用户名: 密码: 验证码:
千里光属及其近缘属倍半萜类化合物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倍半萜类化合物(sesquiterpenoids)是自然界中存在的一大类天然化合物,在植物中·最为丰富,常具活性,是医药、食品和化妆品工业的重要原料,是菊科(Asteraceae Link)千里光属(Senecio L.)及其近缘属橐吾属(Lignlaria Cass.)和大吴风草属(Farfugium Lindl.)共有的化合物类型,也曾作为判断现代千里光族(Trib. Senecioneae Cass.)的重要指标性化合物。
     在干里光属内寻找和提取倍半萜类化合物一直是药物化学和相关功能食品科学研究的热点,目前已在该类群近150种植物中发现和提收到600多种倍半萜类化合物。随着千里光属越来越多的物种中不断发现倍半萜类化合物的新类型,这些化合物在千里光属植物内的分布和演化规律也成为人们关注的热点。以往的研究仅仅针对个别物种的少数几个化合物类型,由于研究种类少、化合物类型单一、得到的结论也十分有限,缺乏对该类群倍半萜类化合物类型与分布的全面梳理与总结。此外,世界千里光属植物多达1200余种,且分布广泛、生境多样,物种形态变异复杂,物种鉴定极其困难,物种间的亲缘关系尚不明确,这也成为研究该化合物在千里光属植物分布规律的瓶颈。因此,对于里光属植物众多倍半萜类化合物的类型进行系统总结与归纳,应用植物系统学相关原理与方法阐明研究类群亲缘关系,这种多学科交叉的整合性研究对于客观探讨倍半萜化合物的分布与演化规律具有重要意义。研究结果将在利用植物亲缘性原理寻找新化合物方面提供重要的理论依据,在药食资源的开发利用方面具有重要的实际意义。同时,千里光属植物又是倍半萜类化合物的重要植物资源,所进行的系统研究对于保护资源同样具有重要的生态学意义。
     本文以采自吉林长白山地区和山东昆嵛山地区的千里光属植物、橐吾属植物和采自浙江舟山地区的大吴风草植物为研究对象,通过硅胶层析、制备薄层层析、RP18硅胶柱层析及重结晶等技术,进行倍半萜化合物的分离、纯化,利用现代波谱技术对分到的化合物进行结构解析和鉴定。共分到和鉴定倍半萜化合物35个,其中新化合物7个,1个首次从自然资源中获得化合物1个,已知化合物26个。7个新化合物是:
     (1)6/β-angeloyloxy-eremophila-1(10),7(11)-diene-12.8/Mactone
     (2)5α-Hydroxy-4(15)-eudesmene-1-one
     (3)7R*,10S*-epoxy-3E.5E-farnesadien-1,2,11-triol
     (4) Fischelactone
     (5) Fischelactone B
     (6) Eremophila-1(10).7(11),8-trien-12,8-lactam
     (7)3β-angeloyloxy-6β,8β-dihydroxy-9/β-senecioyloxyeremophil-7(11)-en-12.8α-lactone
     对全球千里光属共149个物种(已经报道的含有倍半萜化合物的物种)中的622个倍半萜结构(包括括本实验获得的新结构)进行倍半萜化合物结构、类型分析,探讨其可能的生物合成途径。
     首次对这149种千里光属植物物种进行倍半萜化合物类型的数量分类学研究,这是到目前为止在世界千里光属倍半萜化合物研究中使用物种数量最多的研究之一。首先对这些物种的学名进行考证和地理分布特点分析。考证结果表明在传统的千里光属中已经有26个物种分别转移到了10个属中;异名(Synonym)种27个:未确定名(Unresolved name)种10个;裸名(Nomen nudum)种13个,本文采纳了这些与最新的类群处理结论;地理分布范围在世界广泛性的基础上又具有相对的集中性,以热带和亚热带地区居多。其次对其622个倍半萜结构进行归类整理,并将类型数字化,运用UPGMA法构建倍半萜化合物类型关系树。在关系树中这些化合物聚成7个组,分别是:1.没药烷型组Sect. Bisabolane;2蟹甲草酚型组Sect. Cacalol;3艾里莫芬烷型组Sect. Eremophilane;4呋喃雅槛蓝型组Sect. Furanoeremophilane;5艾里莫芬烷内脂型组Sect. Eremophilenolide;6桉烷型组Sect. Eudesmane和7.吉玛烷型组Sect. Germacrane。呋喃雅槛蓝型(furanoeremophilane)倍半萜在所调查的149个物种中存在最为普遍,有55个物种含有该种倍半萜,占所调查物种的37%;艾里莫芬烷型(eremophilane)倍半萜位列第二,有30个物种含有该类倍半帖占所调查物种的的20%;艾里莫芬烷内酯型(eremophil-8,12-olide)倍半萜位列第三,有28个物种含有该类倍半萜,占所调查物种的19%;位列第四到第十的分别为:没药烷型(bisabolane)倍半帖,有23个物种含有该类倍半帖,占所调查物种的15%;吉玛烷型(germacrane)倍半萜,有20个物种含有该类倍半萜,占所调查物种的13%;蟹甲草酚型(cacalol)倍半萜,有18个物种含有该类倍半萜,占所调查物种的12%;桉烷型(eudesmane)倍半萜,有14个物种含有该类倍半萜,占所调查物种的9%;丁香烷型(caryophyllane)倍半萜,有8个物种含有该类倍半帖,占所调查物种的5%;防风烯酮型(oplopane)和胡椒烷型(copane)倍半萜,分别有5个物种含有该类倍半帖,占所调查物种的3%。有13个类型的化合物只存在于单一物种之中,成为所调查的物种中的特征性倍半帖类化合物。由此看出以艾里莫芬烷骨架为丰的类型是大多数该属植物所共有的结构类型,是千里光属标志性化合物结构。聚类分析的结论虽不能以此来确定物种之间的亲缘关系,但是可以作为物种化学分类的证据之一
     物种间的系统发育关系是理解物种及其一些重要特征的起源及进化的基础,从遗传本质上看,倍半萜类化合物物种间差异归根到底是物种的基因差异造成的,也就是物种在DNA序列的结构和组成上的差异。DNA序列差异无疑是物种系统发育关系最为直接最可靠的证据。本研究采用国内千里光属三个物种的ITS序列,并结合GenBank数据库中已有的50种千里光属植物分子信息,采用MP、ML、BI方法分别构建系统发育关系,从遗传本质上认识和理解物种分子系统学与倍半萜化合物的关系。同时结合地理分布特点、生源途径分析等分析各物种之间的关系,研究其倍半萜类化合物的分子多样性,进而研究分子结构演化与形态学演化的相关性,探讨其演化规律。得出的结论是:绝大多数倍半萜类化合物的发生和演化与物种的进化关系没有严格的相关性,其发生可。能受环境的影响和制约比较大,因此该类化合物的类型特征不适合作为药用植物亲缘学或植物化学分类学的直接证据。
Sesquiterpenoid is a kind of natural compounds which is most rich in plants. As is known to all, Sesquiteipenoids are always active and have become important feedstocks used in pharmaceutical industries, food and cosmetics. These compounds are abundant in the three genus of Asteraceae. Senecio, Ligularia and Farfugium and even have been regarded as the characteristic compounds in modern Trib. Senecioneae plants.
     Finding and extracting sesquiteipenoids from Senccio has always been a hotspot in pharmacochemistry and related functional food research. At present, more than600sesquiteipenoids have been found and extracted from about150plants of this genus. As new types of sesquiteipenoids are increasingly discovered from the species of Senecio, the study of distribution and evolution pattern of these compounds in those plants is also becoming a focus issue. However, only a few kinds of sesquiterpenoid compounds have been studied in a small number species of Senecio so far. and thus lead to the limited conclusions. Therefore, a comprehensive study of classification and distribution of sesquiteipenoids in Senecio is essential to the sesquiterpenoid study. There are more than1200species of Senecio in the world. The widely distribution, the diversification of habitats and the variation of morphology of this genus make it extremely difficult for species identification and interspecific relationship inference. These problems become a bottleneck for the study of sesquiterpenoids distribution in Senecio. Hence the multidisciplinary analyses are urgently needed to study the types of sesquiterpenoid compounds in Senecio, that is clearing classification and relationship of Senecio using phylogenetic approach and furthermore summarizing the new types of sesquiterpenoids using taxonomical method. These comprehensive sampling along with the multidisciplinary analyses can provide a more objective study. Consequently, these results would provide new insight in finding new compounds through plant genetic relationship. Additionally, it also has a great practical value in the development and utilization of medicine and food resources. In the meantime, this kind of research is significant to the protection of sesquiterpenoids resources of Senecio.
     ly,quenal nomen nudum species;lationship s with a world wide Materials of Senecio and Ligularia were collected respectively from the Kunyu Mountains, Shandong province and Changbai mountains, Jilin Province. Materials of Farfugium were collected from suburb of Zhoushan city. Zhejiang Province. The sesquiterpenoids were extracted and purified using column chromatography, thin layer chromatography, and recrystallization techniques. The compound structures were identified using modern spectral analysis. As a result, we got35sesquiterpenoids including the26known kinds, seven new kinds and one novel firstly extracted from natural resources. The seven new sesquiterpenoids were:
     (1)6β-angeloyloxy-eremophila-1(10),7(11)-diene-12,8β-lactone
     (2)5α-Hydroxy-4(15)-eudesmene-1-one
     (3)7R*,10S*-epoxy-3E,5E-farnesadien-1,2,11-triol
     (4) Fischelactone
     (5) Fischelactone B
     (6)Eremophila-1(10),7(11),8-trien-12,8-lactam
     (7)3β-angeloyloxy-6β,8β-dihydroxy-9β-Senecioyloxyeremophil-7(11)-en-12,8α-lactone
     We comprehensively collected information of Senecio L. species reported with sesquiterpenoids. Up to now it is also one of the most comprehensive studies of sesquiterpenoids types with the largest species number in Senecio. As a result, we obtained a total of622sesquiterpenoids from149species of Senecio in the world. The structures and types of the compounds were discussed, and their possible biosynthesis methods were investigated, too.
     TThis research firstly applied quantitative taxonomy method into study of sesquiterpenoid type in Senecio. At first, textual researches of scientific names were conducted and characters of geographical distributions of these species were analyzed. A series of new taxonomic informations were confirmed and accepted in this paper including26genus-transferred species.27synonym species.10unresolved name species.13nomen nudum species. The geographical distribution investigation showed that the geographical distributions of Senecio exhibited both worldwide extension and region limitation features which existed mostly in torrid and subtropical zones. Moreover, structures of622sesquiterpenoids were classified and digitized. Sesquiterpenoids type tree was built through UPGMA method. The results showed that these compounds could be divided into7groups:1. Bisabolane;2. Cacalol:3. Eremophilane;4. Furanoeremophilane;5. Eremophilenolide;6. Eudesmane;7. Germacrane. We found that55of the149species of Senecio (37%) were furanoeremophilanes. which was the most common type of sesquiterpenoid shared by the largest number of studied species of Senecio and the characteristic type in plants of Senecio. Other types of sesquiterpenoid compounds were followed by eremophilane (30species20%percentage), eremophil-8,12-olide (28species19%percentage), bisabolane (23species15%percentage), germacrane (20species13%percentage), cacalol (18species12%percentage), eudesmane (14species9%percentage), caryophyllane (8species5%percentage), copane and oplopane (5species3%percentage, individually). In addition, there were13types of sesquiterpenoid compounds existing exclusively in some specific species of Senecio, with each type in a single species, which might be used as the characteristic compound in those species. It showed that types with Eremophilane skeletons were shared by the majority of the Senecio species and were the characteristic types in them.Thus results of cluster analysis can be additional evidences for chemical classification of some species of Senecio, though they can not confirm all relationships among them.
     Phylogenetic relationship is the important background for understanding the origin and evolution of species and their characters. Intrinsically, the difference of species and their characters can be traced back to gene divergence, which is the divergence of gene structure and the composition of DNA sequence. Thus the DNA sequence is undoubtedly the most direct and reliable evidence to infer the relationship of species. In his study, to explore the relationship between the type of sesquiterpenoid and species evolution we construct a molecular phylogenetic tree based on ITS sequence from three species of Senecio in China combining with other50species which are available in GenBank. using Maximum parsimony. Maximum likelihood and Bayesian analytical methods. In addition, geographical distribution and biogenesis methods were also considered. to explore molecular diversity of sesquiterpenoid compounds and evolutional correlation between compound and morphology. The result showed that the origin and evolution of most sesquiterpenoid compounds had little correlation with the evolution of species. Their occurrences may be much more influenced by environmental factors. Therefore, the characters of sesquiterpenoid compounds have limited value to be the direct evidence to pharmacophylogeny and phytochemical taxonomy.
引文
Aclinou, P.. Benkouider. A., Massiot. Q. and Le Men-Olivier. L., Eremophilenolides from Hertia cheirifolia. Phytochemistry,1991.30:2083-2084.
    Alvarez I. Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol,2003.29:417-434.
    Ana-L. Perez-Castorena. Amira Arciniegas. S. Laura Guzma'n. Jose Luis Villasenor. and Alfonso Romo de Vivar. Eremophi lanes from Senecio mairetianus and Some Reaction Products. J. Nat. Prod..2006.69:1471-1475.
    Anderson, E. and Abbe, E. C.. A quantitative comparison of specific and generic differences in the Betulanceae.1934.15:43-49.
    Asahina I.Y. & Momoya M. Arch. Pharm.,1914.252:56.
    Baldwin BG. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants:an example from the Compositae. Mol Phylogenet Evol,1992.1:3-16.
    Baldwin BG, Sanderson MJ. Porter JM. et al. The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard..1995.82(2):247-277.
    Bentham,G.. Compositae. In Bentham, G. & Hooker, J.D., Genera Plantarum:ad exemplaria imprimis in Herberiis Kewensibus servata defmita, Lovell Reeve. London. UK.1873a,2(1):163-533.
    Bohlmann F, Zdero C, Jakupovic J et al.. Eremophilane derivatives and other constituents from Senecio species. Phytochemistry.1985.24(6):1249-1261.
    Bohlmann F, Zdero C, Jakupovic J et al.. Further Pyrrolizidine Alkaloids and Furoeremophilanes from Senecio Species. Phyto—chemistry,1986.25(5):1151.
    Braulio M. Fraga.Natural sesquiterpenoids.Nat.Prod.Rep.,2008,25,1180-1209.
    Braulio M. Fraga.Natural sesquiterpenoids.Nat.Prod.Rep..2012.26,1125-1155.
    Braulio M. Fraga.Natural sesquiterpenoids.Nat.Prod.Rep.,2012.27,1681-1708.
    Braulio M. Fraga.Natural sesquiterpenoids.Nat.Prod.Rep.,2012.28,1580-1610.
    Braulio M. Fraga.Natural sesquiterpenoids.Nat.Prod.Rep.,2012.29,1334-1366.
    Bremer K. Asteraceae:cladistics and classification. Timber Press, Portland, Oregon, USA.1994.
    Brimble. M.-A.. Rowan, D.-D., Spicer, J.-A.. Aust. J. Chem.1994,47:1979-1988.
    Caroline T. Griffin, Martin Danaher. Christopher T. Elliott, D. Glenn Kennedy Ambrose Furey Detection of pyrrolizidine alkaloids in commercial honey using liquid chromatography-ion trap mass spectrometry. Food Chemistry,2013,136: 1577-1583.
    Castorena, A. L. P., Arciniegas. A., Guzman, S. L., Villaseno, J. L., & Vivar, A. R.. Eremophilanes from Senecio mairetianus and some reaction products. Journal of Natural Products,2006,69:1471-1475.
    Chen Yilin, Bertil Nordenstam, Charles Jeffrey, Leszek Vincent. Senecio, Flora of China.Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 2011.20-21:508-536.
    Chou MW. Fu PP. Formation of DHP-derived DNA adducts in vivo from dietary supplements and Chinese herbal plant extracts containing carcinogenic pyrrolizidine alkaloids. Toxicol Ind Health.2006,22(8):321-327.
    Crovello, T. J. A numerical taxonomic study of the genus Salix. Section Sithenses. Univ. California Pub. Bot,1968.44:1-61.
    De Candille. Prodr.6.1837.
    Drury D. G. Watson. L. Anatomy and the taxonomic significance of gross vegetative morphology in Senecio. New Phytologist,1965,64(2):307-314.
    Drury, D. G.. A taxonomic study of Compositae with special reference to Senecio. Ph.D. Thesis, Southampton University. -& Watson, L. (1966). A bizarre pappus form in Senecio. Taxon,1967,15:309-311.
    EI-Hamd, A. Mohamed, H. Ahmed, A. A.. Eremophilane-type sesquiterpene derivatives from Senecio aegyptius var. discoideus. J. Nat. Prod.2005,68(3), 439-442.
    Felsenstein J.. Confidence limits on phylogenies:an approach using the bootstrap. Evolution,1985,39:783-791.
    Fu P P, Xia Q, Lin G, et al.. Pyrrolizidine alkaloids genotoxicity, metabolism enzymes, metabolic activation and mechanisms.Drug Metabolism Review.2004,36(1): 1-55.
    Funk, V. A., Susanna, A., Stuessy, T. F. and Bayer, R. L. Systematics, Evolution, and Biogeography of Compositae. Vienna. Austria:International Association for Plant Taxonomy (IAPT).2009,171-189.
    Gascuel O.:BIONJ:an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol,1997,14:685-695.
    Guindon S, Gascuel O.. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol,2003,52:696-704.
    Hajime N, Takeyoshi T.3β-Angeloyloxy-10β-hydroxy-9β-senecioyloxy-furanoerem--ophilane and 3βangeloyloxy-10β-hydroxylfuranoeremophilane. New furanoer--emophilane derivatives from Farfugium japonicum Kitamura. Bull Chem Soc Jpn,1978,51(11):3335-3340.
    Hajime N, Yoshiaki T. Yoshihiko M. et al. New furanoeremophilane derivatives from Farfugium japonicum Kitamura. Bull Chem Soc Jpn,1973,46:2840-2845.
    Hajime N, Yoshihiko M, Yoshiaki T, et al.. New benzofuranosesquiterpenes from Farfugium japonicum.Farfugin A and farfugin B. Bull Chem Soc Jpn.1974, 47(8):1994-1998.
    Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 1999,41:95-98
    Hayashi, T.; Miyahara, T.; Koide, N.; Kato, Y.; Masuda, H.; Ogoshi. H. J. Am. Chem. Soc.1997,119:7281-7290.
    Henry Edgar Watt. The alkaloids of Senecio latifolius. J. Chem. Soc., Trans.,1909, 95:466-47.
    Hilliard, O.M. Compositae in Natal, University of Natal Press, Pietermaritzburg, South Africa.1977:387-502.
    Hoffmann, O. Compositae. in:Engler, A. & Prantl, K. (eds.). Die natiirlichen Pflanzenfamilien. Engelmann, Leipzig.1890-1894;4(5):87-387.
    Hong Zhao, Wei-Dong Xie, Kyung Ho Row. A new eremophilenolactone from the roots of Senecio ambraceus. Natural Prodict Research,2010,24(2):115-119.
    Hong Zhao, Cheng Wu Weng, Xin Tian, Peng Xiang Lai.Jian Jun Huang. Wei Dong Xie. Fischelactone:A novel eremophilane dimer from Ligularia fischeri.Chinese Chemical Letters.2010,21:613-615.
    Ito K, Iida T. Funatani T. Study on the ingredients of Farfugium japonicum (L.) Kitam var. luchuense (Masam) Kitam and Farfugium japonnicum (L.) Kitam. (ishigakijima type). Yakugaku Zasshi.1980,100:69-71.
    Ito K, Iida T. Takeichi C. Study on the ingredients of Farfugium japonicum (L. F.) Kitamura var. Formosanum (Hay) Kitam ura-Structure of new furanosesquiterpenes, farformolide A and B. Yakugaku Zasshi,1978,98:1592-1596.
    Ito K, lida, T.. and-Funatani. T.. Study of the ingredients of gigantic type of Farfugium japonicum (L.) Kitam.. Isolation of 8-epi-eremophilenolides. Yakugaku Zasshi.1979.99:349-353.
    Iva Hodalova, Karol Marhold. Morphometric comparison of Senecio germanicus and S. nemorensis (Compositae) with a new species from Romania. Botanical Journial of the Linnean Society.1998.128:277-290.
    Jeffrey C P. Halliday, M. Wilmot-Dear,and S.W.Jones. Generic and sectional limits in Senecio (Compositae). I:Progress report. Kew Bulletin.1977.32:47-67.
    Jeffrey C. e"t Chen Y. L.. Taxonomie studies on the tribe Senecioneae(Compositae) of Eastern Asia. Kew Bulletin.1984,39(2):205-432.
    Jiang-He Zhao, Tong Shen, Xia Yang, Hong Zhao. Xia Li, and Wei-Dong Xie. Sesquiterpenoids from Farfugium japonicum and Their Inhibitory Activity on NO Production in RAW 264.7 Cells. Arch Pharra Res,2012,35(7):1153-1158.
    Jizba J.. Samek Z., Novotny L.. Collect. Czech. Chem. Commun.1977.42:2438.
    Jolad, S.-D., Hoffmann, J.-J.. Cole. J.-R., Tempesta, M.-S., Bates, R.-B. J. Org. Chem. 1980,45:1327-1329.
    Kadereit JW, Jeffrey C. A preliminary analysis of cpDNA variation in the tribe Senecioneae (Compositae). In:Flind DJN, Beentje HJ (eds) Compositae: syslematics. Proceedings of the International Compositae Conference, Kew, 1994. Royal Botanic Gardens, Kew,1996,349-360
    Kim J Y. Oh T H. Kim B J, et al. Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower. J Oleo Sci,2008, 57(11):623-628.
    Kitajima J., Suzuki N.. Satoh M.. and Watanabe M.. Phytochemistry.2002.59,811.
    Kitamura S. Compositae Japonicac. Pars secunda. Mem. Coll. Sci. Kyoto Imp. Univ., Ser.13. Biol.1940.15(3):285-446.
    Knox, E. B.. and J. D. Palmer. The origin of Dendrosenecio within the Senecioneae (Asteraceae) based on plastid DNA evidence. American Journal of Botany,1995. 82:1567-1573.
    Koyama H. Taxonomic studies on the tribe Senecioneae of Eastern Asia Ⅱ. Enumeration of the species of the species Eastern Asia. Mem Fac Sci Kyoto Univ Ser Biol,1969.2(2):137-183.
    Kurihara T, Suzuki S. Studies on the constituents of Farfugium japonicum (L.) Kitam. III. on the components of the rhizome. Yakugaku Zasshi.1980,100: 681-684.
    Kurihara, T. and Suzuki. S., Studies on the constituents of Farfugium japonicum (L.) Kitam. IV. On the components of the rhizome and the leaves. Yakugaku Zasshi, 1981.101:35-39. I
    Lajide, L., Escoubas. P., Mizutani, J.. Cyclohexadienones-insect growth inhibitors from the foliar surface and tissue extracts of Senecio cannabifolius. Cell. Mol. Life Sci.1996,52:259-263.
    Lcdebour C. F. Flora Rossica 2.1844-1846.
    Ledebour C. F. Flora Rossica 2.—Submibus Librariae E. Schweizerbart. Stuttgartiae. 1844-1846,640.
    Lessing C. F. Syn. Gen. Compos. Jul-Aug 1832,200.
    Li YS. Wang ZT, Zhang M, Luo SD, Chen JJ.A new pinoresinol-type lignan from Ligularia kanaitizensis.Nat. Prod. Res.2005.19(2):125-129.
    Linnaeus, C. Species Plantarum. Stockholm, Facsimile edition (Reprint in 1957-1959).-London,1753,2.
    Liu J Q, Wang Y J. Wang A L, et al.. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol,2006.38:31-49.
    Liu Shangwu & Irina D. Illarionova. Ligularia, Flora of China. Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis).2011,20-21:376-415.
    Loizzo M. R.. Giancarlo A. Statti, et al.. Antibacterial and Antifungal Activity of Senecio inaequidens DC. and Senecio vulgaris L. Phytother. Res,2004.18. 777-779.
    Loizzo, M.-R., Tundis. R., Statti. G.-A., Menichini. F.. Jacaranone:a cytotoxic constituent from Senecio ambiguus subsp. ambiguus (biv.) DC. against renal adenocarcinoma ACHN and prostate carcinoma LNCaP cells. Arch. Pharm. Res. 2007,30(6):701-707.
    M. Reina. M. Nold. O. Santana, J. C. Orihuela, A. Gonza'lez-Coloma. C-5-substituted antifeedant silphinene sesquiterpenes from Senecio palmensis. J. Nat. Prod., 2002,65(4):448-453.
    Mabberley D. J. The plant-book:a portable dictionary of the vascular plants. Cambridge University Press, New York, USA.1997.
    Moriyama, Y.. Takahashi, T. New sesquiterpene lactones of eremophilane type from Ligularia fauriei(Fr.) Koidz. Bull. Chem. Soc. Jpn.1976.49(11):3196-3199.
    Motoo T, Kanako O, Hiroko F, et al.. New eremophilanes from Farfugium japonicum. Tetrahedron,2010,66:5235-5243.
    Naya, K., Kanazawa, R., Sawada, ML. the photosensitized oxygenation of furanoeremophilanes, i. the isomeric hydroperoxides from petasalbin and their transformations to lactones. bulletin of the chemical society of japan,1975,48 (11):3220-3225.
    Naya, K., Nooi. N., Makiyama, Y, Takashina, H., Imagawa. T.. the photosensitized oxygenation of furanoeremophi lanes, ii. the preparation and stereochemistry of the isomeric hydroperoxides and the corresponding lactones from furanofukinin and furanoeremophilane. bulletin of the chemical society of japan.1977,50 (11): 3002-3006..
    Nordenstam B. Senecioneae and Liabeae-systematic review. In Hey wood. V.H.. Harborne, J.B. & Turner, B.L. (eds.) The Biology and Chemistry of the Compositae. Academic Press, London, UK.1977,2:799-830.
    Nordenstam B. Taxonomic studies in the tribe Senecioneae (Compositae). Opera Botanica.1978.44:1-84.
    Osman, A. K.. Unmerical taxonomic study of some tribes of Copositae(Subfamily Asteroideae) from Egypt. Pak. J. Bot..2011.43(1):171-180.
    P. Torres. J. Ayala. C. Grande. M. J. Macias, M. Grande.Furanoeremophilanes and a bakkenolide from Senecio auricula var. major. Phytochemistry,1998,47,57.
    P. Torres, J. Ayala, C. Grande. J. Anaya. M. Grande, Furanoeremophilane derivatives from Senecio flavus. Phytochemistry,1999,52,1507-1513.
    P. Torres, C. Grande, J. Anaya. M. Grande, Secondary metabolites from Senecio minutus and Senecio boissieri:a new jacaranone derivative Fitoterapia.2000. 71(1):91-93.
    Pelser, P. B. Gravendeel, B. & Van Der Meijden, R. Tackling speciose genera:species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceac) based on plastid and nrDNA sequences. American Journal of Botany,2002.89 (6):929-939.
    Pelser PB, Nordenstam B, Kadereit JW, Watson LE An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon.2007, 56(4):1077-1104.
    Posada D.. jModelTest:phylogenetic model averaging. Mol Biol Evol,2008.25: 1253-1256.
    Reichenbach H. G. L. Flora germanica excursiora. Cnobloch, Leipzig. Germany. 1831-1832.
    Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh. herbarium and mummified plant tissues. Plant Mol Biol,1985,5:69-76.
    Ronquist F, Fluelsenbeck JP. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003.19:1572-1574.
    Schischk. Fl. URSS.26.1961.
    Shen T, Yang X. Wang X R, et al. Eremophilane sesquiterpenoids from Farfugium japonicum. Bull Korean Chem Soc,2011,32(1):350-352.
    Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst Biol.2000.49:369-381
    Smith, L. W., & Culvenor, C. C. J.. Plant sources of hepatotoxic pyrrolizidine alkaloids. Journal of Natural Products,1981,44:129-152.
    Stichel F, Schuppan D. Herbal medicine in the treatment of fliver diseases. Dig Liver Dis.2007,39(4):293-304.
    Takizawa T., Kinoshita K., Koyama K., Takahashi K., Kondo N., Yuasa H.. A New Triterpene from Rathbunia alamosensis. J. Nat. Prod.,1995,58(12):1913-1914.
    Thompson JD, Gibson TJ, Plewniak F, et al.. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.1997.25:4876-4882.
    Tori, M., Fukuyama, H.. Nakashima, K., Sono, M.. Degraded terpenoids and aromatic compounds from Ternstroemia gymnanthera. Letters in Organic Chemistry, 2005.2:262-264.
    Torres P. Ayala J., Grande C, Anaya J., Grande M.. Furanoeremophilane derivatives from Senecio flavus. Phytochemistry,1999,52:1507-1513.
    Torres P. Grande. C, Anaya, J., Grande, M.. Secondary metabolites from Senecio minutus and Senecio boissieri:a new jacaranone derivativeFitoterapia.2000, 71:91-93.
    Tozaburo K, Shigenori S. Studies on the constituents of Farfugium japonicum (L.) Kitam. IV. on the components of the rhizome and the leaves. Yakugaku Zasshi, 1981,101(1):35-39.
    Turczaninov N.. Bull. Soc. Nat. Mosc.1847,20(2).
    VaJdes, L.-J. Loliolide from Salvia divinorum J. Nat. Prod.1986,49:171-171.
    Vincent P. L. D.1996. Progress on clarifying the generic concept of Senecio based on an extensive world-wide sample of taxa. In D. J. N. Hind and H. J. Beentje [eds.], Compositae:Systematics. Proceedings of the International Compositae Conference, Kew, Royal Botanic Gardens, Kew, UK.1994,1:597-611.
    Wang, W. S. Gao K. Jia. Z.J.. New eremophilenolides from Ligulariopsis Shichuana. Journal of Natural Products,2002,65:714-717.
    Wang, W. S.. Gao. K., Jia, Z. J., New sesquiterpenes from Ligulariopsis shichuana. J. Chin. Chem. Soc,2004,51:417-422.
    Wang, Y.. Yuan. C. S.. Han, Y. F. and Jia, Z. J., Sesquiterpenes from roots of Lingularia veitchiana. Pharmazie.2003.58:349-352.
    Wei Dong Xie. Peng Xiang Lai. Hong Zhao, Kyung H R. Eudesmane type sesquiterpanes from Senecio ambraceus. Journal of Chemical Research.2008, 2:520-521.
    Wei Dong Xie, Cheng Wu Weng, Xue Gao. et al.. A New Farnesene Derivative from Senecio cannabifolius. Journal of Chinese Chemical Society,2010,57:436-438. Wei Dong Xie.Cheng-Wu Weng. Xia Li. Kyung-Ho Row. Eremophilane Sesquiterpenoids from Ligularia fischeri.Helv. Chim.Acta.2010.93(10):1983-1989.
    Wei Dong Xie. Yong-Heng Liu, Cheng-Wu Weng. Hong Zhao and Kyung Ho Row. Fischelactone B:A New Eremophilane Dimer from Ligularia fischeri. Journal of the Chinese Chemical Society.2011.58:412-414.
    White TJ, Brims T, Lee S, TaylorAmplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:PCR Protocols:a guide to methods and applications. (Innis MA, Gelfand DH, Sninsky JJ. White TJ, eds). Academic Press, New York, USA J,1990.315-322.
    X. Li. G. Wu and K. Gao, New Eudesmenes from Erigeron annus. Chin. Chem. Lett., 2005,16(1):61-63.
    Y. Zhao, H. Jiang, M, MacLeod, S. Parsons, D.W. H. Rankin, P. Wang, C. H. K. Cheng, H. Shi, X.Hao. F. Gue ritte, Isomeric eremophilane lactones from Senecio tsoongianus. Chem. Biodiversity 2004.1:1546.
    Yamakawa K.. Kobayashi M. Hinata S. SatohT.. Chem. Pharm. Bull.1980,28:3265.
    Yan Yang, Lei Zhao, Yu-Fang Wang et al. Chemical and Pharmacological Research on Plants from the Genus Senecio. Chemistry & Biodiversity,2011,8:13-72.
    Yan-Hui Lia. Yan Zhou, Gesang Suolang, Ciren Bianba, Li-Sheng Ding, and Hui Feng.New Eremophilenolides from Senecio dianthus. Helvetica Chimica Acta, 2011, (94):474-480.
    Yaoita, Y., & Kikuchi, M.. Structure of new eremophilane derivatives from the rhizomes of Petasites japonicus Maxim. Chemical and Pharmaceutical Bulletin, 1995,43:1738-1743.
    Young ND. Healy J.. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics,2003.4:1-6.
    Zhang, S. M., Zhao, G. L., Li, R., and Lin, G. Q., Eremophilane sesquiterpenes from Cacalia roborowskii. Phytochemistry.1998,48:519-524.
    Zhang, S. M., Zhao, G. L., Li, R., and Lin, G. Q., Eremophilane sesquiterpenes from Cacalia roborowskii. Phytochemistry,1998,48:519-524.
    江纪武.药用植物辞典.天津:天津科学技术出版社,2005,4.
    林有润.中国菊科植物的系统分类与区系的初步研究.植物研究,1997,17(1):6-27.
    刘建全.大吴风草(菊科:千里光族)的核形态及其系统学意义.西北植物学报,2001,21(1):1 59-163.
    刘建群,张朝凤,王峥涛,等.宽舌橐吾的化学成分研究(Ⅱ).中国天然药物,2005,3(6):340-343.
    刘建群,张朝凤,张勉,等.宽舌橐吾的化学成分研究.中国药科大学学报,2005,36(2):114-117.
    刘尚武,邓德山,刘建全.橐吾属的起源、演化与地理分布.植物分类学报,1994,32(6):514-525.
    王锋鹏主编.现代天然产物化学.北京:科学出版社,2009,402.
    王军,王长虹,王峥涛.吡咯里西啶生物碱的细胞毒性及致毒机制研究进展.国际药学研究杂志,2007,4(34):246-258.
    肖培根.药用植物形态、化学成分与疗效之间的相关性.药学通报,1978,13:1-5.
    徐贵发,蔺新英.功能食品与功能因子.济南:山东大学出版社,2005.
    尹睿.东北地区里光属、华千里光属及狗舌草属分类学研究.中国科学院沈阳应 用生态研究所博士学位论文,1990.
    张朝凤,王琼,张勉. 阿勒泰橐吾的倍半萜类成分研究.中国药学杂志,2008,43(22):1697-1700.
    张勇,曾鹏,贾琦,郭夫江,李医明,米维良,陈凯先.大吴风草化学成分与药理活性研究进展.中草药,2012,43(5):1009-1016.
    中国科学院中国植物志编辑委员会.中国植物志(77卷).北京:科学出版社,1989.
    周繇,朱俊义,于俊林.中国长白山食用植物彩色图志.北京:科学出版社,2012.3.
    邹玉平,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700