用户名: 密码: 验证码:
溃结灵对原代大鼠结肠上皮细胞ITF表达及MAPK/ERK通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     溃疡性结肠炎是一种病变部位主要位于结肠及直肠的慢性非特异性炎症反应。临床治疗多以抗炎、调节免疫为主。近年研究发现,肠道损伤后,除炎症损伤因素外,修复因素在病程的发展中同样具有非常重要的作用,两者的相互作用决定了UC病情的转归,许多生长因子参与肠黏膜修复过程。随着研究的发展,一些生长因子新制剂已逐渐应用于炎症损伤的治疗,并且取得不错的效果。肠三叶因子(ITF)是近年发现的一种由肠道杯状细胞分泌新型细胞生长因子,与其它肠道保护修复因子(MUC-2、EGF、TGF-α等)可一起共同作用,具有很强的细胞保护作用,可明显减轻多种损伤因子介导的肠黏膜损伤。因此,研究中药复方对这些特异保护因子的调节作用,有望为UC治疗提供新的思路。
     经验方溃结灵以清热健脾活血为治则,临床研究表明其对UC疗效较好。前期研究采用三硝基苯磺酸灌肠复制UC大鼠模型,发现溃结灵可明显减轻UC大鼠肠黏膜炎症反应,可下调炎症因子如Toll样受体、IL-1β、TNF-α、NF-κB等的表达,改善肠黏膜超微结构,上调造模3、7、14天模型大鼠肠黏膜ITFmRNA、MUC-2蛋白的表达及14天TGF-α和pERK1/2的蛋白表达;对UC血清致Caco-2细胞损伤模型的研究发现,溃结灵含药血清可促进Caco-2细胞损伤模型细胞增殖,增加ITF基因、MUC-2蛋白的表达以及上调pERK、pMEK蛋白的表达。本研究拟继续从促黏膜修复角度入手,观察溃结灵含药血清对大鼠结肠上皮细胞ITF表达及其信号转导通路相关蛋白ERK、MEK磷酸化变化的影响,进一步探讨溃结灵治疗UC的作用机理,和前期的实验互为佐证。
     二.研究方法与结果
     1.原代大鼠结肠上皮细胞分离培养方法的建立
     原代大鼠结肠上皮细胞来源于正常大鼠结肠组织,能真实反映机体生理和病理变化,然而分离培养技术是一个难题,限制了其应用。在参考国内外文献的基础上,本研究建立了大鼠原代结肠上皮细胞分离培养方法。可为结肠上皮形态及功能研究提供理想的细胞模型。
     方法:采用6-15日龄乳鼠,取结肠剪碎、反复清洗后,弃上清,加10ml、0.1%Ⅰ型胶原酶和透明质酸酶联合配制的消化液,37℃消化25min,分离上皮细胞团;吹打消化液,取上清,加入培养基重悬反复离心3次后,细胞沉淀接种于含10%胎牛血清的完全培养基中,37℃、5%CO2细胞培养箱中培养。采用差速贴壁法及相差消化法去除成纤维细胞,细胞贴壁长满瓶80%-90%后用2.5g/L的胰酶消化液消化并传代。结果:成功分离结肠上皮细胞团且活力较高。24h后可见部分细胞团贴壁,贴壁细胞为多角形,4-8d逐渐融合成片,呈现明显的“铺路石”样。细胞经传代处理后成纤维细胞明显减少。第2代细胞在生长过程中逐渐生长成性似IEC-6上皮细胞,状态较好,增殖较快。细胞经免疫荧光染色及透射电镜观察鉴定为上皮细胞。冻存处理复苏后细胞状态较佳。
     2.大鼠结肠上皮细胞ITF/EGF、MUC-2/TGF-α及pERK/pMEK表达的研究
     胃肠黏膜保护及促修复因子ITF、MUC-2、EGF、TGF-α在肠黏膜损伤修复及肠黏膜屏障重建过程中具有重要的作用。本研究对结肠上皮细胞是否有以上生长因子的表达进行了检测。为后续开展药物对肠上皮细胞作用的指标选择提供基础及参考。
     方法:采用荧光定量PCR (Real-Time PCR)检测结肠上皮细胞ITF、EGFmRNA的表达;采用Elisa的方法检测MUC-2/TGF-α蛋白表达;采用Western bolt方法检测pERK/pMEK蛋白表达。
     结果:结肠上皮细胞表达ITF/EGFmRNA、MUC-2/TGF-α蛋白及pERK/pMEK蛋白。可用于肠黏膜损伤修复的相关实验研究。
     3.溃结灵含药血清对UC模型血清致损的结肠上皮细胞超微结构的影响
     本课题整体实验研究发现,溃结灵可明显减轻TNBS灌肠复制的UC大鼠的炎症反应,可促进肠道上皮杯状细胞的分泌,减轻结肠组织超微结构损伤,进而促进肠黏膜修复及重建。本实验在此基础上,观察溃结灵含药血清对UC大鼠血清致结肠上皮细胞损伤模型细胞超微结构的影响。进一步从细胞形态学方面探讨溃结灵的作用。
     方法:三硝基苯磺酸灌肠法复制溃疡性结肠炎大鼠模型,3天后腹主动脉采血,分离获取血清,作为损伤剂作用结肠上皮细胞24h模拟细胞损伤模型,透射电镜法观察结肠上皮细胞超微结构的改变。
     结果:正常对照组及空白对照组细胞可见丰富的微绒毛,有的呈小片状。细胞内可见丰富的线粒体,还可见核糖体、内质网及高、中、低等电子密度分泌颗粒;UC模型血清造模组可见较少微绒毛,胞质内可见粗面内质网扩张,少量线粒体及线粒体肿胀,空泡样变甚至溶解,有大量的胞质内空泡形成,微绒毛较少或消失,分泌颗粒较少,为中低等电子密度。给予溃结灵含药血清组细胞形态较好,细胞微绒毛及线粒体等细胞器丰富,可见较多高、中、低等电子密度分泌颗粒。
     4.溃结灵含药血清对正常大鼠结肠上皮细胞增殖的影响
     结肠上皮细胞在肠黏膜损伤修复中具有重要的作用,UC发病时,促进结肠上皮细胞的增殖、移行、分化,可加速受损黏膜的修复以及肠黏膜屏障功能的恢复。本实验采用溃结灵含药血清干预结肠上皮细胞,探讨溃结灵含药血清对结肠上皮细胞增殖的影响。
     方法:采用血清药理学方法制备溃结灵含药血清;MTT法测定溃结灵含药血清干预大鼠结肠上皮细胞12、24、48h后细胞增殖情况。
     结果:空白大鼠血清对大鼠结肠上皮细胞(CEC)生长无影响,溃结灵中剂量(5%含药血清)作用24h、48h均明显促进CEC增殖(p<0.05)
     5.溃结灵含药血清对TNF-α致结肠上皮细胞损伤模型细胞增殖的影响
     TNF-α为公认的UC致病因子,是肠道上皮细胞增殖和凋亡的主要促炎因子,UC发病时,TNF-α大量分泌,可使结肠上皮细胞凋亡,肠黏膜屏障的通透性增加,NF-κB被激活,进一步扩发炎症反应,损伤肠黏膜。本实验观察不同浓度TNF-α对大鼠上皮细胞增殖的影响,以确定TNF-α合适的作用浓度及作用时间建立结肠上皮细胞损伤模型,并测定溃结灵含药血清对TNF-α干预下结肠上皮细胞增殖的情况,从细胞增殖的方面,进一步探讨溃结灵对受损结肠上皮细胞的保护作用。
     方法:以25,50,100,150,200ng/ml的TNF-α干预结肠上皮细胞,MTT法测定不同干预时间(3h,6h,24h)细胞的增殖情况,同法测定预先给予溃结灵含药血清对50ng/mlTNF-α干预结肠上皮细胞6h细胞增殖的影响。
     结果:①50ng/ml TNF-α干预结肠上皮细胞6h后可明显抑制细胞增殖(p<0.05);②24h时,各浓度TNF-α均明显抑制结肠上皮细胞增殖(p<0.01)③与模型组比较,溃结灵含药血清各剂量组均有一定的促进TNF-α干预下结肠上皮细胞增殖的作用,但无统计学意义(p>0.05)。
     6.溃结灵含药血清对TNF-α干预下大鼠结肠上皮细胞ITF、EGFmRNA表达的影响
     ITF、EGF在胃肠道上皮保护和促进黏膜愈合方面发挥着重要的作用,与UC的修复愈合关系密切。本研究观察溃结灵含药血清对TNF-α干预下结肠上皮细胞EGF及ITFmRNA表达的影响,以进一步在离体细胞水平探讨溃结灵促进肠黏膜损伤修复的作用靶标。
     方法:以50ng/mlTNF-α干预结肠上皮细胞6h,造成细胞损伤模型,采用荧光定量PCR (Real-Time PCR)法检测不同浓度溃结灵含药血清对此细胞损伤模型ITF及EGFmRNA的表达的影响。
     结果:①模型组EGF、ITFmRNA表达较空白对照组减低;②溃结灵各剂量组(?)GFmRNA相对表达量与模型组相比,无统计学意义(p>0.05);③溃结灵高(10%含药血清)、中剂量组(5%含药血清)ITFmRNA表达量明显高于模型组(p<0.05,p<0.01)。
     7.溃结灵含药血清对TNF-α干预下大鼠结肠上皮细胞MUC-2、TGF-α蛋白表达的影响
     MUC-2、TGF-α在黏膜保护和肠道疾病修复机制中占有重有地位,且在肠道黏膜修复中MUC-2、TGF-α、EGF、与ITF具有协同作用,保护和促进黏膜修复。本研究进一步观察了溃结灵含药血清对TNF-α干预下结肠上皮细胞MUC-2及TGF-α蛋白表达的影响,探讨溃结灵促进肠黏膜损伤修复的又一可能作用靶标,以进一步揭示溃结灵治疗UC的分子作用机理。
     方法:TNF-α(50ng/ml)干预结肠上皮细胞生长6h造成结肠上皮细胞损伤模型,采用Elisa方法检测不同浓度溃结灵含药血清对此细胞损伤模型MUC-2及TGF-α蛋白含量的影响。
     结果:①TNF-α作用于细胞后,与空白对照组比较,模型对照组MUC-2含量增加(p<0.01), TGF-α含量降低,但无统计学差异;②与模型对照组比较,溃结灵含药血清高剂量组MUC-2含量增加(p<0.05),溃结灵含药血清高剂量组TGF-α含量显著升高(p<0.01)。
     8.溃结灵含药血清对TNF-α干预下大鼠结肠上皮细胞pERKl/2、pMEK1/2蛋白表达的影响
     ERK信号转导通路参与调节细胞的增生、分化、凋亡等过程。其在真核细胞内广泛存在,许多因子通过ERK通路发挥作用。而细胞信号中传递丝裂原信号的关键激酶是胞外信号调节蛋白激酶(ERK1/2), ERK被激活后,可诱导细胞产生分裂、增殖等效应。本研究观察溃结灵含药血清对结肠上皮细胞损伤模型pERK1/2、pMEK1/2蛋白表达的影响。以期进一步揭示溃结灵治疗UC的作用机理。
     方法:TNF-α(50ng/ml)干预结肠上皮细胞生长6h造成结肠上皮细胞损伤模型,提取细胞全蛋白,采用WesternBlot法检测溃结灵含药血清对此上皮细胞损伤模型pMEK1/2, pERK1/2蛋白表达水平的影响,内参蛋白为β-actin,目的蛋白的相对含量为目的蛋白与β-actin密度的比值,结果进行组间比较分析。
     结果:①50ng/ml TNF-α作用于结肠上皮细胞6h后,细胞内pMEK1/2、pERK1/2蛋白表达均有增加;②溃结灵高剂量(10%含药血清)、中剂量(5%含药血清)明显促进pMEK1/2蛋白表达(p<0.05),溃结灵中剂量(5%含药血清)明显促进pERK1/2蛋白表达(p<0.05)。提示溃结灵含药血清对TNF-α法干预下结肠大鼠上皮细胞pERK1/2、 pMEK1/2蛋白表达有上调作用,ERK信号通路可能是溃结灵保护及修复肠黏膜损伤的转导途径之一
     三、研究结论
     1.本研究建立了大鼠结肠上皮细胞原代培养体系,为结肠上皮生理、病理及药物作用机制提供了体外研究平台。对研究肠上皮细胞与炎症性肠病病因学的相关性及其中药对炎症性肠病的防治具有重要的意义。
     2、本研究结果显示,结肠上皮细胞表达ITFmRNA, EGFmRNA, MUC-2、TGF-α蛋白,ITF,MUC-2由肠道杯状细胞分泌,证明,此细胞可用于肠黏膜损伤修复的相关实验研究。
     3.溃结灵含药血清能够促进正常大鼠结肠上皮细胞的增殖,改善UC大鼠血清致结肠上皮细胞损伤模型的超微结构,对TNF-α干预下的结肠上皮细胞具有一定的促增殖作用。提示,促进结肠上皮细胞增殖是该方的疗效机理之一
     4.溃结灵含药血清能上调TNF-α干预下的结肠上皮细胞ITF基因、MUC-2、TGF-α蛋白表达以及pERK1/2、pMEK1/2蛋白表达。提示,溃结灵可通过激活ERK通路,促进上皮细胞的增殖移行,进而加速肠黏膜损伤修复。也可能是其作用的分子机制之一
Backgrouds
     Ulcerative colitis (UC) is a chronic and non-specific inflammatory disease of the colorectal mucosa. Anti-inflammatory and regulating immunity are the main clinical treatment of UC. Recent studies have found that after the damage of intestinal tract, in addition to inflammatory and injury factors, the repair factors also play an equally important role in the development of disease, the prognosis of disease is determined by the interaction between them, and many growth factors participate in the whole repair process. With the development of research, some growth factors have been gradually applied to cure inflammatory injury and obtained good results. Intestinal Trefoil Factor (ITF) is a new cell growth factor found recently,which is secreted by the goblet cells and mainly distributes in the intestinal tract. It has a strong cell protecting effect, synergizing with other intestinal repair factors (MUC-2, EGF, TGF-a,etc.) to reduce the multiple factor-mediated injury of intestinal mucosa significantly. Therefore, the study of formula on the regulation of specific protective factors may help to develop a new way to treat UC. Kui jie ling decoction (KD)was frequently used to treat UC patients. The therapeutic principle of KD is clearing away heat, invigorating the spleen and activating blood.It showed affirmative therapeutic effect on patients. Some experiments about effect of KD on UC model rats induced by TNBS were observed before. The observation showed that the number and area of ulcer in model rats were significantly reduced with the administration of KD. Pathological changes such as inflammatory cell infiltration and edema were improved. The expression of imflammatory factors such as Toll-like receptor, IL-1β, TNF-α, NF-κB were reduced. At the same time KD formula could improve ultrstructual changes, increasse gene expression of ITF and protein expression of MUC-2on the3th,7th and14th, raise gene expression of EGF, protein expression of TGF-α and pERK1/2on the14th in colonic mucosa of UC model rats. And in the reaserch of Caco-2cells injuried model induced by Serum of UC Model Rats have showed that KD medicated serum could promote Caco-2cells prolifiration, enhance mRNA expression of ITF and protein expression of MUC-2, pER、pMEK. In short, KD may regulate and enhance the expression of ITF and MUC-2, The interaction of ITF and MUC-2may reinforce the effect of protecting colonic mucosa and Caco2cells injuried model induced by Serum of UC Model Rats. In this article, the gene and the key elements of MEK/ERK pathway such as the activation of MEK and ERK in rat colonic epithelial cells were observed to evaluate the interventional effect of KD medicated serum, which would help to further explore mechanism of KD in treatment of UC and provide evidence for the previous reaserch.
     Methods and Results
     1. Establishment of the method for primary culture of colonic epithelial cell
     The primary Colonic epithelial cell originated from normal colon tissue in rats, which can really reflect physiological and pathological changes of colon. But isolation and culture technology of CEC is a problem, which limited its application. After researched on domestic and foreign literatures, the method for primary culture of colonic epithelial cell was established in this study, which could provide a research platform in vitro for the study on physiological, physiological and medicine function mechanism of colonic epithelial cell.
     Methods:Colons obtained from suckling rats (6-15d) were cut into small pieces and washed. Colonic epithelial cell cluster were separated by10ml0.1%collagenase I and hyaluronidase digestion for25min at37℃. After pipetting digestion, the supernant was transfered into another new tube and DMEM solution was added in to centrifuge for3times. Then cells were cultured in DMEM solution containing10%fetal bovine serum in a CO2incubator with a saturated humidity at37℃. Fibroblasts were removed by using the phase difference digestion and adherence. When80%-90%of the cells were adherent to the culture plat passaged with2.5g/L pancreatin digestion.
     Results:The colonic epithelial cell clusters were successfully obtained which showed high viability and became adherent after24hours culture, the cells represented polygonal shape, and grew into pavestone-like monola yer gradually in4-8days,which showed an excellent proliferate ability. Fibroblasts were significantly decreased after passage. During cell growth, passage2cells grew into polygonal shape just like the shape of IEC-6. The colonic epithelial cells were identified by the ways of immunofluores cence staining and TEM observation. The cells were in good condition after being frozen and thawed.
     2. Study on expression of ITF/EGF、MUC-2/TGF-αand pERK/pMEK in colonic epithelial cells
     Protective and repair factors in gastrointestinal mucosa such as ITF、MUC-2、 EGF and TGF-α play an important role in the process of repair and reconstruction of intestinal mucosal barrier. In this research, the expression of ITF and other repaire factors were detected to provide basic and reference for index selection in the preceeding research on colonic epithelial cells.
     Methods:real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of ITF、EGFmRNA;The protein expression of MUC-2/TGF-α were determined by the method of Elisa kit;And western blot technique was used to detect protein levels of pERK1/2and pMEK1/2.
     Results:the Gene expression of ITF/EGF and the protein expression of MUC-2/TGF-α、pERK/pMEK in CECs were dected.
     3. Effect of KD medicated serum on the rat colonic epithelial cell ultramicrostructure in cell damage model induced by serum of UC model rats
     The previous reaserch found that KD could improve the morph and function of globlet cells and alleviate the ultrastructure damage in colonic mucosa of UC Model Rats. Based on that, the effect of KD medicated serum on epithelial cell ultrastructures damaged by serum of UC model rats was further studied in this study to explore effect of KD from the aspect of cytomorphology
     Methods:Rats received enteroclysis of trinitro-benzene-sulfonic acid (TNBS) to induce ulcerative colitis models for3days. Then, blood samples were collected from abdominal aorta to get serum, rat colonic epithelial cell damage model was made by intervened with the serum for24h. Then, rat colonic epithelial cell ultramicrostructure were observed by transmission electron microscopy.
     Results:Ultrastructures of colonic epithelial cell in normal and blank control group were abundant microvilli、organelles and secretroy granules with high、moderate and low electrondensity;In model group with the appearance of a few microvilli, expand of rough, cytoplasmic vacuolization, a small number of mitochondria, a few secretory granule, many vacuoles in the cytoplasm;While in the group of10%KD medicated serum showed that abundant microvilli exist, mitochondrions and other organelles were abundant, secretroy granules with high、moderate and low electrondensity could be seen.
     4. Effect of KD medicated serum on the proliferation of normal rat colonic epithelial cell
     colonic epithelial cells play an important role in intestinal mucosal microstructural damage and reparation. Stimulation of colon epithelial cell proliferation, migration and differentiation could promote restoration of damaged intestinal mucosa and intestine mucosal barrier function with UC. In this study, KD medicated serum was used to intervene CECs growth to explore the effects of KD medicated serum on the proliferation of CECs.
     Methods:Prepared KD medicated serum with Serum Pharmacological. MTT assay was used to determine cell growth of CECs under the effects of Kuijieling Decoction medicated serum for12、24、48h.
     Results:There was no effect on the CECs proliferation with rat serum without medicine. And the CECs proliferation was promoted significantly after intervened with5%KD medicated serum for24h and48h (p<0.05)
     5. Effect of KD medicated serum on the proliferation of damaged rat colonic epithelial cell induced by TNF-α
     TNF-α is a generally accepted pathogenic factor in UC, and its also an inflammatory factors in the process of hyperplasia and apoptosis of intestinal epithelial cell In UC, the increased secretion of TNF-α can induce CEC apoptosis, increase Permeability of intestinal mucosal barrier, activate NF-κB pathway to further enlarge response of inflammation and damage intestinal mucosa. In this reaserch the effect of different concentrations of TNF-α on the proliferation of rat CECs was dected to determine the appropriate concentrations and action time of TNF-α to establish cell damage model, and then effect of KD medicated serum on the proliferation of damaged rat CECs induced by TNF-α was measured to explore cell protection effect of KD on CECs.
     Method:CECs were treated with different concentration of TNF-α (25,50,100,150,200ng/mL)for3h,6h and24h. And then the proliferous activity in CECs was measured by MTT assays, and the same method was used to detect cell prolifiration treated with50ng/mlTNF-α for6h under the protect effect of KD medicated serum.
     Results:①The CECs proliferation was inhibited significantly after intervened with50ng/ml TNF-α for6h (p<0.05);②All concentrations of TNF-a could inhibit CECs proliferation obviously after intervened with TNF-α for24h(p<0.01);③Different concentration of KD medicated serum could stimulate colonic epithelial cells to reproduce in a certain degree after damaged by TNF-α, but there was no significantly difference compaired to model group(p>0.05).
     6. Effect of KD medicated serums on the mRNA expression of ITF and EGF in damaged rat colonic epithelial cell induced by TNF-α.
     ITF and EGF are both cell protecting factors.They play an important role in epithelial protection of gastrointestinal tract and promoting mucosal healing which are closely related to UC repair. In this article the changes of ITF、EGFmRNA in CECs intervened with TNF-α under the effect of KD medicated serum were studied to evaluate the treatment mechanism of KD.
     Method:The CECs were cultured in vitro and treated with50ng/ml TNF-α for6h, and cell damage model was made by this method, Real Time PCR was used to detect the expression of ITF、EGFmRNA under the effects of differrent concentration of Kuijieling Decoction medicated serum.
     Results:①The mRNA expression of EGF and ITF in model group induced by TNF-α was lower than that in the blank control group;②The mRNA expression EGF in all KD groups had no significantly difference compaired to model group(p>0.05);③The expression of ITFmRNA in high-dosage group(10%KD medicated serum) and medium-dosage group(5%KD medicated serum) were significantly higher than that in the model group(p<0.05, p<0.01).
     7. Effect of KD medicated serums on the protein expression of MUC-2and TGF-a in damaged rat colonic epithelial cell induced by TNF-α
     TGF-α and MUC-2play an important role in mucosal protection and repair mechanisms of intestinal disease. And they have a good synergism effect with ITF and EGF to promte damage repair of intestinal mucosa. This study was to observe influence of KD medicated serum on MUC-2and TGF-α in CECs treated with TNF-α and to explore another effect target of KD in promoting damage repair of intestinal mucosa.
     Method:The CECs intervened with50ng/ml TNF-α for6h, and cell damage model was made by this method;The effects of different concentration of KD serum on the MUC-2and TGF-α protein expression was detected by using Elisa kit.
     Results:①Compared with blank group, the MUC-2content in the cell damage model induced by TNF-α was obviously increased (p<0.01);②The contents of MUC-2and TGF-α in high-dosage group(10%KD medicated serum)was significantly higher than that in model group (p<0.05,p<0.01).
     8、Effect of KD medicated serums on the protein expression of pMEK1/2、pERK1/2in damaged rat colonic epithelial cell induced by TNF-α
     Ras/MEK/ERK pathway is an important message pathway, which exists widely in eukaryotic cells. It is the key message pathway of many factors to perform function and participate in regulating the process of cell differentiation, proliferation, cleavage and apoptosis, and so on. The extracellular signal regulated kinase(ERK1/2) is the key mitogen kinase to transmite message in cells. The activated ERK could induct cells to take place some nuclear reactions, such as differentiation and proliferation. This study was to observe the effect of KD medicated serum on changes of pERKl/2and pMEK1/2protein expression in in CECs treated with TNF-α and to explore the mechanism of them.
     Method:Whole-cell protein was extracted from colonic epithelial cell,Western blot technique was used to detect the effects of KD medicated serum on the protein expression of pERKl/2and pMEKl/2of CECs damage model which induced by intervening with50ng/mlTNF-αfor6h.
     Results:①The protein expression of pERK1/2in the CECs induced by TNF-α for6h was increased;②The protein expression of pMEK1/2was obviously higher than that in blank group (p<0.05);③The protein expression of pMEK1/2in the medium (5%KD medicated serum)and high (10%KD medicated serum) groups were obviously higher than that in model group (p<0.05);④5%KD medicated serum could enhance the protein expression of pERK1/2significantly (p<0.05). The relative protein expression of pERK1/2and pMEK1/2in CECs induced by TNF-α were enhanced after using KD medicated serum and ERK message pathway may be one of pathways to protect and repair intestinal mucosal injury in UC rats bv KD treatment.
     Conclusions
     1、The results of this study showed that CECs expressed ITFmRNA, EGFmRNA, protein of MUC-2and TGF-α;ITF and MUC-2are both cell protecting factors secreted by goblet cells. So the CECs can be used as a cell model in the reaserch of intestinal mucosa damage repairation.
     2、KD medicated serum could promote CECs proliferation, improve ultrstructual changes of CECs intervened with serum of UC rats, which suggested promote CECs proliferation is one mechanism of KD to treat UC.
     3、KD medicated serum could increasse gene expression of ITF and protein expression of MUC-2、TGF-α, up-regulated the protein expression of pMEK1/2、 pERK1/2in the CEC damage model induced by TNF-α, indicating that activate ERK signal pathway to stimulate the migration and proliferation of CECs is also one of the molecular mechanism of KD to treat UC.
引文
[1]黎介寿.肠衰竭概念:营养支持与肠黏膜屏障维护[J].肠外与肠内营养,2004,11(2):65-67.
    [2]毛靖伟,王英德.肠黏膜屏障在炎症性肠病中作用机制的研究进展[J].世界华人消化杂志,2010,18(7):695-698.
    [3]杨书良,席丰,郝志芳.肠黏膜屏障损伤的诊断和治疗研究进展[J].临床荟萃,2009,24(4):349-351.
    [4]张文远,姜伟炜.肠道微生态对三硝基苯磺酸诱导大鼠结肠炎肠黏膜上皮细胞紧密连接蛋白occludin保护作用的研究[J].临床消化病杂志,2010,22(3):150-153.
    [5]Ding J,Magnotti LJ, Huang Q, et al.Hypoxia combined with Esche-richia coli produces irreversible gut mucosal injury characterized by increased intestinal cytokine production and DNA degradation[J]. Shock,2009,16(3):189-195.
    [6]Kabashima K, Saji T, Murata T, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. [J] Clin Invest,2002,109:883-893.
    [7]张永锋,吴正治,熊鹰,等.结肠康泰对溃疡性结肠炎大鼠结肠黏膜细胞增殖及周期的影响[J].中国中西医结合消化杂志,2008,16(1):16-19.
    [8]何新颖,唐志鹏,张亚利.肠上皮屏障与炎症性肠病研究进展[J].世界华人消化杂志,2008,16(29):3316-3320.
    [9]Xia B, Yu YH, Guo QS, et al. Association of Fas-670 gene polymorphism with inflammatory bowel disease in Chinese patients[J]. World J Gastroenterol,2005,11: 415-417.
    [10]Akazawa A, Sakaida I,Higak, et al.Increased expression of tumor necrosis factor-alpha messenger RNA in the intestinal mucosa of inflammatory bowel disease, Particularly in patients With disease in the inactive phase[J].J Gastroenterol, 2002,37(5):345-355.
    [11]Schmitz MG, Renooij W. Phospholipids from rat, human, and canine gastric mucosa. Comp osition and metabolism of molecular classes of phosphatidylcholine[J]. Gastroenterology,1990,99:1292-1296.
    [12]Holgate ST. Epithelial damage and response[J].Clin Exp Allergy,2000,30 Supplement sl:37-41.
    [13]W. Hoffman. TFF(trefoil family)peptide-triggered signals promoting mucoscal restitution[J].Cell Mol Life Sci,2005, (62):2932-2938.
    [14]曹霞,于成功.肠黏膜屏障功能异常与炎症性肠病[J].胃肠病学,2011,16(6):379-381.
    [15]郑家驹.结肠炎症性疾病的内镜、活检组织学与鉴别诊断[J].胃肠病学和肝病学杂志,2006,15(4):339-346.
    [16]Harms G,Reuter G, Corlield AP, et al. Binding specificity of influenza C-virusto variably O-acetylated glycoconjugates and its use for histochemical detection of N-acetyl-9-O-acetylneuraminic acid in mammalian tissues[J]. Glycoconj J,1996,13(4): 621-630.
    [17]黄秋凌.李燕舞,巫燕莉,等.溃结灵对溃疡性结肠炎大鼠结肠粘膜超微结构动态变化的影响 [J].中药药理与临床,2009,25(5):86-88.
    [18]Shen L, Su L,Turner JR. Mechanisms and functional implications of intestinal barrier defects[J]. Dig Dis,2009,27(4):443-449.
    [19]Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature,2007,448:427-434.
    [20]DiSabatino A, Ciccocioppo R, Luinetti 0, et al. Increased enterocyte apoptosis in inflamed areas of Crohns disease[J]. Dis Colon Rectum,2003,46:1498-1507.
    [21]Hagiwara C,Tanaka M, Kudo H. Increase incolorectal epithelial apoptotic cellsin patients with ulcerative colitis ultimately requiring surgery[J].J Gastroenterol Hepatol,2002,17:758-764.
    [22]Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis[J]. Oncogene,2003,22: 5897-5906.
    [23]Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium:its relevance in normal and pathophysiological conditions [J]. J Gastroenterol Hepatol,2000,15:109-120.
    [24]Bouma G, Strober W. The immunological andgenetic basis of inflammatory bowel disease[J].NatRev Immunol,2003,3:521-533.
    [25]Koshiji M, Adachi Y, Sogo S, et al. Apoptosis of colorectal adenocarcinoma (COL0201) by tumour necrosis factor-alpha(TNF-alpha)and/or interferon-gamma (IFN-gamma, resulting from down-modulation of Bcl-2 expression[J]. ClinExp Immunol,1998, 111:211-218.
    [26]Souza HS, Tortori CJ, Castelo-Branco MT, et al. Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease:evidence of altered expression of FasL and perforin cytotoxic pathways[J]. Int J Colorectal Dis,2005,20:277-286.
    [27]Naito Y,Takagi T, Yoshikawa T. Molecular finger prints of neutrophil-dependent oxidative stress in inflammatory bowel disease[J].J Gastroenterol,2007,42:787-798.
    [28]Ferguson LR. Nutrigenomics and inflammatory bowel diseases[J]. Expert Rev Clin Immunol,2010,6(9):573-583.
    [29]Han X. Intestinal permeability as a clinical surrogate endpoint in the development of future Crohn's disease therapies[J]. Recent Pat Inflamm Allergy Drug Discov,2010,4(2):159-176.
    [30]Larmonier CB,Midura-Kiela MT, Ramalingam R, et al. Modulation of neutrophil motility by curcumin:Implications for inflammatory bowel disease[J].Inflamm Bowel Dis,2010,5(28):232-240.
    [31]Swamynathan S,Kenchegowda D, Piatigorsky J, et al. Regulation of the corneal epithelial barrier function by Kruppel-like transcription factor 4[J].Invest Ophthalmol Vis Sci,2010,45(6):458-465.
    [32]Hermiston ML,Gordon JI. Inflammatory bowel disease and adenomas in mice expressing adominant negative N-cadherin[J]. Science,1995,270:1203-1207.
    [33]Marin ML, Greenstein AJ, Geller SA, et al.A freeze fracture study of Crohn's disease of the terminal ileum:changes in epithelial tight junction organization[J]. Am J Gastroenterol,1983,78(9):537-547.
    [34]Zeissig S, Burgel N, Gunzel D, et al. Changes in expression and distribution of claudin 2,5 and 8 lead to discontinuous tight junctions and barrier dysfunction inactive Crohn's disease[J]. Gut,2007,56(1):61-72.
    [35]Fuss IJ, Heller F, Boirivant M, et al.Non classical CDld-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis[J].J Clin Invest,2004,113:1490-1497.
    [36]Heller F, Florian P,Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution[J]. Gastroenterology,2005,129:550-564.
    [37]Amasheh S, Meiri N,Gitter AH, et al. Claudin-2 expression induces cation-selective channels intight junctions of epithelial cells[J].J Cell Sci,2002,115:4969-4976.
    [38]Shaoul R, Okada Y, Cutz E, et al.Colonic expression of MUC-2, MUC5AC, and TFF1 in inflammatory bowel disease in children[J]. J Pediatr Gastroenterol Nutr,2004,38: 488-493.
    [39]Van Klinken BJ, Van der Wal JW, Einerhand AW, et al. Sulphation and secretion of the predominant secretory human colonic mucin MUC-2 in ulcerative colitis[J].Gut, 1999,44:387-393.
    [40]朱雄伟,王强.粘蛋白硫酸化与溃疡性结肠炎[J].国外医学消化系疾病分册,2003,23(1):18-21.
    [41]颜君,周国华.肠黏膜生物屏障的研究进展[J].医学综述,2011,17(21):3246-3247.
    [42]庄肇朦,吕宾,溃疡性结肠炎肠黏膜屏障损伤及其相关机制研究进展[J].Chin J Gastroenterol,2012,17(8):506-508.
    [43]Strober W,Fuss I,Mannon P.The fundamental basis of inflammatory bowel disease[J]. J Clin Invest,2007,117(3):514-521.
    [44]Petersson J,Schreiber O, Hansson GC,et al. Import anceand regulation of the colonic mucus barrier in a mouse model of colitis[J]. Am J Physiol Gastrointest Liver Physiol,2011,300(2):G327-G333.
    [45]Zeissig S,Bojarski C,Buergel N, et al. Down regulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor alpha antibody treatment[J].Gut,2004,53:1295-1302.
    [46]Steinkamp M,Geerling I,Seufferlein T, et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells[J]. Gastroenterology,2003,124:1748-1757.
    [47]Boivin MA, Ye D,Kennedy JC,et al. Mechanism of glucocorticoid regulation of the intestinal tight junction barrier[J]. Am J PhysiolGastrointest Liver Physiol,2007,292: G590-G598.
    [48]Otte JM,Podolsky DK. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms[J]. Am J Physiol Gastrointest LiverPhysiol,2004,286: G613-G626.
    [49]Kong J, Zhang Z, Musch MW, et al.Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier[J].Am J Physiol Gastrointest Liver Physiol,2008,294:G208-G216.
    [50]赵红伟.1,25一二羟基维生素D3对实验性结肠炎肠黏膜屏障的保护作用与机制研究.博士论文.河北医科大学,2011.
    [51]Yazbeck R. Teduglutide, aglucagon-like peptide-2 analog for the treatment of gastrointestinal diseases, including short bowel syndrome[J]. Curr Opin Mol Ther,2010, 12 (6):789-809.
    [52]Koopmann MC, Chen X, Holst JJ, et al. Sustained glucagon-like peptide-2 infusion is required for intestinal adap-tation, and cessation reverses increased cellularity in rats with intestinal failure[J]. Am J Physiol Gastrointest LiverPhysiol,2010,299(6): G1222-1230.
    [53]王凯忠,赵慧,付鑫,等.凋亡抑制因子survivin肺癌组织中的表达及临床意义[J].中国实验诊断学,2009,13(7):901-904.
    [54]陈霞,赵宏贤,王忠琼,等.GLP-2对SAP大鼠肠黏膜屏障的保护作用[J].重庆医学,2011,40(31):3127-3131.
    [55]Suenaert P, Bulteel V, Lemmens L, et al.Anti-tumornecrosis factor treatment re-stores the gut barrier in Crohn's disease[J]. Am J Gastroenterol,2002,97(8): 2000-2004.
    [56]张文安,李文,王传强,等.肝素保护肠黏膜屏障的实验研究[J].泰山医学院学报,2009,30(5):351-353.
    [57]刘铁军,李宁,高居忠.微生物酵素对免疫抑制时肠道通透性影响的实验研究[J].外科理论与实践,2005,10(1):69-72.
    [58]Greenspon J, Li R, Xiao L, et al. Sphingosine-1-phosphate regulates the expression of adherens junctionprotein e-cadherin and enhances intestinal epithelial Cell barrier function[J]. Dig Dis Sci,2011,56(5):1342-1353.
    [59]王兴鹏.肠道屏障功能障碍:基础与临床[M].上海:第二军医大学出版社,2006:167-174,178-185,482-491.
    [60]刘蓉,唐方.中药保护肠屏障功能研究概况[J].上海中医药杂志,2004,38(12):57-59.
    [61]陈江,舒志军.肠屏障功能损伤的研究进展及中医药治疗[J].现代中西医结合杂志,2006,15(1):116-118.
    [62]张子理,陈蔚文.党参、黄芪、白术、甘草提取部位对小肠上皮细胞增殖的影响[J].中药药理与临床,2002,18(1):10-12.
    [63]姚永莉,宋于刚,张万岱.四君子汤治疗实验脾虚证对胃肠黏膜细胞增殖动力学的影响[J].世界华人消化杂志,1997,7(6):550.
    [64]吴承堂,黎沾良.中药清胰汤对犬急性坏死性胰腺炎肠黏膜损伤修复的影响[J].中国普外基础与临床杂志,1998,5(6):326-328.
    [65]赵金锋,刘世宾,罗静,等.大黄及丹参注射液对实验性急性胰腺炎小鼠小肠隐凹素-4基因表达影响的研究[J].中国中医药科技.2010,17(1):34-35.
    [66]宁建文,季峰,骆丹东,等.大黄素对重症急性胰腺炎大鼠肠黏膜细胞凋亡和血清瘦素表达的影响[J].中西医结合学报,2009,7(12):1167-1173.
    [67]白小武,嵇武,丁博文,等.大黄素对肠黏膜屏障损伤的保护作用及机制研究[J].东南国防医药,2012,14(1):12-15.
    [68]丁博文,嵇武,白小武,等.大黄素对肠上皮细胞损伤的保护作用及机制研究[J].东南国防医药,2012,14(3):199-202.
    [69]李燕舞,黄秋凌,杜群,等.溃结灵对溃疡性结肠炎大鼠结肠粘膜ITF、MUC-2、TGF-α动态变化的影响[J].中药药理与临床,2010,26(6):68-70.
    [70]王占国.中医“脾”与消化道正常菌群[J].中国微生态学杂志,1991,3(2):65.
    [71]刘智群.清肠化湿法治疗溃疬性结肠炎的疗效评价及对TLR4/NF-KB通路和肠黏膜屏障的影响.硕士论文.南京中医药大学,2012.
    [72]赵宁,张皖东,贾红伟,等.四君子汤对利血平所致脾虚大鼠肠道黏膜TGF-β和TNF-α表达的影响[J].中国中医基础医学杂志,2007,13(1):44.
    [73]王友清,叶子.通腑清下汤对急性胰腺炎患者肠道屏障保护作用的影响[J].中医杂志,2007,48(4):325-326.
    [74]康正祥,叶伟成,李嘉炎.肠安冲剂对实验性大鼠溃疡性结肠炎作用机理的研究[J].上海中医药大学学报,2001,15(2):46-48.
    [75]张仁岭,张胜华,冯寿全,四君子汤加味对胃肠道手术后肠黏膜屏障功能的作用[J].中国中西医结合外科杂志,2006,12(1):6-9.
    [76]刘日煊,郑爱华,蔡光先等.滋阴活血润肠药对肠黏膜屏障保护作用机制的研究[J].中国中医急症,2005,14(11):1090.
    [77]詹原泉.肠黏膜损伤与菌群失调的关系及肠炎清对二者影响.硕士学位论文.广州中医药大学,2008.
    [78]李丽秋,樊华,吕方舟,等.纳米中药对实验大鼠脾虚型溃疡性结肠炎的治疗作用[J].中国微生态学杂志,2005,17(4):268-269.
    [79]余磊.蜂胶总黄酮对大鼠照射导致急性肠黏膜损伤保护作用的实验研究.硕士论文.苏州大学,2011.
    [80]宋卫兵,张振书,肖冰.姜黄素对大鼠小肠炎组织MP0、SOD作用的影响[J].现代消化及介入诊疗,2008,13(1):14-17.
    [81]陈兰英,吴刚,陈卓.四逆汤抗失血性休克大鼠肠黏膜损伤及菌群移位药效研究[J].中国实验方剂学杂志,2011,17(23):121-124.
    [82]陈海龙,冯立民,关凤林.阳明腑实证患者肠黏膜屏障功能的改变及复方大承气汤干预作用的临床观察[J].中医杂志,2003,44(9):672-673.
    [83]沙建平,祝彼得,关如洪,等.丹参对兔重症急性胰腺炎肠黏膜上皮细胞线粒体呼吸链功能的影响[J].成都中医药大学学报,2003,26(3):1-3.
    [84]Hoffmann W, Jagla W. Cell type specific expression of secretory TFF-peptides: co-localization with mucins and synthesis in the brain[J].Int Rev Cytol,2002, (213): 147-181.
    [85]Hoffmann W, Jagla W, Wiede. A Molecular medicine of TFF-peptides:from gut to brain. Histol Histopathol,2001, (16):319-334.
    [86]杜廷义,张勇,张云.三叶因子:从实验室研究到临床医学[J].动物学研究,2010,31(1):17-26.
    [87]Dos Santos Silva E, U lrich M, Doring G, et al. Trefoil factor family do-main peptides in the human respiratory tract[J].J Pathol,2000,190(2):133-142.
    [88]G. A. Cooka, M. Familaria, L. Thimb, A. S. Giraud. The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response[J]. FEBS Letters,1999,456(1):155-159.
    [89]Irina Kouznetsova, Werner Hoffmann. Localization of TFF3 peptide in human esophageal submucosal glands and gastric cardia:differentiation of two types of gastric pit cells along the rostro-caudal axis[J].Cell Tissue Res,2007,328(2): 365-374.
    [90]Hinz M, Schwegler H, Chwieralski CE, et al. Trefoil factor family (TFF) expression in the mouse brain and pituitary:changes in the developing cerebellum[J]. Peptides, 2004,25(5):827-832.
    [91]Vestergaard EM, Nexo E, Wendt A, et al. Trefoil factors in human milk[J]. Early Hum Dev,2008,84 (10):631-635.
    [92]Mashimo H, Podolsky DK.Fishman MC. Structure and expression of murine intestinal trefoil factor:high evolutionary conservation and post-natal expression[J]. Biochem Biophys Res Commun,1995,210(1):31-37.
    [93]Lin J, Holzmanl R,Jiang P, et al. Expression of intestinal trefoil factor in developing rat intestine[J]. Biol Neonate,1999,76(2):92-97.
    [94]Samson MH, Poulsen SS, et al. Trefoil factor family peptides in the human foetus and at birth[J].Eur J Clin Invest,2011,41(7):785-792.
    [95]Taupin D,Pedersen J,Familari M, et al. Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium[J]. Lab Invest,2001, (81):397-408.
    [96]Yamachika T, Werther JL, Bodian C, et al. Intestinal trefoil factor:a marker of poor prognosis in gastric carcinoma[J]. Clin Cancer Res,2002, (8):1092-1099.
    [97]冯国勋,王石林,魏学明,等.三叶因子lmRNA在胃癌组织中的表达及其DNA甲基化研究[J].中国医院用药评价与分析,2010,10(5):439-442.
    [98]Henning G,Else M. Serum Trefoil Faetorsin Patients with Inflammatory Bowel Disease[J].Digestion,2006, (74):33-39.
    [99]Mashimo H, Wu DC, Podolsky DK, et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor[J]. Science,1996,274:262-265.
    [100]Tran CP, Cook GA,Yeomans ND, et al.Tretoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis[J]. Gut,1999,44:636-642.
    [101]Dossinger V, Kayademir T, Blin N,Gott P. Down-regulation of TFF expression in gastrointestinal cell lines by cytokines and nuclear factors[J]. Cell PhysiolBiochem, 2002,12:197-206.
    [102]Iton H, Tomita M, Uchino H,et al. cDNA cloning of rat pS2 peptide and expression of trefoil peptides in acetic acid-induceed colitis[J]. Biochem,1996,318:939-944.
    [103]Podolsky DK. Healing the epithelium:solving the problem from two sides[J].J Gast roenterol,1997,32(1):122-126.
    [104]Verbrug M, Renes IB, Mei jer HP, et al. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate treated rats[J]. Am J Physiol Gastroin test Liver Physio,2000,279(5):G1037-1047.
    [105]Loncar MB, Al-azzeh ED,Sommer PS, et al. Tumour necrosis factor alpha and nuclear factor kappa B inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide [J]. Gut,2003,52(9):1297-1303.
    [106]Renes IB, Verburg M, Van Nispen DJ, et al. Distinct epithelial responses in experimental colitis:implications for ion uptake and mucosal protection [J]. Am JPhysiol Gastrointest Liver Physiol,2002,283(1):G169-179.
    [107]Tan XD, Liu QP,Hsueh W,et al. Intestinal trefoil factor binds to intestinal epithelial cells and induces nitric oxide production:priming and enhancing effects of mucin[J]. Biochem J,1999,338(Pt3):745-751.
    [108]Longman RJ,Douthwaite J, Sylvester PA,et al. Coordinated lcoalisation of mueins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa[J]. Gut,2000,47:792-800.
    [109]JC Byrd, RS Bresalier. Mucins and mucin binding proteins in colorectal cancer[J]. Cancer Metastasis Rev,2004,23:77-99.
    [110]土焕,吴修文,万千雪,等.肠三叶因子和黏蛋白对烧伤血清所致肠上皮细胞增殖移行能力变化的影响[J].中华烧伤杂志,2011,27(5):347-352.
    [111]吴修文,土焕,万千雪,等.肠三叶因子和黏蛋白对烧伤血清所致肠上皮细胞免疫功能变化的影响[J].中华烧伤杂志,2011,27(5):341-346.
    [112]Emami S, LeFloch N, Bruyneel E, et al. Induction of scattering and cellular invasion by trefoil peptides in sac and RhoA-transformed kidney and colonic epithelial cells [J]. FASEB J,2001,15(2):351-361.
    [113]Kim YS,Ho SB.Intestinal goblet cells and mucins in health and disease:recent in sights and progress[J]. Curr Gastroenterol Rep,2010,12(5):319-330.
    [114]Renes IB,Verburg M, Van Nispen DJ,et al.Epithelial proliferation, cell death, and gene expression in experimental colitis:alterations in carbonic anhydrase I,mucin MUC-2, and trefoil factor 3 expression[J]. Int J Colorectal Dis,2002,17(5):317-326.
    [115]Niessen CM. Tight junctions adherens junctions:basic structure and function[J].J Invest Dermatol,2007,127(11):2525-2532.
    [116]余果宇,张勇,张云.三叶因子的研究进展[J].山西医科大学学报,2011,42(1):87-90.
    [117]Sturm A, Dignass AU. Epithelial restitution and wound healing in inflammatory bowel disease[J]. World J Gastro-enterol,2008,14(3):348-353.
    [118]Huai J,Jckel L, Schrader K, et al.Role of caspases and non-caspase proteases in cell death[J].F1000 Biol Rep,2010,2:48.
    [119]Kannan N,Kang J,Kong X, et al. Trefoil Factor 3 is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma[J]. Neo-plasia,2010,12(12):1041-1053.
    [120]Taylor KJ, Sims AH, Liang L, et al. Dynamic changes ingene expression in vivo predict prognos is of tamoxifen-treated patients with breast cancer[J]. Breast Cancer Res,2010,12(3):R39.
    [121]Taupin DR,Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis[J].Proc Natl Acad Sci USA,2000,97(2):799-804.
    [122]Chen YH, Lu Y, De Plaen IG,et al.Transcription factor NF-kappaB signals antianoikic function of trefoil factor3 on intestinal epithelial cells[J]. Biochem Biophys Res Commun,2000,274(3):576-582.
    [123]Uchino H, Kataoka H, Itoh H, et al.Over expression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo[J]. Gastroen-terology,2000,118(1):60-69.
    [124]滕旭,许玲芬,孙梅,等.肠三叶因子对炎症性肠病小鼠细胞凋亡的调节机制[J].实用儿科临床杂志,2011,26(13):1028-1031.
    [125]Andoh A,Kinoshita K, Rosenberg I, et al. Intestinal trefoil factor induces decay-accelerating factor expression and enhances the protective activities against comple ment activation in intestinal epithelial cells[J]. Immunol,2001,167 (7):3887-3893.
    [126]Tan XD,Chen YH, Liu QP, et al. Prostanoids mediate the protective effect of trefoil factor 3 in oxidant-induced intestinal epithelial cell injury:role of cyclooxygenase-2[J]. Immunol,2001,167(7):3887-3893.
    [127]Teng X, Xu LF,Zhou P, et al. Effects of trefoil peptide 3 on expression of TNF-alpha, TLR4 and NF-kappaB in trinitrobenzene sulphonic acid induced colitis mice [J]. Inflammation,2009,32(2):120-129.
    [128]Zhu YQ, Tan XD. TFF3 modulates NF-{kappa}B and a novel negative regulatory molecule of NF-{kappa}B in intestinal epithelial cells via a mechanism distinct from TNF-{alpha}[J]. Am J Physiol Cell Physiol,2005,289(5):1085-1093.
    [129]Kim E.Barrett. A new twist on trefoils. Focus on "TFF3 modulates. NF-κB and a novel regulatory molecule of NF-κB in intestinal epithelial cells via a mechanism distinct from TNF-a"[J]. Am J Physiol Cell Physiol,2005,289:1069-1071.
    [130]Baus-Loncar M,Kayademir T, Takaishi S, et al. Trefoil factor family 2 deficiency and immune response[J]. CellMol Life Sci,2005,62(24):2947-295.
    [131]Krishnan K, Arnone B, Buchman A. Intestinal growth factors:potential use in the treatment of inflammatory bowel disease and their role in mucosal heal ing[J]. Inflamm Bowel Dis,2011,17(1):410-422.
    [132]Rivat C,Rodrigues S, Bruyneel E, et al. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3(TFF3)-vascular endothelial growth factor-mediated cellular invasion and tumor growth[J]. Cancer Res,2005,65:195-202.
    [133]Chinery R,Playford RJ.Clin Sci Colch,1995,88(4):401-403.
    [134]Taupin D, Wu DC,Jeon WK, et al.The trefoil gene family are coordinately expressed mmediate-early genes:EGF receptor-and MAP kinase-dependent interregulation[J].J Clin Invest,1999,103(9):R31-R38.
    [135]Furuta GT, Turner JR, Taylor CT, et al. Hypoxia-inducible factor-1 dependent induction of intestinal trefoil factor p rotects barrier function during hypoxia[J]. J Exp Med,2001,193(9):1027-1034.
    [136]Zhang BH, Yu HG, Sheng ZX, et al.The therapeutic effect of recom-binant humantrefoil factor 3 on hypoxia-induced necrotizing enterocol-itis in immature rat[J].Regul Pept,2003,116(1-3):53-60.
    [137]Bouhon TG, Yancopeulos GD, Gregory JS, et al.An insulin-stimulated protein ki-nase similar to yeast kinases involved in cell cycle control[J]. Sciences,1990,249(4964): 64-67.
    [138]Bouhon TG,Nye SH,Robbins DJ,et al.ERKs:a family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulinand NGF [J]. Cell,1991,65(4):663-675.
    [139]Kolch W. Meaningful relationship:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions[J]. Biochem,2000,351:289-305.
    [140]习隽丽,张丙宏,金水晶.Elk-1通路对肠三叶因子治疗坏死性小肠结肠炎的影响[J].咸宁学院学报(医学版),2010,24(2):100-102.
    [141]彭曦,汪仕良,尤忠义,等.肠三叶因子对肠上皮细胞增殖的影响及其信号转导机制的实验研究[J].中华烧伤杂志,2003,19(5):285-288.
    [142]Shah BH, Shah FB, Catt KJ. Role of metalloproteinase-dependent EGF receptor activation in alpha-adrenoceptor stimulated MAP kinase phosphorylation in GT1-7 neurons[J]. J Neurochem,2006,96(2):520-532.
    [143]艾志宏,殷莲华,等.EGF和TGF-α促进子宫内膜癌细胞增殖信号转导通路的研究[J].中华肿瘤防治杂志,2008,15(5):348-351.
    [144]李平,邢峰,等.EGF对小肠缺血再灌注后磷酸化p44/42 MAPK表达的影响[J].世界华人消化杂志,2003,11(5):578-582.
    [145]许鸿志,任建林.TFF3与胃癌关系研究进展[J].世界华人消化杂志,2009,17(5):495-499.
    [146]Babyatsky M,Lin J,Yio X,et al. Trefoil factor-3 expression in human colon cancer liver metastasis[J]. Clin Exp Metastasis,2009,26(2):143-151.
    [147]Xue H,Lu B,Zhang J.Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach[J]. J Proteome Res,2010, 9(1):545-555.
    [148]Du TY, Zhang Y,Zhang Y. Trefoil factor:from laboratory to clinic[J]. Zoological Research,2010,31(1):17-26.
    [149]Ayabe T,Satchell D,Wilson C, et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria[J]. Nat Immunol,2000,1(2):99-100.
    [150]Alan N. Langnas, Olivier Goulet, Eamonn M.M.Quigley,et al. Intestinal Failure: Diagnosis, Management and Transplantation[J]. Wiley-Blackwell Publishing.2008.TheFirst Edition:13-19.
    [151]Laurens G van der Flier, Hans Clevers. Stem Cells, Self-Renewal and Differentiation in the Intestinal Epithelium. Annual Review of Physiology,2009,71:241-260.
    [152]Manabu Suzuki, Tadakazu Hisamatsu, Daniel K Podolsky, Gamma Interferon Augments the Intracellular Pathway for Lipopolysaccharide(LPS) Recognition in Human Intestina 1 Epithelial Cells through Coordinated Up-Regulation of LPS Uptake and Expression of the Intracellular Toll-Like Receptor 4-MD-2 Complex[J].Infection and Immunity,2003, 71(6):3503-3511.
    [153]徐红蕊,王瑞龙,赵国.肠上皮细胞的体外培养研究进展[J].技术前沿,2003,53-54.
    [154]Grossmann J, Walther K, Artinger M, et al. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelialcells (IEC)[J].Eur J Cell Biol,2003,82:262-270.
    [155]Aldhous MC, Shmakov AN,Bodes J,et al. Characterization of conditions for theprimary culture of human small intestinal epithelial cells[J]. Clin Exp Immunol, 2001,125:32-40.
    [156]张安平,刘宝华,张连阳,等.正常人结肠上皮细胞体外培养和鉴定[J].世界华人消化杂志,2004,12:1966-1968.
    [157]Evans GS, Flint N, Somers AS, et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J]. J Cell Sci,1992,101(Pt 1): 219-231
    [158]Follmann W, Weber S,Birkner S.Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes[J]. Toxicol In Vitro,2000,14:435-445.
    [159]刘飞飞,车东升,穆成龙,等.兔小肠上皮细胞体外分离培养[J].吉林农业大学学报,2011,33:429-432.
    [160]Furuya K, Sokabe M, Furuya S. Characteristics of subepithelial fibroblasts asa mechano-sensor in the intestine:cell-shape-dependent ATP release and P2Y1 signaling [J].J Cell Sci,2005,118:3289-3304.
    [161]Mills JC,Gordon JI.The intestinal stem cell niche, there grows the neighborhood [J].Proc Natl Acad Sci USA,2001,98(22):12334-12336.
    [162]石妍,杨帆,葛红岩,等.改良兔角膜上皮细胞原代培养及纯化的方法[J].眼科新进展,2010,30:612-615.
    [163]郝维平,姚友生,王家伟,等.人类膀胱移行上皮细胞的体外培养与鉴定[J].中国组织工程研究与临床康复,2011,15:9348-9352.
    [164]谢秀雯,周建强,崔红平Dispase Ⅱ消化法原代培养兔结膜上皮细胞及鉴定[J].眼科新进展,2011,31:312-316.
    [165]张秋月,富建东,薛辛东.新生鼠肺泡Ⅱ型上皮细胞分离培养与鉴定[J].中国新生儿科杂志,2010,25:339-341.
    [166]Birkner S, Weber S, Dohle A, Schmahl G,Follmann W. et al. Growth and characterisation of primary bovine colon epithelial cells in vitro[J]. Altern Lab Anim,2004,32555-571.
    [167]纪华英,陈其奎,曾晖.小鼠小肠上皮细胞的体外原代培养[J].医学综述,2010,16(9): 1417-1419.
    [168]Slorach EM, Campbell FC, Dorin JR. A mouse model of intestinal stem cell function and regeneration Cell[J]. Sci,1999,112(18):3029-3038.
    [169]戴定威,吴圣梢,李敏廖,等.刘再涌.新生大鼠小肠上皮细胞分离培养研究[J].细胞生物学杂志,1997,19:31-35.
    [170]王志鹏,张蓉,刘莉,等.大黄多糖对溃疡性结肠炎小鼠结肠上皮细胞和外周血中性粒细胞凋亡的影响[J].世界华人消化杂志,2006,14(1):29.
    [171]黄小英,刘端勇,程绍民,等.雷公藤多苷对结肠炎小鼠结肠上皮细胞周期及Fas/Fas L表达的影响[J].时珍国医国药,2012,23(11):2785-2786.
    [172]陈曦,欧阳钦,张文燕.溃疡性结肠炎结肠上皮TLR4和HβD2表达的研究[J].胃肠病学和肝病学杂志,2010,19(5):385-389.
    [173]Lenoir C, Sapin C, Broquet AH, et al.MD2 controls bacterial lipopo-lysaccharide hyporesponsiveness in human intestinal epithelial cells[J]. Life Sci,2008,82(9-10): 519-528.
    [174]Bocker U,Yezersky O, Feick P, et al. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with toll like receptor 4 but not toll like receptor 2 or CD 14 expression [J]. International Journal of Colorectal Disease, 2003,18(1):25-32.
    [175]杨孜欢,潘奥,陈思亮,等.麻仁软胶囊在诱导大鼠结肠上皮细胞阴离子分泌中的作用[J].中药药理与临床,2008,24(4):1-4.
    [176]王德山,张宇,王哲,等.脾虚模型大鼠结肠上皮细胞水通道蛋白8表达变化[J].中国中西医结合消化杂志,2008,16(2):71-73.
    [177]黎思毅,彭红娟.过氧化氢对原代人结肠上皮细胞谷氧还蛋白表达的影响[J].中国实用医药,2009,4(17):109-111.
    [178]Waris, Ahsan. Reactive oxygen species:role in the development of cancer and various chronic conditions[J]. J Carcinog,2006,5:14.
    [179]Fernands AP, Holmgren A. Glutaredoxins glutathione dependent redox enzymes with functions far beyond a simple thioredoxin backup system[J]. Antioxidants Redox Signaling,2004,6(1):63-74.
    [180]Prieto-Alamo MJ, Gallardo-Madueno R. Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress[J].J Biol Chem,2000,275:13398-13405.
    [181]韩华中,梁勇,石忱长,等.两歧双歧杆菌干预周期对IL-10基因敲除小鼠结肠上皮屏障保护作用的影响[J].世界华人消化杂志,2012,20(33):3203-3210.
    [182]Degagne E,Grbic DM, Dupuis AA, et al.P2Y2 receptor transcription is increased by NF-kappa B and stimulates cyclooxygenase-2 expression and PGE2 releasedby intestinal epithelial cells[J].J Immunol,2009,183:4521-4529.
    [183]Duary RK, Rajput YS,Batish VK, et al. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells[J]. Indian J Med Res,2011, 134:664-671.
    [184]Gao Q, Qi L,Wu T, et al. An important role of interleukin-10 in counteracting excessive immune response in HT-29 cells exposed to Clostridium butyricum[J].BMC Microbiol,2012,12:100.
    [185]Iizuka M, Sasaki K, Hirai Y, et al. Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK,PI3 kinase/Akt signals[J].Am J Physiol Gastrointest Liver Physiol,2007, 292:G39-G52.
    [186]Vermeulen MA, de Jong J,Vaessen MJ,et al. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity[J]. World J Gastroenterol,2011,17:1569-1573.
    [187]翟荣林,王国斌,蔡开琳,等.正常SD新生大鼠结肠上皮细胞体外分离的培养与鉴定研究[J].中华肿瘤防治杂志,2008,15:1365-1367.
    [188]高丽,白赟,王永辉.六味地黄丸含药血清对骨髓细胞增殖的影响[J].时珍国医国药,2012,23(7):1598-1599.
    [189]黄志新,劳绍贤,崔琦珍,等.溃疡性结肠炎的临床与实验研究[J].中国中西医结合消化杂志,2003,11:141.
    [190]胡旭光,王汝俊,杜群,等.溃结灵的抗炎与镇痛作用研究[J].现代中西医结合杂志,2003,2:128.
    [191]杜群,李红,王建华,等.溃结灵对溃疡性结肠炎大鼠治疗作用的病理学观察[J].中药新药与临床药理,2007,18(3):B173-175.
    [192]杜群,李红,王建华,等.溃结灵对溃疡性结肠炎大鼠结肠粘膜NF-κB p65蛋白表达及血清TNF-α含量的影响[J].广州中医药大学学报,2007,24(5):396-399.
    [193]吴慧丽,李慧.白芍总苷对溃疡性结肠炎大鼠细胞因子影响的研究[J].中南药学,2010,8(2):128-130.
    [194]周燕红,刘毅飞.银杏天宝对大鼠实验性溃疡性结肠炎IFN-γ、IL-4的影响[J].咸宁学院学报,2005,19(3):164-168.
    [195]郑海涵,吴正祥.TNF-α在IBD发病机制中的调节.胃肠病学和肝病学杂志[J],2011,20(2):191-193.
    [196]张华,员林,钱亚云.南蛇藤提取物含药血清对人肝癌SMMC7721细胞增殖、迁移和黏附作用的影响[J].南京中医药大学学报,2011,27(1):44-48.
    [197]Edelblum KL,Goettel JA,Koyama T, et al. TNFR1 promotes tumor necrosis factor-mediated mouse colon epithelial cell survival through RAF activation of NF-kappaB[J]. J Biol Chem,2008,283(43):29485-29494.
    [198]包春辉,施茵,吴璐一,等.艾灸对克罗恩病大鼠TNF-α/TNFR1诱导的结肠上皮细胞凋亡的影响[C].中国针灸学会年会.2011.232-241.
    [199]胡根.NF-κB/P65基因在TNF-α诱导肺泡上皮细胞凋亡中的作用及可能机制.硕士论文.南方医科大学,2010.
    [200]Poritz LS, Garver KI,Tilberg AF, et al. Tumor necrosis factor alpha disrupts tight junction assembly[J].J SurgRes,2004,116(1):14-18.
    [201]Inagaki-Ohara K, Dewi FN, Hisaeda H, et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection[J]. Infect Immun,2006,74(9):5292-5301.
    [202]崔巍,刘冬妍,马力,等.TNF-α对肠上皮细胞紧密连接蛋白表达的作用[J].世界华人消化杂志,2007,15(16):1788-1793.
    [203]Komatsu M, Kobayashi D,Saito K, et al. Tumor necrosis factor-alpha in serum of patients with inflammatory bowel disease as measured by a highly sensitive immune-PCR[J]. Clin Chem,2001,47(7):1297.
    [204]王觅柱,邬彩虹,陈吉.溃疡性结肠炎患者血清IL-1β、TNF-α和IL-10的表达及其意义[J].国际消化病杂志,2009,29(5):362-364.
    [205]Trine Olsen, Rasmus Goll, Guanglin Cui. Tissue levels of tumor necrosis factor-alpha correlates with grade of inflammation in un-treated ulcerative colitis[J]. Scan dinavian Journal of Gastroen-terology,2007,42(11):1315-1317.
    [206]李红,杜群,王汝俊,等.溃结灵对溃疡性结肠炎大鼠结肠粘膜IL-1β、TNF-α的影响[J].湖北中医杂志,2008,30(5):10-11.
    [207]Oikonomou KA, Kapsoritakis AN, Kapsoritaki AI,et al. Down-regulation of serumepidermal growth factor in patients with inflammatory bowel disease. Is there a link with mucosal damage?[J]. Growth Factors,2010,28(6):461-466.
    [208]Banan A, Choudhary S, Zhang Y, et al. Oxidant-induced intestinal barrier disruption and its prevention by growth factors in a human colonic cell line:role of the microtubule cytoskeleton[J].Free Radic Biol Med,2000,28:727-738.
    [209]Sinha A, Nightingale J, West KP,et al. Epidermal growth factor enemas for ulcerative colitis[J]. N Engl J Med,2003,349:350-357.
    [210]李兆申,湛先保,许国铭.胃黏膜损伤与保护-基础与临床[M].上海:上海科技出版社,2004:2151.
    [211]Rachagani S, Torres MP, Moniaux N, et al. Current s,atus of mucins in the diagnosis and therapy of cancer. Biofactors,2009,35(6):509-527.
    [212]Ajioka Y,Watanabe H, Jass JR. MUC1 and MUC-2 mucins in flat and polypoid colorectal adenomas. Clin Pathol,1997,50(5):417-421.
    [213]Mizoguchi A,Mizoguehi E. Inflammatory bowel disease,past present and future: Lessons from animal models[J]. Gastroenterol,2008,43:1-17.
    [214]M Vander Sluis,B De Koning.A De Bruijn.MUC-2 Deficient Mice spontaneously develop colitis, indicating that MUC-2 is critical for colonic protection[J]. Gastroenterology,2006,131:117-129.
    [215]Sylvester PA, Wong NA, Myerscough N, et al. Mucin expression in the ileoanal reservoir reflects incomplete mucosal adaptation[J].J Pathol,2002,197(1):28-36.
    [216]Tytgat KM, Opdam FJ, Einerhand AW, et al. MUC-2 is the prominent colonic mucin expressed in ulcerative colitis[J]. Gut,1996,38(4):554-563.
    [217]于晓丽,韩春山,沈隽.MUC-2在溃疡性结肠炎发病机制中的意义研究[J].中国现代医生,2007,45:(15):25-28.
    [218]谢冰颖,葛振华,李生强,等.黏蛋白和肠三叶因子在溃疡性结肠炎中的表达[J].中国中西医 结合消化杂志,2010,18(6):362-365.
    [219]Casalini P, Iorio V, Galmozzi E, et al.Role of HER receptors family in development and differentiation[J]. Journal of Cell Physiology,2004,200:343-350.
    [220]Matsuda K, Sakamoto C, Konda Y, et al. Effects of growth factors and gut hormones on proliferation of primary cultured gastric mucous cells of guinea pig[J]. Gastroenterol,1996,31(4):498-504.
    [221]胡义亭,甄承恩,邢国章,等.消化性溃疡患者转化生长因-α,表皮生长因子和前列腺素E2的关系[J].世界华人消化杂志,2002,10(1):43-47.
    [222]常小荣,谢华,严洁,等.不同灸治时间对脾胃虚寒型浅表性胃炎胃肠激素的影响[J].国际中医中药杂志,2011,33(4):293-296.
    [223]王加平.消化性溃疡患者治疗前后血清GAS、TNF-a和TGF-a水平检测的临床意义[J].淮海医药,2009,27(6):502-503.
    [224]贺建华,罗和生.生长因在消化性溃疡愈合中的作用[J].国外医学,2003,23(1):12-15.
    [225]Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy[J]. Cancer Lett,2009,283(2):125-134.
    [226]严彩霞,张丙宏,付春花.肠三叶因子对新生鼠坏死性小肠结肠炎模型ERK表达的影响[J].武汉大学学报(医学版),2005,26(3):308-310.
    [227]Kinoshita K, Taupin DR, Itoh H, et al. Distinct pathways of cell migration andantia poptotic response to epithelial injury:structure-function analysis of human intestinal trefoil factor[J]. Mol CellBiol,2000,20(13):4680-4690.
    [228]袁媛.黄芪多糖对内毒素致小肠上皮细胞损伤的保护作用.博士论文.中国医科大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700