogeochemistry,1991, 13:87-115.
    Wa'el Mohamad, Huang C Y, Xie Z M. Comparison of the effects of copper and lead on soil microbial bilmass carbon and nitrogen in red soil[J]. Journal of Zhejiang University Science,2000,1(2):196-201.
    Wander M M, Traina S J, Stinner B R, et al. The effects of organic and conventional management on biologically active soil organic matter fractions[J]. Soil Science Society of America Journal,1994,58:1130-1139.
    Wander M M, Yang X. Influence of tillage on the dynamics of loose-and occluded-particulate and humified organic matter fractions[J]. Soil Biology and Biochemistry,2000,32(2):1151-1160.
    Wang J, Fu B J, Qiu Y, et al. The effects of land use on runoff and soil mutrient lesses in a gully catchment of the hilly areas:implication for erosion control[J]. Joural of Geographical Sciences,2005,15(4):396-404.
    Wang J, Fu B J, Qiu Y. Analysis on soil mutrient characteristics for sustainable land use in Danangou Catchment of the Loess Plateau[J]. Catena,2003,54:17-29.
    Wang L A, Pei T Q, Huang C, et al. Management of municipal solid waste in the Three Gorges region[J]. Waste Management,2009,29(7):2203-2208.
    Wang L L, Song C C, Song Y Y, et al. Effects of reclamation of natural wetlands to a rice paddy on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China[J]. Ecological Engineering,2010,36(10):1417-1423.
    Wienhold B J, Andrews S S, Karlen D L. Soil quality:a review of the science and experiences in the USA[J]. Environmental Geochemistry and Health.2004,26:89-95.
    Xiao Huilin. Climate change in relation to soil organic matter[J]. Soil and Environment Sciences,1999,8(4): 300-304.
    Yuko Y, Hideaki S, Yojiro M, et al. Effects of soil and vegetation types on soil respiration rate in larch Plantations and a mature deciduous broadleaved forest in northern Japan[J]. Eurasian journal of Forest Research,2006,92:79-95.
    Zhang C B, Cheng L-H, Liu Y P, et al. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength [J]. Ecological Engineering,2010,36(3):19-26.
    Zhang M K, He Z L. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China[J]. Geoderma,2004,118(3-4):167-179.
    Zhou Z C, Shangguan Z P. Effects of ryegrasses on soil runoff and sediment control Pedosphere,2008,18(1): 131-136.
    鲍士旦.2005.土壤农化分析(第三版).北京:中国农业出版社:205-234.
    北京林业大学.土壤学(上册)[M].中国林业出版社:1981,140-143,208.
    蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8.
    蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析[J].资源科学,2004,8(26):26-32.
    蔡晓布,张永青,钱成,等.西藏中部退化土壤在不同培肥措施下的肥力特征[J].生态学报,2004,24(1):75-83.
    曹承绵,严长生,张志明,等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,14(4):13-15.
    陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    陈建国,田大伦,闫文德,等.土壤团聚体固碳研究进展[J].中南林业科技大学学报(自然科学版),2011,31(5):74-80.
    陈利军,周礼恺.土壤保肥——供肥机理及其调节Ⅳ.棕壤型菜园土肥力的调节与培育及其作用实质[J].应用生态学报,2000,11(4):532-534.
    陈鹏飞,陈丽华,王宇,等.黄土丘陵沟壑区不同土地利用类型对坡地产流、产沙的影响[J].生态与农村环境学报,2010,26(3):199-204.
    陈永宗.黄河粗泥沙来源及侵蚀产沙机理研究文集[M].北京:气象出版社,1989.
    程圣东,李占斌,李强.干热河谷地区土壤物理特性对土壤侵蚀的影响[J].水资源与水工程学报,2008,19(5):39--41.
    仇亚琴,王水生,贾仰文.汾河流域水土保持措施水文水资源效应初析[J].自然资源学报,2006,(1):24-30.
    戴慧.天童地区不同土地利用类型土壤的碳库特征[D].华东师范大学,2007:22.
    单艳红,杨林章,王建国.土壤磷素流失的途径、环境影响及对策[J].土壤,2004.36(6):602-608.
    丁访军,王兵,钟洪明,等.赤水河下游不同林地类型土壤物理特性及其水源涵养功能田[J].水土保持学报,2009,23(3):179-183,231.
    董杰,杨达源,周彬,等.137Cs示踪三峡库区土壤侵蚀速率研究[J].水土保持学报,2006,20(6):1-5.
    杜峰,程积民.植被与水土流失[J].四川草原,1999,2:6-12.
    樊后保,李燕燕,黄玉梓,等.马尾松纯林改造成针阔混交林后土壤化学性质的变化[J].水土保持学报,2006,20(4):77-51.
    方华军,杨学明,张晓平,梁爱珍.土壤侵蚀对农田中土壤有机碳的影响[J].土壤通报,2004,23(2):77-87.
    方少文,郑海金,杨洁,等.梯田对赣北第四纪红壤坡地土壤抗蚀性的影响[J].中国水土保持,2011,(12):13-15.
    高立洪.水土流失是中国头号环境问题[N].中国水利报,2001,7-17.
    高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2005,19(2):53-60,79.
    耿玉清,余新晓,孙向阳,等.北京八达岭地区油松与管丛林地土壤肥力特征的研究[J].北京林业大学学报,2007,29(2):50-54.
    龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团粒分形特征研究[J].土壤学报,2007,44(3):571-575.
    巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    巩杰,陈利顶,傅伯杰等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2006,19(1):93-96.
    关连珠,张伯泉,颜丽.不同肥力黑土、棕壤各级微团粒中胶结物质的粗成及其特性[J].沈阳农业大学学报,1991,22(1):55-60.
    郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J].地理学报,2001,56(4):447-455.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-68.
    贺红元,车克钧,傅辉恩,等.祁连山寺大隆林区水土流失状况的初步研究[J].水土保持学报,1992,6(1):48-56.
    洪瑜,方晰,田大伦.湘中丘陵区不同土地利用方式土壤碳氮含量的特征[J].中南林学院学报,26(6):9-16.
    侯喜禄,白岗栓,曹清玉.黄土丘陵区森林保持水土效益及其机理的研究[J].水土保持研究,1996,3(2):98-103.
    侯喜禄,杜呈祥.不同植被类型小区径流泥沙观测实验[J].水土保持通报,1985,5(6):35-37.
    侯喜禄,梁一民,曹清玉.黄土丘陵沟壑区主要水保林类型及草地水保效益的研究[J].1991,12(14):96-103.
    胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863.
    胡全德,鞠善宏,姜永久.长白山不同植被对土壤农化性状和生态环境的影响[J].吉林农业大学学报,2000,22(专辑):62-64.
    胡荣梅,刘世全.黄徐坡各组微团聚体的腐殖质组成及其特性[J].土壤学报,1964,12(3):358-362.
    胡小平,王长发.SAS基础及统计实例教程[M].陕西:西安地图出版社,2001.
    化党领,介晓雷,张一平,等_有机肥对石灰性土壤肥力属性的长期影响[J].生态学杂志,2005,24(9):1053-1057.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    黄和平,杨吉力,毕军,等.皇甫川流域植被恢复对改善土壤肥力的作用研究[J].水土保持通报,2005,2(3):37-40.
    黄礼隆.川西亚高山暗针叶森林涵养水源性能的初步研究/周晓峰.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994:400-402.
    黄茹,黄林,何丙辉,等.三峡库区坡地林草植被阻止降雨径流侵蚀[J].农业工程学报,2012,28(9):70-76.
    黄雪夏,唐晓红,魏朝富,等.利用方式对紫色水稻土有机碳与颗粒态有机碳的影响[J].生态环境,2007,16(4):1277-1281.
    贾松伟,贺秀斌,程云明.侵蚀逆境下土壤有机碳的迁移[J].生态环境,2004,13(1):78-80.
    姜娜,邵明安.黄土高原小流域不同坡地利用方式的水土流失特征[J].农业工程学报,2011,27(6):36-41.
    姜培坤,周国模,钱新标.侵蚀红壤植被恢复后土壤养分含量与物理性质的变化[J].水土保持学报,2004,18(1):12-15.
    蒋定生,范兴科,刘国斌,等.黄土高原主要产沙河流输沙动态模拟[J].水土保持研究,1995,(12):45-48.
    李广,黄高宝.雨强和土地利用方式对黄土丘陵区水土流失的影响[J].农业工程学报,2009,25(11):85-90.
    李鸿博,史馄,孙咏红.三种林下土壤浅剖面有机碳含量研究[J].生态学杂志,2005,24(10):1230-1233.
    李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化.土壤通报,2000,31(5):193-195.
    李灵.南方红壤丘陵区不同土地利用的土壤生态效应研究[D].北京:北京林业大学,2010.
    李勉,姚文艺,李占彬.黄土高原草本植被水土保持作用研究进展[J].地球科学进展,2005,20(1):74-80.
    李鹏,崔文斌,郑良勇,等.草本植被覆盖结构对径流侵蚀动力的作用机制[J].中国水土保持科学,2006,4(1):55-59.
    李鹏,李占斌,张兴昌.草灌植被拦蓄径流和泥沙有效性研究[J].水土保持学报,2002,16(1):32-34.
    李其林,黄昀,刘光德,等.三峡库区主要土壤类型重金属含量及特征[J].土壤学报,2004,41(2):301-304.
    李小刚.甘肃景电灌区土壤团聚体特征研究[J].土壤学报,2000,37(2):262-270.
    李学垣.土壤化学[M=].北京:高等教育出版社,2001.
    李银科,李小刚,张平良,等.土地利用方式对荒漠土壤有机碳和养分含量的影响[J].甘肃农业大学学报,2007,42(2):103-107.
    李玉强,赵哈林,陈银萍.陆地生态系统碳源与碳汇及其影响机制研究进展[J].生态学杂志,2005,24(1):37.-42.
    李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):59-66.
    李正才,徐德应,傅憋毅,等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究,2007,20(6):744-749.
    李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552。
    李忠佩,张桃林,林心雄.红壤区土壤有机碳的循环和平衡及有机资源利用[J].长江流域资源与环境,1998,7(2):140-147.
    梁福庆.三峡库区生态环境保护研究[J].水利经济,2008,26(1):49-51.
    廖咏梅,陈劲松.米亚罗地区亚高山针叶林在不同人为干扰条件下的土壤分形特征[J].生态学杂志,2005,24(8):878-882.
    林明珠,谢世友,林玉石.喀斯特山地不同土地利用方式土壤养分特征研究[J].中国水土保持,2009(9):8-10.
    林心雄.中国土壤有机质状况及其管理[A].沈善敏主编.中国土壤肥力[C].北京:中国农业出版社,1998.111-153.
    刘斌,冉大川,罗全华等.北洛河流域水土保持措施减水减沙作用分析[J].人民黄河,2001,(2):12-14.
    刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):5-8.
    刘梦云.黄土台塬区植被恢复对土壤碳组分影响研究[M].西北农林科技大学,2011.
    刘明义,许晓鸿,刘艳军,等.不同植物带地埂土壤抗侵蚀效果研究[J].中国水土保持,2012,7:43-46.
    刘世梁,傅伯杰,马克明,等.山民江上游高原植被类型与景观特征对土壤性质的影响[J].应用生态学报,2004,15(1):26-30.
    刘世荣,孙鹏森.长江上游森林植被水文功能研究[J].自然资源学报,2001,(5):451-456.
    刘向东,吴钦孝,赵鸿燕.森林植被垂直截留作用与水土保持[J].水土保持研究,1994,1(3):8-13.
    刘晓冰,邢宝山,Stephen J. Herbert土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(2):109-112.
    刘晓利,何园球,李成亮,等.不同利用方式旱地红壤水稳性团聚体及其碳、氮、磷分布特征[J].土壤学报,2009,46(2):255-262.
    刘玉,李林立,赵柯,等.岩溶山地石漠化地区不同土地利用方式下的土壤物理性状分析[J].水土保持学报,2004,18(5):142-145.
    刘苑秋,王芳,柯国庆,等.江西瑞昌石灰岩山区退耕还林对土壤有机碳的影响[J].应用生态学报,2011,22(4):885-890.
    刘中良.土壤团聚体中有机碳研究进展[J].中国生态农业学报,2011,19(2):447-455.
    龙健,李娟,江新荣,等.喀斯特石漠化地区不同恢复和重建措施对土壤质量的影响[J].应用生态学报,2006,17(4):615-619.
    鲁克新,李占斌,李鹏,等.基于径流侵蚀功率的流域次暴雨输沙模型研究——以岔巴沟流域为例[J].长江科学院院报,2008,25(3):31-34.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,106-288.
    骆东奇,侯春霞,魏朝富,等.紫色土团聚体抗蚀特征研究[J].水土保持学报,2003,17(2):20-23.
    毛艳玲,杨玉盛,邹双全,等.土地利用变化对亚热带山地红壤团聚体有机碳的影响[J].山地学报,2007,25(6):706-713.
    潘成忠,上官周平.黄土区次降雨条件下林地径流和侵蚀产沙形成机制——以人工油松林和次生山杨林为例[J].应用生态学报,2005,16(9):1597-1602.
    彭熙,李安定,李苇洁,等.不同植物篱模式下土壤物理变化及其减流减沙效应研究[J].土壤,2009,41(1):107-111.
    邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-972.
    任朝霞,杨达源,任福文,等.三峡库区生态环境与可持续发展[J].水土保持通报,2003,23(1):66-69.
    邵月红,潘剑军,孙波.长期施用有机肥对瘠薄红壤有效碳库及碳库管理指数的影响[J].土壤通报,2005,36(2):1 77-180.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348.
    帅伟,姚辉,吴兵,等.王朗自然保护区亚高山主要森林类型的土壤养分特征[J].安徽农业科学,2010,38(36):20671-20673.
    宋会兴,苏智先,彭远英.山地土壤肥力与植物群落次生演替关系研究[J].生态学杂志,2005,24(12):1531-1533.
    苏永中,赵哈林.科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响[J].应用生态学报,2003,14(10):1681-1686.
    苏永中,赵哈林.土壤有机碳储量影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    孙艳红,张洪江,杜士才,等.四面山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2009,23(5):109-112,117.
    孙媛媛,季宏兵,罗建美,李甜甜,江用彬.气候驱动的中国陆地生态系统碳循环研究进展[J].首都师范大学学报(自然科学版),2006,27(5):90-95.
    唐克丽.土壤侵蚀环境演变与全球变化及防灾减灾的机制[J].土壤与环境,1999,8(2):81-86.
    唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究,2001,8(1):104-109.
    万忠梅,郭岳,郭跃东.土地利用对湿地土壤活性有机碳的影响研究进展[J].生态环境学报,2011,20(3):567-570.
    万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412.
    王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].水土保持学报,1999(2):18-22.
    王春阳,周建斌,夏志敏,等.黄土高原区不同植物凋落物可溶性有机碳含量及其降解[J].应用生态学报,2010,21(12):3001-3006.
    王晶,张旭东,解宏图,等.现代土壤有机质研究中新的量化指标概述[J].2003.14(10):1809-1812.
    王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421.
    王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1991,5(4):68-72.
    王淑平,周广胜,高素华,等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报,2003,27(6)780-785.
    王树力,袁伟斌,杨振.镜泊湖区4种主要森林类型的土壤养分状况和微生物特征[J].水土保持学报,2007,21(5):50-54.
    王万忠.黄土地区降雨侵蚀力R指标的研究[J].中国水土保持,1987,(12):34-38.
    王夏晖,王益权,Kuznetsov M S黄土高原几种主要土壤的物理性质研究[J].水土保持学报,2000,14(4):99-103.
    王小利,郭胜利,马玉红,等.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J].应用生态学报,2007,18(6):1281-1285.
    王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):135-139.
    王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究[J].水土保持学报,2008,22(1):151-153.
    王玉宽,文安邦,张信宝.长江上游重点水土流失区坡耕地土壤侵蚀的137Cs法研究[J].水土保持学报,2003,17(2):77-80.
    王云琦,王玉杰,朱金兆.重庆绍云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005,14(6):775-780.
    文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438.
    吴淑芳,吴普特,冯浩,等.标准坡面人工草地减流减沙效应及其坡面流水力学机理研究[J].北京林业大学学报,2007,29(3):99-104.
    吴彦,刘世全,付秀琴,王金锡.植物根系提高土壤水稳性团聚体含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45-49.
    伍红琳,张辉,孙庆业.坡面人工植物群落修复对水土流失及控磷的影响[J].水土保持学报,2011,25(3):26-30.
    武天云,Jeff J. Schoenau,李凤民,钱佩源,张树清,Sukhadev S. Malhi,王方.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J],世界林业研究,2006,29(1):53-57.
    谢锦升,杨玉盛,陈光水,等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报,2002,22(3):236-239.
    徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报.2004,18(6):84-87.
    薛萐,李占斌,李鹏,刘国彬,戴全厚.不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J].农业工程学报,2009,25(Supp. I)69-72.
    扬长明,欧阳竹.华北平原农业土地利用方式对土壤水稳性团聚体分布特征及其有机碳含量的影响[J].土壤, 2008,40(1):100-105.
    杨长明,欧阳竹,杨林章.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,2006,26(12):4148-4155
    杨丽霞,潘建君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分型特征[J].科学通报,1993,38(20):1896-1899.
    杨萍,胡续礼,姜小三,等.小流域尺度土壤可蚀性(K值)的变异及不同采样密度对其估值精度的影响[J].水土保持通报,2006,26(6):35-39.
    杨万勤,钟章成,陶建平.绪云山森林土壤速效P的分布特征及其与物种多样性的关系[J].生态学杂志,2001,20(4):24-27.
    杨玉盛,何宗明,陈光水等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-534.
    杨忠芳,陈岳龙,钱镖,等.土壤pH对镐存在形态影响的模拟实验研究[J].地学前缘,2005,12(1):252-260.
    尹刚强,田大伦,方晰,等.不同土地利用方式对湘中—巨陵区土壤质量的影响[J].林业科学,2008,44(8),9-15.
    于君宝,王金达,刘景双,等.典型黑土pH值变化附微量元素有效态含量的影响研究[J].水土保持学报,2002,16(2):93-95.
    余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,37(6):581-586.
    余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水士保持学报,1988,2(3):90-96.
    俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413.-422.
    宇万太,姜子绍,李新宇,等.不同土地利用方式对潮棕壤有机碳含量的影响[J].应用生态学报,2007,18(12):2760-2764.
    袁海伟,苏以荣,郑华,等.喀斯特峰丛洼地不同土地利用类型土壤有机碳和氮素分布特征[J].生态学杂志,誊2007,26(10):1579-1584.
    袁可能.土壤有机矿质复合体的研究Ⅰ:土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J].土壤学报,1963,18(2):286-293.
    张崇邦,金则新,李均敏.浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性[J].生物多样性,2001,9(4):382-388.
    张春霞,郝明德,魏孝荣.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J].土壤肥料,2004,3(10):12-16.
    张国,曹志平,胡婵娟,等.土壤有机碳分组方法及其在农田生态系统研究中的应用[J].应用生态学报,2011,22(7):1921-1930.
    张浩,王正银,董燕,等.砂质土壤PH对中性缓释复合肥养分释放特性的影响研究[J].水土保持学报,2005,19(3):9-12,45.
    张洪江,杜士才,程云,等.重庆四面山森林植物群落及其土壤保持与水文生态功能[M].北京:科学出版社,2010.
    张洪江等.重庆四面山森林植物群落及其土壤保持与水文生态功能[M].北京:科学出版社.2010.
    张靓,梁成华,杜立宇,等.长期定位施肥条件下蔬菜保护地土壤微团粒组成及有机质状况分析[J].沈阳农业大学学报,2007,38(3):331-335.
    张力.SPSS 13-0在林草统计中的应用[M].福建:厦门大学出版社,2008:42-48.
    张世贤.三张图表说喜忧——中国面临的严峻挑战与机遇[J].中国农村,1996,(5):6-9.
    张守红,刘苏峡,莫兴国,等.降雨和水保措施对无定河流域径流和产沙量影响[J].北京林业大学学报,2010,32(4):161·167.
    张伟,陈洪松,王克林,等.种植方式和裸岩率对喀斯特洼地土壤养分空间分异特征的影响[J].应用生态学报,2007,18(7):1439-1463.
    张文太,于东升,史学正,等.中国亚热带土壤可蚀性K值预测的不确定性研究[J].土壤学报,2009,46(2):185-191.
    张岩,刘宝元,张清春,谢云.不同植被类型对土壤水蚀的影响[J].植物学报,2003,45(10):1204-1209.
    张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2033.
    章明奎,何振立,陈国潮,等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366.
    赵护兵,刘国彬,曹清玉,等.黄土丘陵区不同土地利用方式水土流失及养分保蓄效应研究[J].水土保持学报,2006,20(2):20-25.
    赵护兵,刘国彬,吴瑞俊.黄土丘陵区不同类型农地的养分循环平衡特征[J].农业工程学报,2006,22(1):58-64.
    赵世伟,苏静,杨永辉,等.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究,2005,12(3):67-69.
    郑粉莉,王占礼,杨勤科.我国土壤侵蚀科学研究回顾和展望[J].自然杂志,2008,30(1):12-16.
    周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):3140.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    周毅,魏天兴,解建强,等.黄土高原不同林地类型水土保持效益分析[J].水土保持学报,2011,3(25):12-21.
    朱显谟.黄土高原水蚀的主要类型及其有关因素[A].土壤学与水土保持/朱显谟院士论文选集[C].西安:陕西人民出版社,2004.340-356.
    朱显漠.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110.
    朱远达,张光远,蔡强国,等.侵蚀影响下土壤碳和养分空间变化及其过程模拟[J].水土保持学报,2001,8(4):126-131.
    朱祖祥.土壤学[M].北京:农业出版社.1982.
    左长清,马良.天然降雨对红壤坡地侵蚀的影响[J].水土保持学报,2005,19(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700