用户名: 密码: 验证码:
精制清开灵对阿尔茨海默病模型鼠的治疗作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:阿尔茨海默病(Alzheimer's disease, AD)是老年人中患病率高、危害性大的中枢神经系统退行性疾病之一,也是最常见的一种老年期痴呆。随着人口老龄化现象加剧,该疾病已居于老年人死亡原因的前几位。目前,AD的病因及发病机制未完全阐明,尚缺乏有效的治疗途径。清开灵是临床常用中药制剂之一,对中风急性期为主的中医脑病临床疗效显著。一系列药学及药效学研究已证实清开灵含有超过60种复合物,并发现黄芩苷、栀子苷和胆酸是其最主要的活性成分。前期研究提取黄芩苷、栀子苷和胆酸制成精制清开灵,发现精制清开灵可替代清开灵在中风患者中的治疗作用,并基于“毒损脑络”理论,在中风后血管性痴呆的临床治疗中亦显示出良好的治疗功效。由于AD和血管性痴呆具有共同的危险因素,病理改变也相互重叠,并且随着中医对AD发病机理更深入的认识,发现“毒损脑络”同时是AD发生发展的核心,提示基于“解毒通络”治法,精制清开灵可能对AD亦有治疗作用。
     目的:本研究从行为学、组织病理学、神经影像学以及基因表达不同层面综合评价国家重点中药保护品种清开灵有效组份(精制清开灵)基于“解毒通络”法治疗AD的有效性和其作用机制,进一步探讨“毒损脑络”理论及“解毒通络”法在AD中医研究领域中的意义,为今后寻找有效治疗AD中药及提高中医药药物疗效方而提供新的思路。
     方法:选择雄性SD大鼠(体重250-300克)用基底前脑注射鹅蒿蕈氨酸(IBO)法建立大鼠痴呆模型,并设立对照组、模型组和药物组。药物组大鼠在造模第三天起给予精制清开灵(1.25mg/ml黄芩苷,6.25mg/mL的栀子苷,和1.75mg/mL的胆酸)灌胃给药,给药剂量每十3ml/kg。对照组和模型组大鼠造模后灌服等量生理盐水。连续灌胃给药一个月后,开始Morris水迷宫行为学实验。选择隐蔽平台实验和反向平台试验评估造模是否成功并评价精制清开灵是否可以改善AD模型大鼠的空间学习记忆能力。完成Morris水迷宫行为学实验第二天进行FDG-PET检查,从神经影像学方而评估精制清开灵是否可以改善AD模型大鼠脑葡萄糖能量代谢水平。之后,三组各随机选择1只大鼠用于组织学检查,光镜下观察精制清开灵对海马神经元的结构变化的影响。其余大鼠进行DNA芯片和免疫印迹分析,从分子水平和蛋白质水平评价药物疗效和作用机制。
     结果:精制清开灵可显著改善基底前脑注射鹅蒿蕈氨酸引起的认知、脑功能影像和脑组织学形态的异常。
     Morris水迷宫行为学实验结果显示,隐藏平台实验中,逃避潜伏期的时间效应(F4,108=18.178,P<0.001)和组效应(F2,27=41.426,P<0.001)显著。模型组潜伏期和游泳距离明显长于(P<0.001)对照组和药物组。反向平台实验中,逃避潜伏期的时间效应和组效应均显著(F2,54=12.607,P<0.001;F2,27=23.013,P<0.001,模型组、药物组与对照组比较P<0.001)。游泳速度各组之间没有统计学差异。
     FDG-PET检查结果显示,与对照组相比模型组众多的大脑区域的FDG-PET信号显著下降。受影响的区域包括前核、海马、中脑、双侧初级皮质、嗅球和下丘脑的左侧,伏隔核右侧皮质(P<0.05)。与模型组相比,药物组左侧嗅球和左前核的FDG-PET信号下降程度相对减小,此外,左海马FDG-PET信号显著增加(P<0.05)
     光镜下观察海马组织结构变化发现,对照组海马CA1区的神经元呈有序排列,没有明显的细胞形态异常。模型组的神经元排列异常,细胞质发生变性、细胞坏死(核固缩和核溶解等),细胞数量减少等,另外有胶质细胞增多表明有炎症反应的产生。药物组细胞形态和组织结构基本恢复正常,胶质细胞减少。
     DNA微阵列分析与免疫印迹分析结果显示,与模型组相比,药物组19个基因的表达显著改变(P<0.05或P<0.01)。其中11个基因与神经保护作用和神经发生相关,8个基因与抗氧化、蛋白降解、胆固醇的代谢、血管生成、应激反应、和凋亡等相关。除了与细胞凋亡相关的基因下调,其它基因表达上调。此外我们选择在预防AD有着重要的作用的5个基因TRH, EGF, CRBP1, CBR1, ACE进行蛋白质印迹技术验证结果表明,与模型组相比药物组的5个基因蛋白表达水平显着增加(P<0.05或P<0.01),结果与DNA微阵列的结果一致。
     结论:精制清开灵可改善由基底前脑注射鹅膏蕈氨酸引起痴呆,这种改善的作用机制可能通过精制清开灵可以调节多种涉及保护神经元、促进神经再生方面起关键作用的通路作用实现,此外,也与精制清开灵的抗氧化作用、抗蛋白质降解等作用相关。
Background:Alzheimer's disease (Alzheimer's disease, AD) has a high incidence rate in the elderly, which is one of the most harmful degenerative diseases in central nervous system and it is also the most common form of senile dementia. Due to the aggravation of population aging, this disease already ranks among the elderly cause of death in the first few. At present, the pathogenesis of the the disease has not been fully elucidated so that there is no satisfactory therapy for AD. Qingkailing (QKL) is one of the famous traditional Chinese medicines which have significant clinical effect on cerebral illness of TCM, the acute cerebral ischemic stroke. A series of pharmaceutical and pharmacodynamic studies have been conducted that identified more than60compounds in QKL and found3compounds, i.e.baicalin, jasminoidin, and cholic acid as the most active ones. Previous research has suggested that extracting baicalin, geniposide and acid as a combination of refined QKL(RQKL) can replace QKL in the treatment of stroke patients. Furthermore, based on the "toxic brain collateral damage" theory, RQKL also showed better therapeutic efficacy in the clinical treatment of post-stroke dementia. By the virtue of the common risk factors and overlapped pathologic change shared by AD and vascular dementia, and with the deeper understanding of AD pathogenesis, researchers found that "toxic brain collateral damage" is also the core of the development of AD. Hence, we proposed that on the basis of unblock collaterals and subcollaterals, the potential mechanism of RQKL, would increase the curative effect of AD.
     Objective:This study applied a comprehensive method combined with behavioristics, histopathology, neuroimaging and gene expression to assess the effectiveness and mechanism of refined Qingkailing when based on "JieDuTongLuo " treatment, then to do a further exploration about the "toxic damaged brain collaterals" theory and the significance of "JieDuTongLuo" treatment in the AD field of Chinese medicine research in. Furthermore, the research may provide a new train of thought for finding effective Chinese medical ways in AD treatment.
     Methods:To model dementia rats by injecting ibotenic acid (IBO) into the basal forebrain of male rats (weights between250g and300g), then devided modeling rats into contral group, model group and medicine group. Medicine group would be given gavage 3ml/kg each day with drug solution from the third day after operation,and the drug solution contained baicalin1.25mg/ml,geniposide6.25mg/ml, bile acids1.75mg/ml, while the contral group and IBO model group would be given gavage with normal saline after modeling. Within gavage for one month, rats would accept Morris water maze behavioral experiments in order to test whether the dementia model was successed and whether the RQKL could improve spatial learning and memory of Alzheimer's disease model rats by hidden platform experiments and reverse assays. To assess the improvement of energy metabolism of brain glucose in AD model rats with the usage of RQKL, rats would receive neuroimaging of FDG-PET test in the second day after Morris water maze behavioral experiments ended. And then, researchers picked three rats randomly from each group for a histological examination in order to abserve structural changes in hippocampal neurons after taking RQKL, while rest of rats would be tested within DNA microchips and western blot methods. The research might assess effects of AD Chinese medical treatment from molecular level and it also provided an import ant theoretical reference and basis for improving compatibility of modern Chinese medicines.
     Result:RQKL treatment significantly attenuated IBO-induced abnormalities in cognition, brain functional images, and brain histological morphology. Morris water maze test results as follows:in the hidden platform test, the escape latency time was dependent on both the time effect (F4,108=18.178, P<0.001) and the group effect (F2,27=41.426, P<0.001); the control and durg groups escaped significantly faster than the IBO-model group (both P<0.001).A similar result was observed for the swim distance (F4,108=14.393and P<0.001for the time effect; F2.27=8.784and P<0.001for the group difference; and P<0.001and P<0.05for the comparisons of the control group and the durg group to the IBO-model group). Swim speed was not significantly different between the groups. In the reverse hidden platform test, the time effect and differences between the groups were both significant factors in the escape latency time (F2,54=12.607, P<0.001; F2,27=23.013, P<0.001); compared with the IBO-model group, the escape latency times in the control group and the durg group were significantly shorter (both P<0.001). A similar result was observed for the swim distance (F2,54=12.886and P<0.001for the time effect; F2,27=12.268and P<0.001for the group difference; and P<0.001for the comparisons of the control group and the durg group to the IBO-model group). No significant differences in the swim speed were observed between groups.
     FDG-PET examination showed that compared with the control group, significant decreases in FDG-PET signals were observed in the IBO-model group for numerous brain regions. The affected regions included the anterior nucleus, the hippocampus, the midbrain, the intragyral nuclei and the primary cortex on both sides, the olfactory bulb and the hypothalamus on the left side, and the nucleus accumbens and the primary barrel cortex on the right side (P<0.05). Compared with the IBO-model group, in the durg group, the decrease in the left olfactory bulb and the left anterior nucleus was significantly attenuated; additionally,a significant increase in the FDG-PET signal was observed in the left hippocampus (P<0.05).
     Light microscope to observe the change of the structure of the hippocampus results showed in the control group, neurons in the hippocampal CA1region showed an orderly arrangement with no apparent abnormalities in cellular morphology. In the IBO-model group, neuron arrangement was disrupted with severe lesions in the nucleus and cytoplasm such as karyolysis and eosinophilia, and a neuronal cell loss was noted. In the durg group, these abnormalities were ameliorated.
     DNA microarray analysis showed that compared with the IBO-model group, in the durg group, the expression of19genes was significantly changed (P<0.05or P<0.01). Of these19genes,11are related to neuroprotection and neurogenesis and the other8are related to anti-oxidation, protein degradation, cholesterol metabolism, angiogenesis, stress response, and apoptosis. Gene expression was increased in all cases except for the gene related to apoptosis.TRH, EGF, CRBP1, CBR1, and ACE were selected for verification by western blot because previous studies have shown that they are more important in preventing AD in comparison to the others in the19genes significantly regulated by RQKL.The results showed that the protein expression levels of these5genes were significantly increased in the durg group compared with the IBO-model group (P<0.05or P<0.01), which was consistent with the results of the DNA microarray. Conclusion:RQKL can ameliorate the IBO-induced dementia in rats and may show significant effects in the treatment of AD. The therapeutic mechanism may be related to RQKL's modulation of a number of processes, mainly through promotion of neuroprotection and neurogenesis, with additional promotion of anti-oxidation, protein degradation, etc.
引文
[1]Klafki HW, Staufenbiel M, Kornhuber J, et al. Therapeutic approaches to Alzheimer's disease [J]. Brain,2006,129(11):2840-2855.
    [2]Wu B, Liu M, Liu H, et al. Meta-analysis of traditional Chinese patent medicine for ischemic stroke [J]. Stroke,2007,38(6):1973-1979.
    [3]Lee KuoHsiung; Wang HuiKang; Itokawa, H, et al. Current perspectives on Chinese medicines and dietary supplements in China, Japan and the United States [J]. Journal of Food and Drug Analysis,2000,8(4):219-228.
    [4]罗国安,梁琼麟,张荣利等.化学物质组学与中药方剂研究—兼析清开灵复方物质基础研究[J].世界科学技术:中医药现代化,2006,8(1):6-15.
    [5]张占军,王忠,李澎涛等.清开灵组分配伍干预局灶性脑缺血大鼠再灌注损伤的实验研究[J].中国药理学通报,2006,22(8):964-967.
    [6]张占军.基因表达谱权衡清开灵组分配伍治疗脑缺血药效特征分析研究[D].北京中医药大学,2005.94-99.
    [7]Jeffrey L. Cummings, M.D. Alzheimer's Disease [J]. New England Journal of Medicine,2004, 351(1):56-67.
    [8]Cleusa P Ferri. Martin Prince, Carol Brayne, et al. Global prevalence of dementia:a Delphi consensus study [J]. The Lancet,2006,366(9503):2112-2117.
    [9]Alzheimer A. uber eigenartige Krankheitsf?lle des sp?teren Alters [J]. Zeitschrift fur die gesamte Neurologie und Psychiatrie,1911,4(1):356-385.
    [10]Mattson MP, Pedersen WA, Duan W, et al. Cellular and Molecular Mechanisms Underlying Synaptic Degeneration and Neuronal Death in Alzheimer's Disease [J]. Pathogenesis of neurodegenerative disorders,2001,113.
    [11]Ballard C, Gauthier S, Corbet A, et al. Alzheimer's disease [J]. Lancet,2011,377(9770): 1019-1031.
    [12]Bartus R T. Dean R L, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction [J].Science,1982.
    [13]Morris R, Mucke L. Alzheimer's disease:A needle from the haystack [J]. Nature,2006, 440(7082):284-285.
    [14]Hardy J. Has the Amyloid Cascade Hypothesis for Alzheimers Disease been Proved? [J]. Current Alzheimer Research,2006,3(1):71-73.
    [15]Masliah E, Sisk A, Mallory M, et al. Neurofibrillary Pathology in Transgenic Mice Overexpressing V717F [beta]-Amyloid Precursor Protein [J]. Journal of Neuropathology & Experimental Neurology,2001,60(4):357-368.
    [16]Gearing M, Mori H, Mirra S S. Abeta-peptide length and apolipoprotein E genotype in Alzheimer's disease [J]. Ann Neurol,1996,39(3):395-399.
    [17]Kamboh M I. Apolipoprotein E polymorphism and susceptibility to Alzheimer's disease [J]. Hum Biol,1995,67(2):195-215.
    [18]Bartus RT, Dean RL 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction [J]. Science,1982,217(4558):408-414.
    [19]Hort J, O'Brien JT, Gainotti G, et al. EFNS guidelines for the diagnosis and management of Alzheimer's disease [J]. Eur J Neurol,2010,17(10):1236-1248.
    [20]Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease:results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group [J]. Dementia,1996,7(6):293-303.
    [21]Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group [J]. Neurology, 1998,50(1):136-145.
    [22]Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group [J]. Neurology,2000,54(12): 2269-2276.
    [23]Burns A, Bernabei R, Bullock R, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer's disease (the SERAD study):a randomised, placebo-controlled, double-blind trial [J]. Lancet Neurol,2009,8(1):39-47.
    [24]Bullock R, Touchon J, Bergman H, et al. Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer's disease over a 2-year period [J]. Curr Med Res Opin,2005, 21(8):1317-1327.
    [25]Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine [J]. Acta Pharmacol Sin,2006,27(1):1-26.
    [26]Xu SS, Gao ZX, Weng Z, et al. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer's disease [J]. Zhongguo Yao Li Xue Bao,1995,16(5):391-395.
    [27]Ha GT, Wong RK, Zhang Y. Huperzine a as potential treatment of Alzheimer's disease:an assessment on chemistry, pharmacology, and clinical studies [J]. Chem Biodivers,2011,8(7): 1189-1204.
    [28]Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil:a randomized controlled trial [J]. JAMA,2004,291(3):317-324.
    [29]Van Dyck CH, Tariot PN, Meyers B, et al. A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease [J]. Alzheimer Dis Assoc Disord,2007,21(2):136-143.
    [30]Gauthier S, Loft H, Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer's disease by memantine:a pooled data analysis [J]. Int J Geriatr Psychiatry,2008,23(5):537-545.
    [31]Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease:a 24-week randomized, controlled trial [J]. Am J Geriatr Psychiatry,2006,14(8): 704-715.
    [32]Ryglewicz D, Rodo M, Kunicki PK, et al. Plasma antioxidant activity and vascular dementia [J]. J Neurol Sci.2002, (203-204):195-197.
    [33]Klatte ET, Scharre DW, Nagaraja HN, et al. Combination therapy of donepezil and vitamin E in Alzheimer disease [J]. Alzheimer Dis Assoc Disord,2003,17(2):113-116.
    [34]Weggen S, Rogers M, Eriksen J. NSAIDs:small molecules for prevention of Alzheimer's disease or precursors for future drug development? [J]. Trends Pharmacol Sci,2007,28(10): 536-543.
    [35]Pasinetti GM. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer's disease:the role of NSAIDs and cyclooxygenase in beta-amyloidosis and clinical dementia [J]. J Alzheimers Dis,2002,4(5):435-445.
    [36]Mcgeer PL, Mcgeer EG. NSAIDs and Alzheimer disease:epidemiological, animal model and clinical studies [J]. Neurobiol Aging,2007,28(5):639-647.
    [37]Cummings JL, Vinters HV, COLE G M, et al. Alzheimer's disease:etiologies, pathophysiology, cognitive reserve, and treatment opportunities [J]. Neurology,1998,51(1 Suppl 1):S2-17; discussion S65-17.
    [38]Zamrini E, Mcgwin G, Roseman JM. Association between statin use and Alzheimer's disease [J]. Neuroepidemiology,2004,23(1-2):94-98.
    [39]Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD [J]. Curr Alzheimer Res,2005,2(3):343-353.
    [40]Scott HD, Laake K. Statins for the reduction of risk of Alzheimer's disease [J]. Cochrane Database Syst Rev,2001, (3):CD003160.
    [41]Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mi Id-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study [J]. Lancet,2008,372(9634):207-215.
    [42]Sabbagh MN, Shill HA. Latrepirdine, a potential novel treatment for Alzheimer's disease and Huntington's chorea [J]. Curr Opin Investig Drugs,2010,11(1):80-91.
    [43]苏芮,韩振蕴,范吉平.基于“毒损脑络”理论的老年性痴呆中医病机探讨[J].南京中医药大学学报,2010,26(2):93-94.
    [44]陈楷,陈可冀.中药治疗老年期痴呆初步研究进展[J].中国中西医结合杂志,1995,15(2):120-123.
    [45]冯靖涵,蔡宝昌,过伟峰等.中医药治疗阿尔茨海默病的实验研究进展[J].南京中医药大学学报,2012,28(4):394-396.
    [46]肖苗苗.中医药治疗阿尔茨海默病的研究进展[J].中医学报,2012,27(5):631-632.
    [47]朱国营,李玉波.老年性痴呆病的中医辩证论治[J].泰山卫生,2010,34(001):35-36.
    [48]崔金涛,刘悦平.中医药治疗老年痴呆病近况[J].湖北中医杂志,2001,23(9):51-52.
    [49]朱未名,胡海燕.阿尔茨海默病的中医药临床研究概况[J].中医杂志,2005,46(5):389-391.
    [50]雷洪涛,李新民.中医治疗阿尔茨海默病研究进展[J].辽宁中医药大学学报,2012,14(9):215-217
    [51]邹莉菠,刘干中.部分中药对动物学习记忆功能的影响[J].中药药理与临床,1990,6(5):16-19.
    [52]马怡,徐秋萍.中药抗老年期痴呆的实验药理研究简况[J].中国实验方剂学杂志,1997,3(1):34-34.
    [53]黄可儿,柯雪红,陈为等.醒神液对老年性痴呆大鼠模型脑内神经递质的影响[J].中国老年学杂志,2003,23(11):775-776.
    [54]杜正彩,邓家刚,兰太进等.复方田七益智颗粒对老年痴呆模型大鼠学习记忆及海马AChE活性的影响[J].中国老年学杂志,2011,31(17):3318-3320.
    [55]牛彩琴,张团笑,徐厚谦.寿聪胶囊对老年性痴呆大鼠学习记忆及皮层ChAT影响的研究 [J].时珍国医国药,2011,22(1):149-151.
    [56]郑璐,邱蕾,张瑶等.远志皂苷对快速及老化鼠学习记忆能力的改善及对神经递质的影响[J].北京中医药大学学报,2010,33(3):183-186.
    [57]岳少杰,曾庆善.清开灵抗大鼠谷氨酸神经毒性脑损伤的实验研究[J].中国中西医结合杂志,2000,20(11):842-845.
    [58]孙泉,金国琴,赵伟康等.调心方对氧化损伤型类AD大鼠及组织淀粉样蛋白(APP)mRNA表达的影响[J].中药药理与临床,2004,19(2):28-31.
    [59]欧阳昌汉,郑敏.黄芩苷对大鼠及片缺氧缺糖损伤的保护作用[J].咸宁学院学报:医学版,2006,20(2):96-99.
    [60]Hai-Ying Zhang, Yi-Heng Liu, Hong-Quan Wang, et al. Puerarin protects PC12 cells against β-amyloid-induced cell injury [J]. Cell biology international,2008,32(10):1230-1237.
    [61]金国琴,印宏,张学礼.中药调心方对氧化损伤型类Alzheimer病大鼠线粒体呼吸链酶活性和钙稳态的影响[J].中国老年学杂志,2003,24(6):364-366.
    [62]梅峥嵘,司徒冰,黄汉辉等.灯盏花素对阿尔茨海默病模型大鼠学习记忆和抗氧化能力的影响[J].中国药学杂志,2012,47(5):347-350
    [63]黄兆胜,刘明平,孙堆广等.养寿丹对阿尔茨海默病肾阳虚大鼠脑神经递质的影响[J].Chinese Journal of Experimental Tradilional Medical Formulae,2002,8(1):212-213.
    [64]刘丹阳,侯魁元.复方地黄对快速老化痴呆大鼠及组织凋亡机制的实验研究[J].医学研究杂志,2011,40(6):66-70.
    [65]袁电杰,张印发,姚春香.灵芝多糖对阿尔茨海默病模型大鼠海马内突触及突触素表达的影响[J].中国实验方剂学杂志,2011,17(003):151-155.
    [66]皮婷,薛小燕,林炼峰等.远志皂苷元对新生大鼠皮质神经元的营养作用[J].中国药理学与毒理学杂志,2011,25(1):40-44.
    [67]庞鹤,朱陵群,张文生等.丹参素对缺氧/缺糖损伤的神经细胞线粒体膜电位和凋亡的影响[J].中华中医药杂志,2006,21(6):329-332.
    [68]张艳,明亮.银杏叶提取物对神经细胞凋亡的保护作用[J].中国临床药理学与治疗学,2001,6(1):25-27.
    [69]谢宁,邹纯朴,牛英才等.地黄饮子对海马神经元AD模型细胞凋亡的调控作用[J].中国实验方剂学杂志,2004,10(4):29-32.
    [70]张鹏霞,姚海涛.黄芪对老龄大鼠神经细胞凋亡作用的研究[J].中国老年学杂志,2002,22(6):516-517.
    [71]方永奇,吴启端.石菖蒲对缺血再灌注及损伤大鼠神经细胞凋亡的影响[J].现代中西医结合杂志,2002,11(17):1647-1649.
    [72]洪道俊,裴爱琳,陆世铎等.调心方对大鼠杏仁核注射Aβ25-35致P35和tau蛋白磷酸化的调节作用[J].中华老年医学杂志,2004,22(11):673-676.
    [73]许哲,陈玉武,郭景珍等.川芎提取物对大鼠学习记忆的影响[J].中药药理与临床,1995,11(003):42-43.
    [74]Ben-Ari Y, Tremblay E, Ottersen OP, et al. The role of epileptic activity in hippocampal and" remote" cerebral lesions induced by kainic acid [J]. Brain research,1980,191(1):79.
    [76]Lewis J, Mcgowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tan protein [J]. Nature genetics,2000,25(4):402-405.
    [77]Pappolla MA, Chyan YJ, Poeggeler B, et al. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin:implications for Alzheimer's disease [J]. Journal of neural transmission,2000,107(2):203-231.
    [78]高永红,邢雁伟,袁拯忠等.清开灵有效组分对大鼠脑微血管内皮细胞体外缺血再灌注损伤模型核转录因子-K B的影响[J].中西医结合学报,2009,7(2):135-139.
    [79]任钧国,邱全瑛,郝玉等.清开灵对白细胞—血管内皮细胞粘附的影响[J].中国中医药信息杂志,2003,10(5):16-17.
    [80]徐丽荣.清开灵有效组分干预缺血性中风细胞粘附机制的研究[D]:北京中医药大学,2005.
    [81]钟相根,李澎涛,王永炎.清开灵有效组分对缺血脑组织神经营养因子含量的影响[J].北京中医药大学学报,2004,27(3):21-24.
    [82]潘彦舒,王瑶,王冰等.清开灵注射液对大鼠脑缺血再灌注损伤过程中转化生长因子-β1表达的影响[J].世界科学技术:中医药现代化,2009,10(5):29-32.
    [83]张占军,李澎,王忠等.精制清开灵干预MCAO再灌注损伤的药效及机制研究[J].中国病理生理杂志,2006,22(11):2105-2109.
    [84]唐卉凌.脑缺血血脑屏障基底膜损伤及新清开灵对其保护作用的研究[D]:北京中医药大学,2005.
    [85]张金铃.清开灵有效组分及配伍抗神经元缺血再灌注损伤的钙相关机制研究[D]:北京中医药大学,2007.
    [86]朱陵群,黄启福.清开灵注射液对体外培养的神经细胞的缺血性损伤的保护作用[J].中国病理生理杂志,1996,6(663).
    [87]万文成,李杰芬.清开灵对大鼠皮层神经细胞保护作用的实验研究[J].中医药研究,2002,18(4):45-46.
    [88]邱蕾,郑璐,张瑶等.清开灵对快速老化痴呆大鼠学习记忆能力的影响及作用机制研究[J].中国中西医结合杂志,2010,(7):738-742.
    [89]罗国安,梁琼麟,张荣利等.化学物质组学与中药方剂研究—兼析清开灵复方物质基础研究[J].世界科学技术:中医药现代化,2006,8(1):6-15.
    [90]Zhong Xianggen, Li Pengtao, Wang Yongyan. Influence of the Effective Fractions of Qingkailing on the Levels of Neurotrophic Factors in the Brain of the Rat with Cerebral Ischemia [J]. JOURNAL-BEIJING UNIVERSITY OF TRADITIONAL CHINESE MEDICINE,2004,27:21-24.
    [91]陈寅萤,工忠.精制清开灵干预缺血性脑损伤药理作用机制研究进展[J].中国中药杂志,2012,37(21):3198-3202
    [92]盛树力,全国老年性痴呆发病机理和药物作用靶位研讨会.老年痴呆发病机理与药物研究[M].科学技术文献出版社,2003.161.
    [93]Morris RG. Spatial localization does not require the presence of local cues [J]. Learning and motivation,1981,12(2):239-260.
    [94]Lamberty Y, Gower AJ. Spatial processing and emotionality in aged NMRI mice:a multivariate analysis [J]. Physiology & behavior,1993,54(2):339-343.
    [95]刘善循,匡培梓.损毁海马对大白鼠学习记忆的影响[J].心理学报,1982,14(01):107-113.
    [96]Morris R. Developments of a water-maze procedure for studying spatial learning in the rat [J]. Journal of neuroscience methods,1984,11(1):47-60.
    [97]Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in the hippocampus [J]. Science Signaling,2006,313(5790):1093.
    [98]Cooke S, Bliss T. Plasticity in the human central nervous system [J]. Brain,2006,129(7): 1659-1673.
    [99]关彩宣,孙妠,曲鹏等.鹅膏蕈氨酸对大鼠海马神经元的毒性作用[J].中国公共卫生,2006,22(9):1115-1116.
    [100]Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET [J]. Neuroimage,2002,17(1): 302-316.
    [101]Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease [J]. European journal of nuclear medicine and molecular imaging,2005,32(4): 486-510.
    [102]Rimajova M, Lenzo NP, Wu JS, et al. Fluoro-2-deoxy-D-glucose (FDG)-PET in APOEe4 carriers in the Australian population [J]. Journal of Alzheimer's Disease,2008,13(2): 137-146.
    [103]Herholz K. FDG PET and differential diagnosis of dementia [J]. Alzheimer Disease & Associated Disorders,1995,9(1):6-16.
    [104]Herholz K. PET studies in dementia [J]. Ann Nucl Med,2003,17(2):79-89.
    [105]陈艳霞,石江伟,于涛等PET/CT在老年期痴呆中的应用研究进展[J].中风与神经疾病杂志,2010,27(10):957-958
    [106]Millien I, Blaizot X, Giffard C, et al. Brain Glucose Hypometabolism After Perirhinal Lesions in Baboons: Implications for Alzheimer Disease and Aging [J]. Journal of Cerebral Blood Flow & Metabolism,2002,22(10):1248-1261.
    [107]袁秀丽.阿尔茨海默病的FDG PET成像研究[D].2009.65-66.
    [108]包尚联,张怀嶺.医学影像物理和技术[J].中国医学影像技术,2004,20(1):118-121.
    [109]唐孝威.核医学和放射治疗技术[M].北京医利大学出版社,2001.
    [110]林如意,邓天翔,张俊芳等.Ca2+失调与阿尔茨海默病发生发展关系的研究进展[J].生命科学,2012,24(2):297-303.
    [111]盛树力.老年性痴呆及相关疾病[M].科学技术文献出版社,2006.
    [112]Khalid Iqbal, Sangram S. Sisodia, et al.Alzheimer's Disease:Advances in Etiology, Pathogenesis and Therapeutics.Chapter 15. Brain Functional Imaging in Early and Preclinical Alzheimer's Disease, pp.153-164.
    [113]Kovacs T, Cairns NJ, Lantos PL. Olfactory centres in Alzheimer's disease:olfactory bulb is involved in early Break's stages [J]. Neuroreport,2001,12(2):285-288.
    [114]陈香梅,符宝敏,史宇晖等.胃癌维甲酸信号通路相关基因启动子区协同高甲基化的研究[J].胃肠病学,2008,13(7):388-392.
    [115]Abe K, Saito H. Protective effect of epidermal growth factor on glutamate neurotoxicity in cultured cerebellar neurons [J]. Neuroscience research,1992,14(2):117-123.
    [116]Morrison R, Keating R, Moskal J. Basic fibroblast growth factor and epidermal growth factor exert differential trophic effects on CNS neurons [J]. Journal of neuroscience research, 1988,21(1):71-79.
    [117]Hicks D, Heidinger V, Mohand-Said S, et al. Growth Factors and Gangliosides as Neuroprotective Agents in Excitotoxicity and Ischemia [J]. General Pharmacology:The Vascular System,1998,30(3):265-273.
    [118]Yoko Arai, Nobuo Funatsu, Keiko Numayama-Tsuruta,, et al. Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex [J]. J Neurosci,2005,25(42):9752-9761.
    [119]Boneva NB, Kaplamadzhiev DB, Sahara S, et al. Expression of fatty acid-binding proteins in adult hippocampal neurogenic niche of postischemic monkeys [J]. Hippocampus,2011, 21(2):162-171.
    [120]AkamaK, Horikoshi T, Nakayama T, et al. Proteomic identification of differentially expressed genes in neural stem cells and neurons differentiated from embryonic stem cells of cynomolgus monkey (Macaca fascicularis) in vitro [J]. Biochim Biophys Acta,2011,1814(2): 265-276.
    [121]Beattie J, Allan GJ, Lochrie JD, et al. Insulin-like growth factor-binding protein-5 (IGFBP-5):a critical member of the IGF axis [J]. Biochem J,2006,395(1):1-19.
    [122]Hauck SM, Gloeckner CJ, Harley ME, et al. Identification of paracrine neuroprotective candidate proteins by a functional assay-driven proteomics approach [J]. Mol Cell Proteomics,2008,7(7):1349-1361.
    [123]Paspalas CD, Perley CC, Venkitaramani DV, et al. Major vault protein is expressed along the nucleus-neurite axis and associates with mRNAs in cortical neurons [J]. Cereb Cortex, 2009,19(7):1666-1677.
    [124]Salama RH, Muramatsu H, Zou P, et al. Midkine, a heparin-binding growth factor, produced by the host enhances metastasis of Lewis lung carcinoma cells [J]. Cancer Lett,2006,233(1): 16-20.
    [125]Yun B Kim, Jae K Ryu, Hong J Lee, et al. Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus [J]. BMC Neurosci,2010,11 (42):1-8.
    [126]Ishikawa E, Ooboshi H, Kumai Y, et al. Midkine gene transfer protects against focal brain ischemia and augments neurogenesis [J]. J Neurol Sci,2009,285(1-2):78-84.
    [127]Pattnaik BR, Hughes BA. Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate [J]. Am J Physiol Cell Physiol,2009,297(4): C1001-1011.
    [128]Bi W, Yan J, Shi X, et al. Rail deficiency in mice causes learning impairment and motor dysfunction, whereas Rail heterozygous mice display minimal behavioral phenotypes [J]. Hum Mol Genet,2007,16(15):1802-1813.
    [129]Yamada M, Satoh T, Mori M.Mice lacking the thyrotropin-releasing hormone gene:what do they tell us? [J]. Thyroid,2003,13(12):1111-1121.
    [130]G.W. Bennett, T.M. Ballard, C.D. Watson, K.C.F, et al. Effect of neuropeptides on cognitive function [J]. Experimental gerontology,1997.32(4):451-469.
    [131]Luo L, Yano N, Mao Q, et al. Thyrotropin releasing hormone (TRH) in the hippocampus of Alzheimer patients [J]. Journal of Alzheimer's Disease.2002,4(2):97-103.
    [132]Hoffrogge R, Mikkat S, Scharf C, et al.2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM) [J]. Proteomics,2006,6(6): 1833-1847.
    [133]Xiao L, Ma ZL, Li X, et al. cDNA microarray analysis of spinal cord injury and regeneration related genes in rat [J]. Sheng Li Xue Bao,2005,57(6):705-713.
    [134]Cunha-Reis D, Ribeiro JA, Sebastiao AM. VPAC2 receptor activation mediates VIP enhancement of population spikes in the CA1 area of the hippocampus [J]. Ann N Y Acad Sci, 2006,1070:210-214.
    [135]Rangon CM, Goursaud S, Medja F, et al. VPAC2 receptors mediate vasoactive intestinal peptide-induced neuroprotection against neonatal excitotoxic brain lesions in mice [J]. J Pharmacol Exp Ther,2005,314(2):745-752.
    [136]Zaben M, Sheward WJ, Shtaya A, et al. The neurotransmitter VIP expands the pool of symmetrically dividing postnatal dentate gyrus precursors via VPAC2 receptors or directs them toward a neuronal fate via VPAC1 receptors [J]. Stem Cells,2009,27(10):2539-2551.
    [137]Rashid MA, Lee S, Tak E, et al. Carbonyl reductase 1 protects pancreatic β-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity [J]. Free Radical Biology and Medicine,2010,49(10):1522-1533.
    [138]Tak E, Lee S, Lee J, et al. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells [J]. Journal of hepatology,2011, 54(2):328-339.
    [139]Botella JA, Ulschmid JK, Gruenewald C, et al. The Drosophila Carbonyl Reductase Sniffer Prevents Oxidative Stress-Induced Neurodegeneration [J]. Current biology,2004,14(9): 782-786.
    [140]Johansson K, Jarvliden J, Gogvadze V, et al. Multiple roles of microsomal glutathione transferase 1 in cellular protection:a mechanistic study [J]. Free Radic Biol Med,2010, 49(11):1638-1645.
    [141]Jianguo Hu, Akira Igarashi, Makiko Kamata, et al. Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards A(3 aggregation, deposition, fibril formation; and inhibits cytotoxicity [J]. Journal of Biological Chemistry,2001,276(51):47863-47868.
    [142]Bergink S, Severijnen LA, Wijgers N, et al. The DNA repair-ubiquitin-associated HR23 proteins are constituents of neuronal inclusions in specific neurodegenerative disorders without hampering DNA repair [J]. Neurobiol Dis,2006,23(3):708-716.
    [143]Fujiata J. Cold shock response in mammalian cells [J]. J Mol Microbiol Biotechnol,1999, 1(2):243-255.
    [144]Wellmann S, Burer C, Moderegger E,et al. Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism [J]. J Cell Sci, 2004,117(Pt9):1785-1794.
    [145]Sakurai T, Itoh K, Higashitsuji H,et al. Cirp protects against tumor necrosis factor-alpha-induced apoptosis via activation of extracellular signal-regulated kinase [J]. Biochim Biophys Acta,2006,1763(3):290-295.
    [146]Zannis VI, Koukos G, Drosatos K, et al. Discrete roles of apoA-I and apoE in the biogenesis of HDL species:lessons learned from gene transfer studies in different mouse models [J]. Ann Med,2008,40 Suppl 1 (14-28).
    [147]Choi S, Lee SA, Kwak TK,et al. Cooperation between integrin alpha5 and tetraspan TM4SF5 regulates VEGF-mediated angiogenic activity [J]. Blood,2009,113(8):1845-1855.
    [148]Sultana R, Butterfield DA.Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment [J]. Neurochem Res,2007,32(4-5): 655-662.
    [149]龚宁波,张丽娟,古同男.基因芯片技术在医药学研究中的应用[J].中南药学,2005,3(1):35-38.
    [150]Stremmel C, Wein A, Hohenberger W, et al. DNA microarrays:a new diagnostic tool and its implications in colorectal cancer [J]. International journal of colorectal disease,2002,17(3): 131-136.
    [151]Jain K. Biochips for gene spotting [J]. Science,2001,294(5542):621-623.
    [152]郭书文,孟庆刚,王国华等.基因芯片技术在中医药研究中的应用探讨[J].中国中医药信息杂志,2005,11(11):946-948.
    [153]陈香梅,符宝敏,史宇晖等.胃癌维甲酸信号通路相关基因启动子区协同高甲基化的研究[J].胃肠病学,2008,13(7):388-392.
    [154]Wolf G. Discovery of vitamin A [J]. eLS,2001.
    [155]Noy N. Between death and survival:retinoic acid in regulation of apoptosis [J]. Annual review of nutrition,2010,30:201-217.
    [156]Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain [J]. European Journal of Neuroscience,2004, 20(4):896-902.
    [157]Etchamendy N, Enderlin V, Marighetto A, et al. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling [J]. The Journal of Neuroscience,2001,21(16):6423-6429.
    [158]Yun Ding, Aimin Qiao, Ziqing Wang,et al. Retinoic acid attenuates β-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model [J]. The Journal of Neuroscience,2008,28(45):11622-11634.
    [159]Sarang SS, Yoshida T, Cadet R, et al. Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays [J]. Physiological genomics,2002,11(2):45-52.
    [160]Ono K, Yoshiike Y, Takashima A,et al. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro [J]. Experimental neurology,2004,189(2):380.
    [161]Wang TW, Zhang H, Parent JM. Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway [J]. Development,2005,132(12): 2721-2732.
    [162]崔景彬,鄢文海,王建枝等.维甲酸和EGF对大鼠脑胚胎神经干细胞增殖和分化的影响[J].中国组织化学与细胞化学杂志,2003,12(1):81-85.
    [163]Takahashi J, Palmer TD, Gage FH.Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures [J]. Journal of neurobiology,1999, 38(1):65-81.
    [164]Christie VB, Maltman DJ, Henderson AP,et al. Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro [J]. Journal of neuroscience methods,2010,193(2):239-245.
    [165]Encinas M, Iglesias M, Liu Y,et al. Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain-Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factor-Dependent, Human Neuron-Like Cells [J]. Journal of neurochemistry, 2000,75(3):991-1003.
    [166]Zhao BQ, Guo YR, Li XL, et al. Amelioration of dementia induced by Aβ 22-35 through rectal delivery of undecapeptide-hEGF to mouse brain [J]. International journal of pharmaceutics,2011,405(1):1-8.
    [167]Chen-Plotkin AS, Hu WT, Siderowf A,et al. Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease [J]. Annals of neurology,2011,69(4):655-663.
    [168]Fiore M, Triaca V, Amendola T, et al. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice [J]. Physiology & behavior,2002,77(2):437-443.
    [169]Kuhn HG, Winkler J, Kempermann G, et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain [J]. The Journal of Neuroscience,1997,17(15):5820-5829.
    [170]Brian O. Benoit, Todd Savarese, Marguerite Joly, et al. Neurotrophin channeling of neural progenitor cell differentiation [J]. Journal of neurobiology,2001,46(4):265-280.
    [171]Marchal-Victorion S, Deleyrolle L, De Weille J, et al. The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells [J]. Molecular and Cellular Neuroscience,2003,24(1):198-213.
    [172]Yu J, Zeng J, Cheung RT, et al. Intracerebroventricular injection of epidermal growth factor reduces neurological deficit and infarct volume and enhances nestin expression following focal cerebral infarction in adult hypertensive rats [J]. Clinical and Experimental Pharmacology and Physiology,2009,36(5-6):539-546.
    [173]Laskowski A, Schmidt W, Dinkel K, et al. bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures [J]. Brain research,2005,1037(1):78-89.
    [174]Calza L, Giuliani A, Fernandez M,et al. Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor[J]. Proceedings of the National Academy of Sciences,2003,100(12):7325-7330.
    [175]Mellow AM, Sunderland T.Cohen RM, et al. Acute effects of high-dose thyrotropin releasing hormone infusions in Alzheimer's disease [J]. Psychopharmacology,1989,98(3): 403-407.
    [176]Miyamoto M, Hirai K. Heya T,et al. Effects of a sustained release formulation of thyrotropin-releasing hormone on behavioral abnormalities in senescence-accelerated mice [J]. European journal of pharmacology,1994,271(2):357-366.
    [177]Maser E. Neuroprotective role for carbonyl reductase? [J]. Biochemical and biophysical research communications,2006,340(4):1019-1022.
    [178]K.un Zoul, Haruyasu Yamaguchi, Hiroyasu Akatsu, et al. Angiotensin-Converting Enzyme Converts Amyloid β-Protein 1-42 (Aβ1-42) to Aβ1-40, and Its Inhibition Enhances Brain Aβ Deposition [J]. The Journal of Neuroscience,2007,27(32):8628-8635.
    [179]Kehoe PG, Russ C, Mcllory S, et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease [J]. Nature genetics,1999,21(1):71-72.
    [180]荆志伟,王忠,高思华等.基因芯片技术与中药研究-中药基因组学[J].中国中药杂志,2007,32(4):289-292.
    [181]王广良,陈成彬,高建明等.细胞周期相关基因微阵列在中药抑制癌细胞增殖作用机理研究中的应用[J].中国中药杂志,2005,30(1):50-54.
    [182]陈明伟,倪磊,赵小革等.人参皂苷Rg_3对肿瘤血管生长调控因子蛋白表达抑制作用 的研究[J].中国中药杂志,2005,30(5):357-360
    [183]Zhan-jun ZHANG, Zhong WANG, Xiao-yan ZHANG, et al. Gene expression profile induced by oral administration of baicalin and gardenin after focal brain ischemia in ratsl [J]. Acta Pharmacologica Sinica,2005,26(3):307-314.
    [184]Zhang ZJ, Li P, Wang Z, et al. A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury [J]. Brain research, 2006,1123(1):188-195.
    [185]王永炎,常富业,杨宝琴.病络与络病对比研究[J].北京中医药大学学报,2005,28(3):1-6.
    [186]苏芮,韩振蕴,范吉平.复方苁蓉益智胶囊对痴呆老龄大鼠海马MARCKS mRNA表达的影响[J].中华中医药杂志,2010,(4):620-622.
    [187]王永丽,韩璇,问慧娟等.清开灵颗粒对AD模型大鼠学习记忆能力的影响[J].中药新药与临床药理,2011,22(4):421-423.
    [188]Evans T, Kaye S, Burt E, et al. Retinoids:present role and future potential FREE [J]. Br J Cancer,1999,80(1-8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700