用户名: 密码: 验证码:
氮素对欧美杨苗木光合及养分利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是我国华北平原地区重要的速生用材树种。由于其生长迅速、对养分消耗大,施肥成为杨树人工林栽培的重要经营措施。氮素是杨树生长所必需的矿质元素之一,影响着杨树的生长发育及产量形成。因此,研究不同氮营养条件对杨树的氮素吸收利用及其生长的影响,对于提高杨树人工林质量,丰富杨树人工林培育理论具有重要的意义。
     本文以欧美107杨(Populus×euramericana (Dode) Guiner CV.'74/76')和中林46杨(Populus Xeuramericana (Dode) Guiner CL.'Zhonglin-46')为试验材料,采用大田试验和盆栽模拟试验相结合的方法,研究不同氮素供给水平对欧美杨1年生苗木的生长发育、生物量分配、源库关系、碳水化合物分配、养分吸收利用以及光能利用等特性的影响,阐明氮素对欧美杨苗木生产力的作用机理。主要研究结论如下:
     (1)施氮显著提高了生长期两种欧美杨苗木的整株叶面积,但对苗木根系形态的影响集中在生长初期。施氮有助于促进两种苗木整株生物量的积累,并且对欧美107杨的促进效应更加明显。到生长季末时,欧美107杨和中林46杨整株生物量均在N2处理下达到最大,分别为899.04g·株-1和540.81g·株-1。
     (2)速生期两种苗木茎生物量的积累随施氮水平的增加显著提高,生长后期施氮对苗木根系生物量积累的影响更加明显,随施氮量的增加,根生物量分配比例显著提高。施氮显著降低了欧美杨苗木各器官中非结构性碳水化合物的含量,并促进非结构性碳水化合物由叶片向茎、根的转运。
     (3)在生长季前期,苗木吸收的氮素主要来自土壤,约占总氮量的70%以上,到生长季后期时,苗木吸收的15N量占到了总氮吸收量的50%以上。施氮显著提高了生长中后期苗木对15N及总氮的吸收量,其中根系氮含量随施氮量增加提高的幅度最大。两种苗木对氮素的吸收效率以N1处理较高,达到了35%-45%,氮素利用效率在不同氮水平间差异不大。
     (4)施氮能够有效提高速生期两种苗木的表观量子效率、羧化效率、叶片可溶性蛋白含量以及PS Ⅱ反应中心的活性从而促进叶片净光合速率的提高。到生长后期时,高氮量供应使中林46杨叶片呼吸速率增加,PS Ⅱ实际光化学量子效率和电子传递速率显著降低,因此造成中林46杨叶片的净光合速率显著降低。欧美107杨的最大净光合速率在生长后期仍能保持在20μmol CO2·m-2·S-1左右。
     (5)对两种欧美杨苗木生产力的综合评价表明生长指数及生化指数对苗木生物量的影响较大,生物量拟合值排序为N2>N1>N0,欧美107杨的生物量拟合值在各氮处理下均高于中林46杨,并在N2处理下即施氮量为10g N-株-1时达到最高,为122.09g·株-1。
Populus is one of the most important timber species planted in north China plain areas.Fertilization is an important management measures in Populus plantation due to the rapid growth rate and nutrient consumption characteristics of Populus. Nitrogen, as one of the essential nutrient played an important role in the growth and productivity of Populus. Therefor, it is of great significance in improving productivity of Populus plantation and enriching silviculture to study the effect of nitrogen application on nitrogen assimilation and utilization and growth of Populus.
     To clarify the mechanism of nitrogen application on the productivity of Poplar seedlings, Populus xeuramericana (Dode) Guiner CV.'74/76'and Populus xeuramericana (Dode) Guiner CL.'Zhonglin-46'are cultured at different nitrogen condition through combining research methods of field and potted testing. The effects of nitrogen addition on growth, biomass partition, source-sink relationship, distribution of carbohydrates, nutrient and light utilization of one-year old Populus xeuramericana seedlings are studied. The results of the study are summarized as follows:
     (1) Nitrogen application significantly increased the whole leaf area of two Populus xeuramericana seedlings during the growth stage, but the effect of nitrogen application on root morphological parameters was significant at the early growth stage. Additional nitrogen supply significantly increased the whole plant biomass of two seedlings, especially for clone107. At the end of the growth stage, whole plant biomass of clone107and clone46reached the highest value899.04g-plant-1and540.81g-plant-1separately under N2treatment.
     (2) With the increase of nitrogen supply, stem biomass accumulation increased during the fast-growing period, while root biomass accumulation and its allocation increased significantly at the end of the growing period. Nitrogen application decreased the total non-structural carbohydrates content of two seedlings and promoted the transportion of non-structural carbohydrates from leaves to stems and roots.
     (3) At the intrial stage of the growing season, seedlings absorbed nitrogen mostly from the soil, accounting for more than70%. With the growth of seedlings,15N content in seedlings accounted for more than50%of the total nitrogen content to the late growing season. Nitrogen application significantly increases the uptaken of total nitrogen and15N, especially for roots. Nitrogen uptake efficiency of two seedlings is higher under Nl treatment (35%~45%), but there is no significant difference in nitrogen utilization efficiency between N treatments.
     (4) Nitrogen application improved quantum yield (AQY), carboxylation efficiency (CE), the soluble protein content and the PS II efficieney of two seedlings at the fast-growing stage, so the net photosynthetic rate increased. At the end of the growing stage, respiration rate increased while photosynthetic energy and electronic transformation efficiency of clone46decreased under N2treatment which leads to the decrease of net photosynthetic rate. Compared to clone46, the light-saturated photosynthetic rate of clone107is stabilized around20μmolCO2·m-2·S-1.
     (5) Comprehensive evaluation of productivity of two seedlings shows that the growth index and biochemical index are of great signifcance in seedlings biomass accumulation. Biomass fitted values of all nitrogen treatment ranked in the order of N2> N1> N0. Biomass fitted values of clone107are higher than that of clone46under each nitrogen treatment and reached the higest value122.09g-plant-1under N2treatment (10g N-plant-1).
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005
    [2]曹帮华,巩其亮,齐清.三倍体毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报,2004,35(4):512-516.
    [3]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-101.
    [4]曹宏鑫.小麦群体与水分及氮素动态的模拟优化决策研究[D].南京:南京农业大学,1999
    [5]柴春荣,穆立蔷,梁鸣,等.北方6种绿化灌木水分胁迫的生理响应[J].东北林业大学学报,2012,40(6):12-15.
    [6]陈海波,卫星,王婧,等.水曲柳苗水根系形态和解剖结构对不同氮浓度的反应[J].林业科学,2010,46(2):61-66.
    [7]陈海波.水曲柳苗水根系对氮胁迫的形态和生理反应[D].哈尔滨:东北林业大学,2008,1-50.
    [8]陈华蕊,陈业渊,高爱平,等.芒果叶绿素含量、比叶重与光合速率关系的研究[J].西南农业学报,2010,23(6):1848-1850.
    [9]陈军才.主成分与因子分析中指标同趋势化方法探讨[J].统计与信息论坛.2005,20(2):19-23.
    [10]陈欣,宇万太,张璐,等.不同施肥杨树主要营养元素内外循环比较研究Ⅱ.施肥对落叶前后杨树叶片营养元素浓度及贮量的影响[J].应用生态学报,1995,6(4):346-348.
    [11]褚贵新,沈其荣,李奕林,等.用15N叶片标记法研究早作水稻与花生间作系统中氮素的双向转移[J].生态学报,2004,24(2):278-284.
    [12]春亮.玉米氮高效品种选育及根系形态对低氮反应的遗传分析[D].北京:中国农业大学,2004:1-60.
    [13]邓坦.107杨扦插苗需肥规律和合理施肥技术研究[D].北京:北京林业大学,2009:1-72
    [14]董菊兰,麻文俊,王军辉,等.氮素对楸树无性系幼苗的生长影响研究[J].西部林业科学,2012,41(5):31一35.
    [15]董雯怡,聂立水,李吉跃,等.应用15N示踪研究毛白杨苗木对不同形态氮素的吸收及分配[J].北京林业大学学报,2009,31(4):97-101.
    [16]董雯怡,聂立水,韦安泰,等.毛白杨对15N-硝态氮和铵态氮的吸收、利用及分配[J].核农学报,2009,23(3):501-505.
    [17]范志强,王政权,吴楚,等.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响[J].应用生态学报,2004,15(9):1497-1501.
    [18]方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
    [19]高亮之,金之庆,黄耀,等.水稻栽培计算机模拟优化决策系统(RcsoDS)[M]北京:中国农业科技出版社,1992.
    [20]高悦,吴小芹,孙民琴.马尾松不同菌根苗对氮磷钾的吸收利用[J].南京林业大学学报:自然科学版,2009,33(4):77-80.
    [21]关义新,林葆,凌碧莹.光、氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2000,6(2):152-158.
    [22]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮同化的影响[J].作物学报,2000,26(6):806-8 1 2.
    [23]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,6:1291-1298.
    [24]郭天财,冯伟,赵会杰,等.两种穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报,2004,30(2):115-121.
    [25]韩燕来,葛东杰,汪强,等.施氮量对豫北潮土区不同肥力麦田氮肥去向及小麦产量的影响[J].水土保持学报,2007,21(5):151-154.
    [26]霍常富,孙海龙,范志强,等.根系氮吸收过程及其主要调节因子[J].应用生态学报,2007,18(6):1356-1364.
    [27]霍常富,孙海龙,王政权,等.光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响[J].林业科学,2009,45(7):38-44
    [28]焦峰.马铃薯氮素吸收分配特性及高效利用生理机制研究[D].大庆:黑龙江八一农垦大学,2012,1-85.
    [29]焦娟玉,尹春英,陈珂.土壤水、氮供应对麻疯树幼苗光合特性的影响[J].植物生态学报,2011,35(1):91-99.
    [30]井大炜,邢尚军,马丙尧等.鸡粪与化肥配施对杨树根际土壤生物学特征及养分吸收的影响[J].水土保持学报.2012,26(3):97-101.
    [31]李朝霞,赵世杰,孟庆伟.光呼吸途径及其功能[J].植物学通报,2003,20(2):190-197.
    [32]李孟春.氮素对两种杨树生理生化特性及木材品质的影响[D].西安:西北农林科技大学,2012,1-43.
    [33]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[C].南昌:江西科学技术出版社,1997.
    [34]李生秀.土壤-植物营养研究文集[C].西安:陕西科学技术出版社,1999,1-35.
    [35]李卫民,周凌云.氮肥对旱作小麦光合作用与环境关系的调节[J].植物生理学通讯,2003,39(2):119-121.
    [36]李新鹏,童依平.植物吸收转运无机氮的生理及分子机制[J].植物学通报,2007,24(6):714-725.
    [37]李延菊,李宪利,高东升,等.设施栽培油桃对叶面施15N的吸收、分配特性研究[J].植物营养与肥料学报2007,13(4):678-683.
    [38]林海明,张文霖.主成分分析与因子分析的异同和SPSS软件[J].统计研究,2005,3:65-69.
    [39]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16.
    [40]林贤青,朱德峰,林兴军,等.不同灌溉和施肥方式对杂交稻生长和根际环境的影响[J].灌溉排水学报,2009,28(4):90-92.
    [41]林晓明,徐程扬,王奇峰,等.氮、磷对107杨苗木生物量的影响[J].东北林业大学学报,2011,39(2):13-16.
    [42]刘金梁,梅莉,谷加存,等.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J].生态学杂志,2009,28(1):1-6.
    [43]刘培林,马伊民,刘实.杨树良种选育与栽培[M].哈尔滨:东北林业大学出版社,2003.
    [44]刘希华,丁昌俊,张伟溪.不同基因型欧洲黑杨幼苗氮素利用效率差异及其机理初探[J].林 业科学研究,2010,23(3):368-374.
    [45]刘希华.欧洲黑杨幼苗氮高效基因型及SNPs标记筛选研究[D].南京:南京林业大学,2010,1-88
    [46]刘新华.因子分析中数据正向化处理的必要性及其软件实现[J].重庆工学院学报.2009,23(9):152-155.
    [47]刘宇锋,萧浪涛,童建华,等.非直线_双曲线模型在光合光响应曲线数据分析中的应用[J].中国生态农业学报,2005,21(8):76-79.
    [48]卢纹岱Spss for windows统计分析[M].北京:电子工业出版社.2002.
    [49]骆世明,彭少麟.农业生态系统分析[M].广州:广东科技出版社,1996.
    [50]麻文俊,张守攻,王军辉,等.楸树无性系苗期N素利用差异和高产无性系选择[J].林业科学,2012,48(10):157-162.
    [51]马冬云.氮肥运筹对两种穗型超高产小麦品种碳氮代谢、产量及品质的调控研究[D].郑州:河南农业大学,2007,1-105.
    [52]孟维伟,王东,于振文,等.15N示踪法研究不同灌水处理对小麦氮素吸收分配及利用效率的影响[J].植物营养与肥料学报,2011,17(4):831-837.
    [53]牛正田.黑杨派无性系苗期产量相关性状的遗传变异[D].北京:中国林科院,2007,1-98.
    [54]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480.
    [55]彭子模,试论植物光呼吸的生理意义及其调节控制[J].新疆师范大学学报,2001,20(2):31-35.
    [56]曲桂敏,王鸿霞,束怀瑞.氮对苹果幼树水分利用效率的影响[J].应用生态学报,2000,11(2):199-201.
    [57]阙金华,张洪程,宋锦花.施氮量对江苏里下河稻区水稻综合生产力的影响[J].耕作与栽培.2004,1:20-22.
    [58]茹德平,赵彩霞,李习军,等.用15N示踪技术研究高产小麦、玉米的施氮规律[J].核农学报,2005,19(2):151-154.
    [59]上官周平,李世清.旱地作物氮素营养生理生态[M].北京:科学出版社,2004.
    [60]上官周平.氮素营养对早作小麦光合特性的调控[J].植物营养与肥料学报,1997,3(2):105-1]0.
    [61]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化[J].应用生态学报,1 992,3(4):296-301.
    [62]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环[J].应用生态学报,1993,4(1):27-31.
    [63]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998.
    [64]史正军,樊小林.水稻根系生长及根构型对氮素供应的适应性变化[J].西北农林科技大学学报(自然科学版),2002,30(6):1-6.
    [65]孙谷畴,赵平.高氮营养增高厚果含笑叶片的叶黄索介导热耗散研究[J].应用与环境生物学报.2007,1 3(5):641-646.
    [66]孙秋玲,戴思兰,张春英,等.菌根真菌促进植物吸收利用氮素机制的研究进展[J].生态学杂志,2012,31(5):1302-1310.
    [67]孙晓东,胡劲松,焦明.基于主成分分析和灰色关联聚类分析的指标综合方法研究[J].中国 管理科学,2005,13:18-22.
    [68]孙旭生,林琪,刘义国,等.施氮量对超高产小麦开花期旗叶光合功能的影响[J].植物营养与肥料学报,2009,15(4):771-777.
    [69]孙玥,全先奎,贾淑霞,等.施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响[J].应用生态学报,2007,18(8):1727-1732.
    [70]田东梅,孙敬茹,张曦,等.3种黑杨无性系耐氮瘠薄能力的差异[J].西北农业学报,2010,19(9):75-79.
    [71]田东梅.几种黑杨无性系苗期氮素吸收的特点[D].北京:北京林业大学,2011:1-27.
    [72]田纪春,王学臣,刘广田.植物的光合作用与光合氮、碳代谢的耦联及调节[J].生命科学,2001,13(4):145-147.
    [73]田舜,任正龙,卜义霞,等.水稻氮素分配指数的试验研究与动态模拟[J].内蒙古民族大学学报(自然科学版),2006,5(10):516-520.
    [74]王光霞,张少英,邵世勤,等.氮素形态对甜菜代谢酶活性和生长发育的影响[J].中国甜菜糖业,2004,1:35-37.
    [75]王奇峰.氮磷对欧美107杨增产作用机制研究[D].北京:北京林业大学,2007:1-41.
    [76]王青宁,唐静,衣学慧.基于多元统计评价毛白杨无性系的抗旱性[J].西北林学院学报,2005,20(4):21-26.
    [77]王冉,李吉跃,张方秋,等.不同施肥方法对马来沉香和土沉香苗期根系生长的影响[J].生态学报.201 1,31(1):0098-0106.
    [78]王沙生.植物生理学(第二版)[M].北京:中国林业出版社1992.
    [79]王小彬,代快,赵全胜,等.农田水氮关系及其协同管理[J].生态学报,2010,30(24):7001-7015.
    [80]王勇,张曦,沈应柏,等.不同施氮量对6个黑杨新无性系光合特性的影响[J].西北农业学报,2010,19(3):168-173.
    [81]王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报,2002,22(2):55-57.
    [82]魏红旭,徐程扬,马履一,等.不同指数施肥方法下长自落叶松播种苗的需肥规律[J].生态学报,2010a,30(3):685-690.
    [83]魏红旭,徐程扬,马履一,等.长自落叶松幼苗对铵态氮和硝态氮吸收的动力学特征[J].植物营养与肥料学报,2010b,16(2):407-412.
    [84]吴楚,王政权,范志强,等.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响[J].应用生态学报,2004,1 5(11):2034-2038.
    [85]习向银,晃逢春,李春俭.利用15N示踪法研究土壤氮对烤烟氮素累积和烟碱合成的影响[J].植物营养与肥料学报,2008,14(6):1232-1236.
    [86]肖焱波,李文学,段宗颜,等.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002,4(2):56-58.
    [87]徐文静,王政权,范志强,等.遮荫对水曲柳幼苗细根衰老的影响[J].植物生态学报,2006,30(1):104-111.
    [88]许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    [89]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
    [90]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997.
    [91]晏娟,沈其荣,尹斌,等.应用15N示踪技术研究水稻对氮肥的吸收和分配[J].核农学报,2009,23(3):487-491.
    [92]尹丽,胡庭兴,刘永安,等.施氮量对麻疯树幼苗生长及叶片光合特性的影响[J].生态学报,2011,31(17):4977-4984.
    [93]于立忠,丁国泉,史建伟,等.施肥对日本落叶松人工林细根直径、根长和比根长的影响[J].应用生态学报,2007,18(5):957-962.
    [94]于水强,王政权,史建伟,等.水曲柳和落叶松细根寿命的估计[J].植物生态学报,2007,31(1):102-109.
    [95]于水强,王政权,史建伟,等.氮肥对水曲柳和落叶松细根寿命的影响[J].应用生态学报,2009,20(10):2332-2338.
    [96]宇万太,陈欣,张璐,等.不同施肥杨树主要营养元素内外循环比较研究Ⅰ.施肥对杨树生物量及落叶前后N内外循环的影响[J].应用生态学报,1995,6(4):341-345.
    [97]张夫道.氮素营养研究中几个热点问题[J].植物营养与肥料学报,1998,4(4):331-338.
    [98]张福锁,樊小林,李晓林.土壤与植物营养研究新动态(第二卷)[M].北京:中国农业大学出版社,1995.
    [99]张福锁.植物根引起的根际值改变的原因及效应[J].土攘通报,1993,24(1):43-45.
    [100]张进,姜远茂,张序,等.沾化冬枣对萌芽前施15N-尿素的吸收分配与利用[J].林业科学,2006,42(1):22-25
    [101]张军.氮肥运筹对小麦综合生产力影响的研究[D].江苏:扬州大学,2006,1-156
    [102]张均华,刘建立,张佳宝,等.施氮量对稻麦干物质转运与氮肥利用的影响[J].作物学报,2010,36(100):1736-1742.
    [103]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [104]张岁岐,山仑,赵丽英.土壤干早下氮磷营养对玉米气体交换的影响[J].植物营养与肥料学报,2002,8(3):271-275.
    [105]张曦.黑杨新品系苗期氮素利用效率的差异及机理研究[D].北京:北京林业大学,2009,1-60.
    [106]张彦东,白尚斌.氮素形态对树木养分吸收和生长的影响[J].应用生态学报,2003,14(11):2044-2048.
    [107]张韫,崔晓阳.不同NH4+/NO3配比作用下红松幼苗的氮吸收和同化特征[J].北京林业大学学报,2011,33(5):61-64.
    [108]赵登超,姜远茂,彭福田,等.冬枣果实硬核期对15N尿素吸收、分配及再利用特性研究[J].应用生态学报,2006,17(1):27-30.
    [109]赵登超,姜远茂,彭福田,等.不同施肥时期对冬枣15N贮藏及翌年分配利用的影响[J].中国农业科学,2006,39(8):1626-1631.
    [110]赵燕,董雯怡,张志毅,等.施肥对毛白杨杂种无性系幼苗生长和光合的影响[J].林业科学,2010,46(4):70-79.
    [111]赵宗方,凌裕平,吴建华,等.梨树的光合特性[J].果树科学,1993,10(3):1 54-156.
    [112]郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的的影响[J].植物营养与肥料学报,2006,12(2):188-194.
    [113]郑世锴.杨树丰产栽培[M].北京:金盾出版社,2006
    [114]中国科学院生物学部.我国化肥面临的突出问题及建议[A].
    [115]朱先兆.木材供需概况及对策建议,新世纪初我国木材工业发展问题[A],研讨会论文集[c],2000
    [116]祝燕,刘勇,李国雷,等.氮素营养对长白落叶松移植苗生长及养分状况的影响[J].林业科学,2011,47(9):168-172.
    [117]庄恒扬,曹卫星,蒋思霞,等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究,2004,20(1):5-8.
    [118]Aggarwal P K, Kalra N, Singh A K, et al. Analyzing the limitations set by climate factors, genotype, water and nitrogen availability on productivity of wheat. I.The model description, parameterization and validation[J]. Field Crops Research,1994,38(2):73-91.
    [119]Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics.2008,39:153-170.
    [120]Andrews M, Sppent J I, Raven J A, et al. Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisumsativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies[J]. Plant, Cell and Environment,1999,22(8):949-958.
    [121]Atkin O K. Reassessing the nitrogen relations of Arctic plants. A mini-review[J]. Plant, Cell and Environment,1996,19(6):695-704.
    [122]Baddeley J A, Watson C A. Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium[J]. Plant and Soil,2005,276(1-2):15-22.
    [123]Bagherzadeh A, Brumme R, Beese F. The fate of 15N-labeled nitrogen inputs to pot cultured beech seedlings[J]. Journal of Forestry Research,2009,20(4):314-322.
    [124]Banziger M, Edmeades G O, Lafitte R H. Selection for drought tolerance increases maize yields across a range of nitrogen levels [J]. Crop Science,1999,39 (4):1035-1040.
    [125]BassiriRad H, Thomas R B, Reynolds J F, et al. Differential responses of root up take kinetics of NH4+and NO3- to enriched atmospheric CO2 in field-grown loblolly pine[J]. Plant, Cell and Environment,1996,19(3):367-371.
    [126]Berger T W, Glatzel G. Response of Quercus petraea seedlings to nitrogen fertilization[J]. Forest Eclology and Management.2001,149(1-3):1-14.
    [127]Bijlsma R J, Lmbers H, Kooijman SALM. A dynamic whole Plant model of integrated metabolism of nitrogen and carbon. Ⅰ.Comparative ecological implications of ammonium nitrate interactions[J]. Plant and soil,2000,220(1-2):49-69.
    [128]Boussadia O, Steppe K, Zgallai H, et al. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars'Meski'and'Koroneiki'[J]. Scientia Horticulturae.2010,123(3-4):336-342.
    [129]Broadley M R, Eseobar-Guti6rrez A J, Burns A, et al. Nitrogen-limited growth of lettuce is associated with lower stornatal conductance[J]. New Phytologist,2001,152(1):97-106.
    [130]Buysse J, Merckx R. An improved colormetric method to quantify sugar content of plant tissue[J]. Journal of Experimental Botany,1993,44(10):1627-1629.
    [131]Cassman KG, Kropff MJ, Gaunt J, et al. Nitrogen use efficiency of rice reconsidered-what are the key constraints[J]. Plant and soil,1993,155:359-362.
    [132]Cechin. I. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nit rogen and water regimes[J]. Photosy nthetica,1998,35:233-240.
    [133]Chapin Ⅲ F S. The mineral nutrition of wild plants[J]. Annual Review of Ecology and Systematics.1980,11:233-260.
    [134]Chapin III F S, Bloom A J and Field C B, et al. Plant responses to multiple environmental factors[J]. Bioseienee,1987,37(1):49-57.
    [135]Chapin III F S, Schulze E D, Mooney H A. The ecology and economics of storage in plants[J]. Annual Review of Ecology and Systematics,1990,21:423-447.
    [136]Cheng L, Ma F W, Ranwala D. Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply[J]. Tree Physiology.2004,24(1):91-98.
    [137]Ciompi S, Gentili E, Guidi L, et al. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower[J]. Plant Science,1996,118:177-184.
    [138]Clemensson-Lindell A, Asp H. Fine-root morphology and uplake of 32P and 35S in a Norway spruce (Picea abies (L.) Karst.) stand subjected to various nutrient and water supplies[J]. Plant and Soil,1995,173(1):147-155.
    [139]Clement J M A M, Boer M de, Venema J H, et al. There is no direct relationship between N-status and frost hardiness in needles of NH3 exposed Scots Pine seedlings[J]. Phyton,2000,40(3): 21-33.
    [140]Cooke J E K., Martin T A, Davis J M. Short-term physiological and developmental responses to nitrogen availability in hybrid poplar[J]. New Phytologist,2005,167(1):41-52.
    [141]Coomes D A, Grubb P J. Impacts of root competition in forests and woodlands:A theoretical framework and review of experiments[J]. Ecological Monographs,2000,70(2):171-207.
    [142]Crawford N M. Nitrate-nutrient and signal for plant-growth[J]. Plant cell,1995,7(7):859-868.
    [143]Davis A S, Jacobs D F. Quantifying root system quality of nursery seedlings and relationship to outplanting performance[J]. New Forests,2005,30(2-3):295-311.
    [144]Henriques A R D, Marcelis L F M. Regulation of growth at steady-state nitrogen nutrition in Lettuce (Lactuca sativa L.):interactive effects of nitrogen and irradiance[J]. Annals of Botany, 2000,86(6):1073-1080.
    [145]Drew M C, Sakerl R, Ashley T W. Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals[J]. Journal of Experimental Botany,1973,24(6):1189-1202.
    [146]Eissenstat D M, Wells C E, Yanai R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytologist,2000,147(1):33-42.
    [147]Eissenstat D M, Yanai R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997,27:1-60.
    [148]Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia,1989, 78(1):9-19.
    [149]Fahey T J, Battles J J, Wilson G F, et al.Responses of early successional northern hardwood forests to changes in nutrient availability[J]. Ecological Monographs,1998,68(2):183-212.
    [150]Farley R A, Fitter A H. The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches[J]. Journal of Ecolopy,1999,87(5):849-859.
    [151]Farrar J F, Jones D L. The control of carbon acquisition by roots[J]. New Phytologist,2000, 147(1):43-53.
    [152]Farrar J F, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology,2003,84(4):827-837.
    [153]Fernandez E and Galvan A. Nitrate assimilation in Chlamydomonas[J]. Eukaryotic Cell,2008, 7(4):555-559.
    [154]Forde B, Lorenzo H. The nutritional control of root development[J].Plant and Soil,2001, 232(1-2):51-68.
    [155]Gebbing T, Sehnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synihesis in grains of wheat[J]. Plant Physiology,1999,121(3):871-878.
    [156]Geiger D R, Koch K E, Shieh W J. Effect of environmental factors on whole plant assimilate partitioning and associated gene expression[J].Journal of Experimental Botany,1996,47(special issue):1229-1238.
    [157]Giller K E, Ormesher J, Awah F M. Nitrogen transfer of N from phaseolus bean to intercropped maize measured using N-15 enrichment and N-15-isotope dilution methods[J]. Soil Biology and Biochemistry,1991,23(4):339-346.
    [158]Glass A D M, Shaff J E, Kochian L V. Studies of the uptake of nitrate in barley. Ⅳ. Electrophysiology[J]. Plant Physiology,1992,99(2):456-463.
    [159]Gloser V, Sedlacek P, and Gloser J. Consequences of nitrogen deficiency induced by low external N concentration and by patchy N supply in Picea abies and Thuja occidentalis[J]. Trees,2009, 23(1):1-9.
    [160]Gordon W S, Jackson R B. Nutrient concentrations in fine roots[J]. Ecology,2000,81(1): 275-280.
    [161]Graham D F, Caemmerer SV, Berry J A. Models of photosynthesis[J]. Plant Physiology,2001, 125(1):42-45.
    [162]Grossnickle S C. Ecophysiology of northern spruce species:The performance of planted seedlings[M]. NRC Research Press, Ottawa,2000:407-409.
    [163]Harding S A, Jarvie M M,. Lindroth R L, et al. A comparative analysis of phenylpropanoid metabolism, nutilization, and carbon partitioning in fast-and slow-growing Populus hybrid clones[J]. Journal of Experimental Botany,2009,60(12):3443-3452.
    [164]Hasim K, Serkan S, Ahmet C, et al. HPLC Determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan[J]. Microchemical Journal.2009,91(2),187-192
    [165]Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in plant science,2006,11(12):610-617.
    [166]Hessen D O, Agren G I, Anderson T R, et al. Carbon, sequestration in ecosystems:the role of stoichiometry[J]. Ecology,2004,85(5):1179-1192.
    [167]Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature,2001,413(6853): 297-299.
    [168]Hodge A, Robinson D, Griffiths B S, et al. Why plants bother:root proliferation results in increased nitrogen capture from an organic patch when two grasses compete[J]. Plant, Cell and Environment,1999,22(7):811-820.
    [169]Hodge A, Stewart J, Robinson D, et al. Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species[J]. Functional Ecology,2000,14(5):645-653.
    [170]Hodge A. The plastic plant:root responses to heterogeneous supplies of nutrients[J]. New Phytologist,2004,162(1):9-24.
    [171]Ibrahim L, Proe M F, Cameron A D. Interactive effects of nitrogen and water availabilities on gas exchange and whole-Plant carbon allocation in Popular[J]. Tree Physiology,1998,18(7): 481-487.
    [172]Iivonen S, Rikala R and Vapaavuori E. Seasonal root growth of Scots pine seedlings in relation to shoot phenology, carbohydrate status, and nutrient supply[J]. Canadian Journal of Forest Research,2001,31:1569-1578.
    [173]Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen up take by plants:An important N uptake pathway?[J]. Soil Biology and Biochemistry,2005,37(3):413-423.
    [174]Jordan M O, Vercambre G, Bot J L, et al. Autumnal nitrogen nutrition affects the C and N storage and architecture of young peach trees[J]. Trees,2011,25(2):333-344.
    [175]Jose S, Merritt S, Ramsey C L. Growth, nutrition, photosynthesis and transpiration responses of long leaf Pine seedlings to light, water and nitrogen[J]. Forest Eeology and Management,2003, 180(1-3):335-344.
    [176]Kaakinen S, Jolkkonen A, Iivonen S, et al. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season[J]. Tree physiol,2004, 24(6):707-719.
    [177]Kaelke C M and Dawson J O. The accretion of nonstructural carbohydrates changes seasonally in AInus incana ssp. rugosa in accord with tissue type, growth, N allocation, and root hypoxia[J]. Symbiosis,2005,39(2):61-66.
    [178]Keutgen N, Chen K a i. Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2[J]. Journal of Plant Physiology,2001, 158(10):1307-1316.
    [179]Kim T, Mills H A and Wetzstein H Y. Studies on effects of nitrogen from on growth, development and nutrient uptake in pecan[J]. Journal of Plant Nutrition,2002,25(3):497-508.
    [180]King J S, Albaugh T J, Allen H L, et al. Below ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine[J]. New Phytologist,2002,154(2): 389-398.
    [181]King J S, Thomas R B, Strain B R. Morphology and tissue quality of seeding root systems of Pinus teada and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen[J]. Plant and soil,1997,195(1):107-119.
    [182]Kleczewski N M, Herms D A, Bonello P. Nutrient and water availability alter belowground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra[J]. Trees,2012,26(2):525-533.
    [183]Knoepp J D, Urner D P, Tingey D T. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlok[J]. Forest Ecology and Management, 1993,59(3-4):179-191.
    [184]Kobe R K, Iyer M, Walters M B. Optimal partitioning theory revisited:non-structural carbohydrates dominate root mass responses to nitrogen[J]. Ecology,2010,91(1):166-179.
    [185]Kronzucher H J, Siddiqi M H, Glass ADM. Conifer root discrimination against soil nitrate and the ecology of forest succession[J]. Nature,1997,385(2):59-61.
    [186]Lachandran S, Osmond C B. Susceptibility of tobacco leaves to photo inhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrition regimes[J]. Plant Physiology,1994,104(3):1051-1057.
    [187]Landhausser S M, Lieffers V J. Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones[J]. Trees,2003,17(6):471-476.
    [188]Ledgard S F, Freney J R and Simpson J R.Assessing N transfer from legumes to associated grass[J]. Soil Biology and Biochem,1985,17(4):575-577.
    [189]Lima J D, Mosquim P R, DaMatta FM. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency[J]. Photosynthetica,1999,37:113-121.
    [190]Linkohr B 1, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of ArabidoPsis[J]. The Plant Journal,2002, 29(6):751-760.
    [191]Livonen S, Kaakinen S, Jolkkonen A, et al. Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce[J]. Canadian Journal Forestr Research,2006,36(6):1563-1571.
    [192]Ludovici KH and Morris LA. Response of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes[J]. Tree Physiology,1996,16:933-939.
    [193]Lynch J P. Root architecture and plant productivity[J]. Plant Physiology,1995,109(1):7-13.
    [194]Mackie-Dawson L A, Pratt S M, Millard P. Root growth and nitrogen uptake in sycamore (Acer Pseudoplatanus L.) seedlings in relation to nitrogen supply[J]. Plant and Soil,1994,158(2): 233-238
    [195]Maillard P, Guehl JM, Muller JF et al. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed C and N between shoots and roots pedunculate oka seedlings(Quercus robur) [J]. Tree Physiology,2001,21(2-3):163-172.
    [196]Malagoli M, Dal Canal A, Quaggiotti S. Differences in nitrate and ammonium uptake between Scots pine and European larch[J]. Plant and Soil,2000,221(1):1-3.
    [197]Malagoli P, Laine P. Le Deunff E et al. Modeling nitrogen uptake in oilseed rape cv capital during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data[J]. Plant Physiology,2004,134(1):388-400.
    [198]Marschner H, Hausslings M, George E. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce (Picea abies (L.) Karst.)[J]. Trees,1991,5(1):14-21.
    [199]Marschner H, Kirkby E A, Cakma K T. Effect of mineral nutritional status on shoot-root partitioning of photo-assilates and cycling of mineral nutrients[J]. Journal of Experimental Botany,1996,47(Special):1255-1263.
    [200]Moles A T and Westoby M. Seedling survival and seed size:a synthesis of the literature[J]. Journal of Ecology,2004,92(3):372-383.
    [201]Nadelhoffer K J. The potential effects of nitrogen deposition on fine root production in forest ecosystems[J]. New Phytologist,2000,147(1):131-139.
    [202]Nakaji T, Fukami M, DokiyaY, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees,2001,15(8): 453-461.
    [203]Nie Lishui, Dong Wenyi, Wei Antai, et al. Effects of nitrogen form s on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the 15N trace technique[C] International Poplar Commission 23 rd Session, Beijing,2008:141.
    [204]Nielsen K L, Lynch J P, Jablokow A G, et al. Carbon cost of root systems:an architectural approach[J]. Plant and Soil,1994,165(1):161-169.
    [205]Niinemets U, Ceseatti A, Lukjanova A, et al. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility[J]. Agricultural and Forest Meteorology,2002,111(2): 121-140.
    [206]Olsthoorn A F M, Keltjens W G, Van Baren B, et al. Influence of ammonium on fine root development and rhizosphere pH of Douglasfir seedling in sand[J]. Plant and Soil,1991,133(1): 75-81.
    [207]Paponov I A, Posepanov O G, Lebedinskai S, et al. Growth and biomass allocation with varying nitrogen availability, of near-isogenic pea lines with differing foliage structure[J]. Annals of Botany,2000,85(4):563-569.
    [208]Persson J, Nasholm T. Amino acid uptake:A widespread ability among boreal forest plants[J]. Ecology Letters,2001,4(5):434-438.
    [209]Pitre F E, Pollet B, Lafarguette F, et al. Effects of Increased Nitrogen Supply on the Lignification of Poplar Wood[J]. Journal of agricultural and food chemistry.2007,55(25):10306-10314.
    [210]Pregitzer K S, De Forest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs,2002,72(2):293-309.
    [211]Quero J L, Villar R, Maranon T, et al. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments[J]. American journal of botany,2007, 94(11):1795-1803.
    [212]Regier N, Streb S, Zeeman S C, et al. Seasonal changes in starch and sugar content of poplar (Populus deltoides×nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots[J]. Tree Physiology,2010,30(8):979-987.
    [213]Reich P B, Walters M B, Ellsworth D S. From tropics to tundra:Global convergence in plant functioning[J]. Proceedings of the national academy of sciences of the United States of America, 1997,94(25):13730-13734.
    [214]Remans T, Nacry P, Pervent M, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsisp[J]. Plant Physiology,2006,140(3):909-921.
    [215]Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J].Plant Biology,2010, 12(2):275-291.
    [216]Rosengren-Brinck U, Majdi H, AsP H, et al. Enzyme activities in isolated root Plasma membranes from a stand of Norway spruce in relation to nutrient Status and ammonium sulphate application[J]. New Phytologist,2006,129(4):537-546.
    [217]Rothstein D E, Zak D R, Pregitzer K S, et al. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability[J]. Tree Physiology,2000,20(4): 265-270.
    [218]Salifu, K F, Timmer, V R. Nitrogen retranslocation response of young Picea mariana to nitrogen-15 supply[J]. Soil Science Society of America Journa,2003,67(1):309-317.
    [219]Sanz P V, Castro D P, Valladares F. Growth versus storage:responses of Mediterranean oak seedlings to changes in nutrient and water availabilities[J]. Annals of Forest Science,2007,64(2): 201-210.
    [220]Schaberg P G, Perkins T D, McNulty S G. Effects of chronic low-level N additions on foliar elemental concentrations, Morphology, and gas exchange of mature montane red spruce[J]. Canadian Journal of Forest Research,1997,27(10):1622-1629.
    [221]Schadel C, Blochl A, Richter A, et al. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break[J]. Tree Physiology, 2009,29(7):901-911.
    [222]Schiefelbein J W, Benfey P N. The development of plant root:new approaches to underground problem[J]. The Plant Cell,1991,3(11):1147-1154.
    [223]Schjoerring J K, Husted S, Mack G, et al. The regulation of ammonium translocation in plants[J]. Journal of Experimental Botany,2002,53(370):883-890.
    [224]Schmal J, Jacobs D S, Reilly O C. Exponential fertilization of pedunculate oak (Quercus robur L.) seedlings:quality assessment, nutrient budgeting, and leaching dynamics[J].2009
    [225]Seith B, George E, Marsehner H, et al. Effects of varied soil nitrogen supply on Norway spruce(Picea abies[L.]Karst.).1. Shoot and root growth and nutrient uptake[J]. Plant and soil, 1996,184(2):291-298.
    [226]Shangguan Z P, Shao M A, Dyckmans J. Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journal of Plant Physiology, 2000,156(1):46-51.
    [227]Solomonson L P, Barber M J. Assimilatory nitrate reductase:Functional properties and regulation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41: 225-253.
    [228]Stiitt M, Sehulze ED. Does Rubisco control the rate of Photosynthesis and Plantg rowth? An exercise in molecular ecophysiology[J]. Plant Cell Environment,1994,17(5):465-487.
    [229]Tilman D. Dynamics and structure of plant communities[M]. Princeton:Princeton University Press,1988:18-51.
    [230]Tilman, D. The resource-ratio hypothesis of Plant succession[J].Ameriean Naturalist,1985, 125(6):827-852.
    [231]Treseder K K, Vitousek P M. Effects of soil nutrient availability on investment in acquisition of N and P in hawaiian rain forests[J]. Ecology,2001,82(4):946-954.
    [232]VanVuuren M M I, Robinson D, Griffiths B S. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil[J]. Plant and soil. 1996,178(2):185-192.
    [233]Wang M Y, Glass ADM, Shaff J E, et al. Ammonium uptake by rice roots.3. electrophysiology[J].Plant Physiology,1994,104(3):899-906.
    [234]Warren C R, Livingston N J and Turpin D H. Photosynthetic responses and N allocation in Douglas-fir needles following a brief pulse of nutrients[J]. Tree Physiology.2004,24(6):601-608
    [235]Welker J M, Gordon D R and Rice K J. Capture and allocation of nitrogen by Quercus douglasii seedlings in competition with annual and perennial grasses[J]. Oecologia,1991,87(4):459-466.
    [236]Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology,2001,82(3):882-892.
    [237]Wells C E, Glenn D M, Eissenstat D M. Soil insects alter fine root demography in peach (Prunus persica)[J]. Plant, Cell and Environment,2002,25(3):431-439.
    [238]Wrren C R, Adams M A, Chen Z L. Is Photosynthesis related to concentration of nitrogen and Rubisco in leaves of Australian native Plants?[J] Australian Journal of Plant Physiology,2000, 27(5):407-416.
    [239]Wu C, Wang Z Q, Fan Z Q, et al. Effect of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis, photosynthesis, and biomass partitioning in Fraxinus mandshurica seedlings[J]. Chinese Journal of Plant Ecology,2003,27(6):771-780.
    [240]Kim Y K, Lim C S, Kang S M, et al. Root storage of nitrogen applied in autumn and its remobilization to new growth in spring of persimmon trees (Diospyros kaki cv. Fuyu)[J]. Scientia Horticulturae,2009,119(2):193-196.
    [241]Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science,1998,279(5349):407-409.
    [242]Zhang W F, Gou L, Wang Z L, et al. Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding contton in Xinjiang[J]. Scientia Agricultura Sinica,2003,36:893-898.
    [243]Zhang X C, Zhang F S, YU X F, et al. Effect of Nitrogen Nutrition on Photosynthetic Function of Wheat Leaf Under Elevated Atmospheric CO2 concentration[J]. Acta Agronomica Sinica.2010, 36(8):1362-1369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700