用户名: 密码: 验证码:
基于回波信号的光束瞄准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动跟踪照明、自由激光通信等领域要求发射光束精确瞄准目标。但是当激光传输照射目标时,由于跟踪设备的局限性、瞄准系统的机械振动、大气湍流、以及光学未对准引起的光束瞄准误差,会导致光轴偏离视轴和接收探测的信号能量损失。长期以来,估计和校正这些误差一直是光束瞄准的难点;尤其是对非合作目标,大多都处于开环工作状态,瞄准精度很难得到保证。本文主要研究基于回波信号的光束瞄准技术,旨在探索对非合作目标的瞄准误差评估和光束闭环瞄准的方法。
     本文首先回顾了基于回波信号的光束瞄准技术的研究历史,结合该瞄准技术的应用目的和发展趋势,指出了相关研究工作的重要意义。然后根据目标主动照明实验引出了基于回波信号的光束瞄准技术理论,给出了主动照明回波信号物理模型,介绍了光束瞄准误差估计理论。
     建立了目标主动照明回波信号传输仿真系统。模拟了光信号从发射到接收的整个物理过程,包括:发射光束抖动误差和视轴偏差模拟,激光真空传输,大气湍流模拟,目标反射,散射回波传输,回波信号接收处理及闭环控制模型仿真。并利用数值仿真系统,验证了瞄准误差估计理论,并从样本容量、抖动误差、视轴偏差变化等角度分析了各个瞄准误差估计算法的估计精度和适用范围。仿真结果表明,最大似然估计算法性能优良,估计精度最高;修正的矩估计算法适合于弱湍流大气环境中的瞄准误差估计。
     针对当前瞄准误差估计算法视轴偏差方向估计难题,提出三角扫描算法,推导了该算法的闭环瞄准精度克拉美劳(CRLB)下限,并进行了仿真分析和验证。结果表明:三角扫描算法可以实现基于回波信号的光束闭环瞄准,且瞄准精度接近CRLB下限。该算法首次利用瞄准误差估计实现了光束闭环瞄准。
     搭建了基于回波信号光束瞄准系统室内平台。提出以回波样本均值作为寻优算法的信号探测点,利用二维爬山算法完成了基于回波信号的光束闭环瞄准实验,分析了爬山算法对光束抖动误差的抗干扰能力。对最大似然估计算法进行了实验验证,利用三角扫描算法完成了基于回波信号的光束闭环瞄准实验,并分析了瞄准残差精度及影响因素。
     建立了目标照明回波信号噪声模型。给出回波信号的归一化模型,消除了光源起伏噪声、传输距离变化、跟踪天顶角变化等对回波信号的影响。提出等效光束远场辐射角分布参数,解决了扩展目标对回波信号分布的影响。分析了漫反射目标回波散斑对回波信号测量的影响,给出了基于回波信号的瞄准系统中回波散斑的抑制方案,并进行了仿真验证,为室外实验回波信号处理打下了理论基础。
     为了研究大气环境下基于回波信号光束瞄准技术的性能,搭建了目标照明回波瞄准室外实验平台,包括:脉冲激光发射系统,基于距离选通的回波信号接收系统,基于Labview的实验控制系统。在室外大气环境下,验证了瞄准误差估计算法的性能,基于三角扫描算法实现了光束闭环瞄准,分析了瞄准残差精度。
     最后,针对基于回波信号的光束瞄准技术的工程应用问题,提出了两种应用设计方案,为今后该技术的工程应用奠定了一定的基础。
Laser applications including active tracking and free-space laser communicationrequire high precise pointing control. However, when the laser beam is illuminating thetarget, the pointing errors due to the limitations of the tracking system, mechanicalvibration, atmosphere turbulence, and the optical misalignment, will cause pointingoff-axis and the energy loss on the target. Determining of these errors has historically adifficult problem-especially for a non-cooperative target, most of which are in a state ofopen-loop pointing. In order to explore a method of pointing errors estimation andclosed-loop pointing realization with the non-cooperative target, this paper studies thepointing technology using return photon signal.
     In this paper, the history of pointing technology using return photon signal isreviewed and the significance of this research is pointed out based on the applicationsand trends. Then, this novel pointing technology is introduced according to a fieldactive illumination experiment. A physical model of return photon signal is given.And the theory of pointing errors estimation is described.
     A numerical simulation system is established for the return photon signal withactive illuminating the target. The entire physical process of photons from the emissionto reception is simulated, which contains boresight and jitter, vacuum laser transmitting,atmospheric turbulence, reflecting process of target, scattering photons transmission,return photon signal processing, and closed-loop control simulation. Based on thesimulation system, the theory of pointing errors estimation is verified and theperformance of every estimation algorithm is analyzed according to sample size, jitterand boresight.
     In order to estimate the direction of boresight error, a triangular scan algorithm ispresented. And the Cramer-Rao lower bounds (CRLB) performance of the triangularscan algorithm is induced in closed-loop pointing applications. The simulation resultsdemonstrate that the closed-loop pointing using return photon signal can be realized bythe triangular scan algorithm, and the performance closes to the CRLB. The closed-looplaser pointing with the pointing errors estimation is realized by this method for the firsttime.
     A laboratory platform for the laser pointing system is set up. Then, a closed-loop pointing experiment is realized using two-dimensional hill-climbing algorithm based onthe return photon signal. And the anti-jamming capability of hill-climbing algorithm isanalyzed. What’s more, the experimental verification of maximum likelihood estimationis given. Mean while, a closed-loop targeting experiments by triangular scanningalgorithms is presented. And the performance of this method is analyzed from residualsaccuracy.
     A noise model of return photon signal is established. Then, in order to eliminate theenergy fluctuation of laser source, transmission distance changing and tracking zenithchanging, a normalization model of return photon signal is given. Secondly, in order tosolve the distribution changing of return photon signal when illuminating extendedtarget, an equivalent far field distribution parameter of laser beam is proposed. Thirdly,the impact of the speckle noise reflecting from diffuse target for the return photon signalmeasurement is described. A scheme for lessening the speckle noise is given andverified with simulations. All of the work done above laid a theoretical foundation forfield experiment.
     In order to study the performance of the pointing technology using return photonsignal in the atmospheric environment, a field experiment platform is set up, whichcontains: pulse laser launch system, return photon signal reception system based onrange gating, and a control system on Labview platform. Under the field environment,the performance of the pointing errors estimation and triangular scanning algorithm isverified. And a closed-loop pointing experiment is realized based on return photonsignal.
     Finally, for the problem of pointing technology using return photon signal inengineering applications, two novel designs are proposed. These solutions laid thefoundation for the engineering realization of this pointing technology.
引文
[1]徐效文.应用激光主动成像探测小暗目标的技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2004
    [2]谷锁林,孙华燕,张永继.空中目标的激光主动探测[J].激光与红外,2005,35(7):476-478
    [3]周立伟.目标探测与识别[M].北京:北京理工大学出版社,2002
    [4]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光电工程,1989,16(3):1-42
    [5]吕俊伟.光电跟踪测量原理[M].北京:国防工业出版社,2009
    [6] Robert K. Tyson. Bit-error rate for free-space adaptive optics laser communications [J]. J. Opt.Soc Am. A,2002,19(4):753-758
    [7]徐科华,马晶,谭立英.深空光通信中光束瞄准技术研究[J].光学精密工程,2006,14(1):16-21
    [8]李晓峰.星地激光通信链路原理与技术[M].北京:国防工业出版社,2007
    [9]黄健.自由空间光通信系统的高精度瞄准技术研究[D].成都:中国科学院光电技术研究所,2010
    [10] D. L. Fried. Optical Resolution Through a Randomly Inhomogeneous Medium for Very Longand Very Short Exposures [J]. J. Opt. Soc. Am.,1966,56(10):1372-1379
    [11]高明,吴振森.远场光束扩展对光斑瞄准偏差影响的实验[J].光学精密工程,2010,18(3):602-608
    [12]黄印博,王英俭.跟踪抖动对激光湍流大气传输光束扩展的影响[J].光学学报,2005,25(2):152-156
    [13] D. K. Borah and D. G. Voelz. Pointing error effects on free-space optical communication linksin the presence of atmospheric turbulence [J]. J. Lightwave Technol.2009,27(18):3965-3973
    [14]李文军复合轴光电跟踪系统控制策略研究[D]长春:中国科学院长春光学精密机械与物理研究所2006,10-18
    [15]任戈复合轴结构的运动关系分析[J]光电工程,1995,22(6):41-46
    [16]傅承毓,马佳光,叶步霞等复合轴控制系统应用研究[J]光电工程,1998,25(4):1-12
    [17]胡浩军运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D]国防科学技术大学研究生院2005,69-90
    [18]傅承毓,姜凌涛,任戈等快速反射镜成像跟踪系统[J]光电工程,1994,21(3):1-8
    [19]岳冰,杨文淑,傅承毓空间光通信中的快速倾斜镜精跟踪实验系统[J],光电工程,2002,29(3):35-38
    [20]姜文汉.自适应光学技术[J].中国科学技术前沿,1998,6:94-121
    [21] John W. Hardy. Adaptive Optics for Astronomical Telescopes[M]. New York: OxfordUniversity Press,1998
    [22]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996
    [23]贺元兴,姜文汉,李新阳.聚焦高斯光束在湍流大气中的远场传输及相位补偿效果[J].中国激光,2011,38(3):0312001
    [24] T. Fusco, G. Rousset, D. Rahaud, et al. NAOS on-line characterization of turbulenceparameters and adaptive optics performance [J]. Pure Appl. Opt.,2004,6:585-596
    [25] V. V. Dudorov, V. V. Kolosov.Incoherent phase-compensated imaging based on a fieldscattered by rough surface[C]. Proc. SPIE,2010,7828:7828H
    [26] Gordon Lukesh, Susan Chandler, David Voelz.Estimation of laser system pointingperformance by use of statistics of return photons [J]. Appl. Opt.,2000,39(9):1359-1371
    [27] Mikhail A.Vorontsov, Valeriy Kolosov.Target-in-the-loop beam control: basic considerationsfor analysis and wave-front sensing [J]. J. Opt. Soc. Am. A,2005,22(1):126-141134
    [28] M. A. Vorontsov, V. V. Kolosov, A. Kohnle. Adaptive laser beam projection on an extendedtarget: phase-and field-conjugate precompensation [J]. J. Opt. Soc. Am. A,2007,24(7):1975-1993
    [29] Jan E. Kansky, Daniel V. Murphy. Uncooperative target-in-the-loop performance withbackscattered speckle-field effects[C]. Proc. SPIE,2007,6708:67080F
    [30] Perambur S. Neelakantaswamy, Arthur Rajaratram. Boresight error in the conical scan methodof autoboresighting a laser beam on a specular point-target [J]. Appl. Opt.1982,21(19):3607-3612
    [31] Ahmed Erteza.Boresighting a Gaussian beam on a specular target point: a method usingconical scan [J]. Appl. Opt.1976,15(3):656-660
    [32] J.F.Riker. Validation of active tracking laser beam propagation and target signature predictions[J]. Proc. SPIE.2002,45-56
    [33] J. F. Riker. Laser requirement for active tracking [J]. DLTR.1997.6-11
    [34] J. F.Riker. Active tracking with moderate power lasers [J]. Proc. SPIE2004,Vol.5552:123-132
    [35] J.F. Riker. Active tracking lasers for precision target stabilization [J]. Proc. SPIE. April2003
    [36] J.F.Riker. Validation of Active Tracking Laser Beam Propagation and Target SignaturePredictions [J]. Proc. SPIE.2002, paper4724-09
    [37] J.F.Riker. Air Force Research Laboratory Program in Active Tracking [J]. Proc. SPIE. Vol.5160143-152
    [38] J.F.Riker. Initial results from ATLAS active tracking experiments at SOR [J].28th WinterQuantum Electronics Colloquium at Snowbird.1998
    [39] Steven E. Lambersen. The Airborne Laser [J]. Proc. SPIE.2002, Vol.4632:1-9
    [40] J.F. Riker. An overview of the space-based laser program [J]. Proc. SPIE.2002,4632:181-186
    [41] J.F.Riker. Space based laser device requirements [J]. International Space DevelopmentConference.2001,NM
    [42] J.F.Riker. Requirements on active (laser) tracking and imaging from a technology perspective[J]. Proc. SPIE.2011, Vol.8052:1-22
    [43] J.F. Riker and J.T. Roark. The Absolute Radiometric Code (ARC)[J]. Proc. SPIE.1999
    [44] J.F. Riker, G.A.Crockett and R.L. Brunson. The time-domain analysis simulation for advancedtracking (TASAT)[J]. Proc. SPIE.1996, Vol.8052:02-21
    [45] J.F.Riker, R.Q.Fugate, T.Holcomb, J.Kann, B.H.Lowrey, A.C.Slavin, J.M.Spinhirne, A.L.Tuffli,J.Brown. Active tracking with moderate power lasers [J]. Proc. SPIE.2004
    [46] J.F.Riker. Tracking Overview [J]. DE PS Beam Control Conference, Monterey. March,2006
    [47] J.F.Riker. Results from Precision Tracking Tests Against Distant Objects [J]. Proc. SPIE2007,Vol.6569:1-11
    [48] J.F.Riker. TEM2004-07: Beam diameter at distant targets illuminated from Maui [J]. AirForce Research Laboratory, April2004NM
    [49] Michael K. Masten. Stabilization and Tracking Systems for Acquisition, Pointing, and ControlApplications [J]. SPIE Optical Engineering Press.1996, Volume MS123
    [50] J.F.Riker and J.T. Roark. Absolute Radiometric Code (ARC) Test Results from Starfire OpticalRange (SOR)[J]. SPIE Aerosense Conference, Orlando, Florida, April1999
    [51] J.F.Riker, J.T. Roark, D.F.Mikolajczak. Satellite Imaging Experiment tracking simulationresults [J]. Proc. SPIE.1994,Vol.2221:235-247
    [52] G.Lukesh, S.Chandler. Non-Imaging active system estimation of target shape through aturbulent medium[C]. Proc. SPIE,2000,4167:111-119
    [53] G. Lukesh, S. Chandler, C.Barnard. Estimation of satellite laser optical cross section: acomparison of simulation and field results[C]. Proc. SPIE,2001,4169:53-63
    [54] G. Lukesh, S. Chandler, D. Voelz. Analysis of satellite laser optical cross sections from theActive Imaging Testbed[C]. Proc. SPIE,2002,4538:24-33
    [55] S. Chandler, G. Lukesh, D. Voelz, S. Basu, J. A. Sjogren. Model-based Beam Control forIllumination of Remote Objects-Part I: Theory and Near Real-Time Feasibility[C]. Proc.SPIE,2004,5552:105-113
    [56] S. Basu, D. Voelz, S. Chandler, G. Lukesh, J. A. Sjogren. Model-based Beam Control forIllumination of Remote Objects-Part II: Laboratory Testbed[C]. Proc. SPIE,2004,5552:114-122
    [57] S. Chandler, G. Lukesh, D. Voelz, S. Basu, J. A. Sjogren. Model-based Beam Control forIllumination of Remote Objects[C]. Proc. SPIE,2004,5572:163-174
    [58] S. Chandler and G. Lukesh. An introduction to RHINO: real-time histogram interpretation ofnumerical observations[C]. Proc. SPIE,2005,6160:61600M
    [59] S. Chandler and G. Lukesh. RHINO: Real-time Histogram Interpretation of NumericalObservations [J]. Proc. SPIE.2006, Vol.6261:1-10
    [60] G. Lukesh, S. Chandler and L. Cuellar. Active Imaging Testbed: Radiometry and SatelliteOptical Cross Section Estimation [J]. Air Force Research Laboratory, Kirtland AFB.2001,1006-2001
    [61] G. Lukesh, S. Chandler and J. A. Sjogren. Non-imaging distinction of target shapes using arotating shaped beam[C]. Proc. SPIE,2005,5807:16-24
    [62] D. K. Borah, D. Voelz, S. Basu. Maximum-likelihood estimation of a laser system pointingparameters by use of return photon counts [J]. Appl. Opt.,2006,45(11):2504-2509
    [63] Santasri Basu, David Voelz, Susan Chandler and Gordon Lukesh. Adaptive Beam ControlBased on Return Statistics: Laboratory Real-Time Simulation [J]. Proc. SPIE.58950M:1-8
    [64] D. K. Borah, D. G. Voelz. Cramer-Rao lower bounds on estimation of laser beam pointingparameters by use of return photon signal [J]. Opt. Lett.,2006,31(8):1029-1031
    [65] D. K. Borah, D. G. Voelz. Estimation of laser beam pointing parameters in the presence ofatmospheric turbulence [J]. Appl. Opt.,2007,4(23):6010-6018
    [66] V. S. R. Gudimetla, J. F. Riker. Moment-matching method for extracting beam jitter andboresight in experiments with satellites of small physical cross section [J]. Appl. Opt.2007,46(23):5608-5616
    [67] V. S. Rao Gudimetla, Jim F. Riker. Moment-matching method for extraction of asymmetricbeam jitters and boresight errors in simulations and experiments with actively illuminatedsatellites of small physical cross section [J]. Appl. Opt.,2011,50(8):1124-1135
    [68]韩磊,任戈,周磊,向春生.回波信号积分法统计光束偏移误差[J].光电技术应用,2010,Vol.02
    [69]张宇.基于目标照明回光的瞄准控制技术研究[D].中科院光电技术研究所,2011
    [70]张宇,李新阳,饶长辉.基于目标照明回光的瞄准误差修正方法精度分析及实验验证[J].中国激光,2011,38(3):0402011
    [71]杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较[J].强激光与粒子束,2008,20(1):11-16
    [72]杨慧珍.无波前探测自适应光学随机并行优化控制算法及其应用研究[博士学位论文].成都:中国科学院光电技术研究所,2008
    [73]杨慧珍,李新阳.成像系统噪声对无波前探测自适应光学校正效果的影响[J].中国激光,2010,37(10):2520-2525
    [74]陈波,李新阳,姜文汉.大气湍流自适应光学随机并行梯度下降算法的优化[J].中国激光,2010,37(4):959-964
    [75] Zhang Yu, Li Xinyang, Rao Changhui. Modified moment-matching method for estimatingpointing parameters in the presence of atmospheric turbulence. Appl. Opt.2012,51(10):C144-C151
    [76] Ting-I Wang, JohnW.Strohbehn. Log-normal paradox in atmospheric scintillations [J]. Opt.Soc. Am,1974,64(5):583-591
    [77] Measured statistics of laser-light scattering in atmospheric turbulence [J]. J. Opt. Soc. Am.,1981,71(12):1440-1445
    [78] G. Parry. Measurement of atmospheric turbulence induced intensity fluctuations in a laserbeam [J]. Optica Acta,1981,28(5):715-728
    [79] James H. Churnside, R.G. Frehlich. Experimental evaluation of log-normally modulatedRician and IK models of optical scintillation in the atmosphere [J]. J. Opt. Soc. Am. A,1989,6(11):1760-1766
    [80] L. C. Andrews, R. L. Phillips, C. Y. Hopen, M. A. Al-Habash.Theory of optical scintillation[J].Opt. Soc. Am. A,1999,16(6):1417-1429
    [81] M. A. Al-Habash, L. C. Andrews. New Mathematical Model For The Intensity PDF of a LaserBeam Propagating Through Turbulent Media[C]. Proc. SPIE,1999,3706:103-110
    [82] M. A. Al-Habash, R. L. Phillips. Mathematical model for the irradiance probability densityfunction of a laser beam propagating through turbulent media [J]. Opt. Eng.2001,40(8):1554-1562
    [83] Frida Stromqvist Vetelino, Cynthia Young, Larry Andrews, Jaume Recolons. Apertureaveraging effects on the probability density of irradiance fluctuations in moderate-to-strongturbulence [J]. Appl. Opt.,2007,46(11):2099-2108
    [84]徐光勇.大气湍流中的激光传输数值模拟及其影响分析[D].电子科技大学,2008
    [85] Chapman S J. MATLAB Programing for Enginerrs [M]. Brooks/Cole. CA,2002
    [86]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].清华大学出版社,2010
    [87] Larry C.Andrews and Ronald L.philips. Laser Beam Propagation through Random Media [M].SPIE PRESS.2005
    [88]钱仙妹,饶瑞中.高斯光束大气闪烁空间分布的数值模拟研究[J].量子电子学报,2006,23(3):320-324
    [89] Hai-Xing Yan, Shu-Shan Li, De-Liang Zhang, She Chen. Numerical simulaiton of an adaptiveoptics system with laser propagation in the atmosphere [J]. Appl. Opt.,2000,39(18):3023-3031
    [90]乔春红,范承玉,王英俭,冯晓星,程东杰.高能激光大气传输的仿真实验研究[J].强激光与粒子束,2008,20(11):1777-1782
    [91]钱仙妹,朱文越,黄印博,饶瑞中.激光湍流大气传输数值模拟中计算参量的选取[J].光子学报,2008,37(10):1986-1991
    [92]钱仙妹,朱文越,饶瑞中.地面激光大气斜程传输湍流效应的数值模拟分析[J].红外与激光工程,2008,37(5):787-792
    [93] J. A. Fleck, Jr., J. R.Morris, M. D. Feit. Time-Dependent Propagation of High Energy LaserBeams through the Atmosphere [J]. Appl. Phys.,1976,10:129-160
    [94] J. A. Fleck, Jr., J. R. Morris, M. D. Feit. Time-Dependent Propagation of High-Energy LaserBeams through the Atmospher: II[R]. Rept. Lawrence Livermore Laboratory,1976,UCRL-52071
    [95] J.A.Fleck, Jr., J. R. Morris, M. D. Feit. Time-Dependent Propagation of High-Energy LaserBeams through the Atmospher: III[R]. Rept. Lawrence Livermore Laboratory,1976,UCRL-52377
    [96] Dennis L. Knepp. Multiple Phase-Screen Calculation of the Temporal Behavior of StochasticWaves [J]. Proc. IEEE,1983,71(6):722-737
    [97] J.M.Martin, Stanley M. Flatte, Intensity images and statistics from numerical simulation ofwave propagation in3-D random media [J]. Appl. Opt.,1988,27(11):2111-2126
    [98] Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky. Simulation of wave Propagation inthree-dimensional random media [J]. Appl. Opt.,1995,34(12):2089-2101
    [99]谢树茂,雷广玉,郑绍唐.聚焦强激光束大气传输的数值模拟[J].强激光与粒子数,1996,8(3):407-412
    [100] Juan Antonio Rubio, Aniceto Belmonte, Adolfo Comeron. Numerical simulation of long-pathspherical wave propagation in three-dimensional random media [J]. Opt. Eng.1999,38(9):1462-1469
    [101] Rod Frehlich. Simulation of laser propagation in a turbulent atmosphere [J]. Appl. Opt.2000,39(3):393-397
    [102]张飞舟.计算聚焦激光束传输的非自适应坐标变换[J].量子电子学报,2003,20(6):656-660
    [103]黄印博,王英俭.热晕效应数值模拟中对计算参数的选取[J].强激光与粒子束2005,17(1):1-4
    [104]张慧敏.激光大气传输湍流效应数值模拟的初步研究[硕士学位论文].成都:中国科学院光电技术研究所,2005
    [105]黄印博,王英俭.聚焦光束大气传输光束扩展定标规律的数值分析[J].物理学报,2006,55(12):6715-6719
    [106]吴晗玲,严海星,李新阳,李树山.基于畸变相位波前分析特征产生矩形湍流相屏[J].2008,29(1):114-119
    [107] J.M.Martin, Stanley, M.Flatte. Simulation of point-source scintillation through threedimensional random media [J]. J. Opt. Soc. Am. A,1990,7(5):838-847
    [108] R.G.Lane, A. Glindemann, J. C. Dainty. Simulaiton of a Kolmogorov phase screen [J]. Wavesin Random Media,1992,2:209-224
    [109] B. J. Herman, L. A. Strugala. Method of inclusion of low-frequency contributions innumerical representation of atmospheric turbulence[C]. Proc SPIE.1990,1221:183-192
    [110] Cressida M. Harding, Rachel A. Johnston, Richard G. Lane. Fast simulaiton of aKolmogorov phase screen [J]. Appl. Opt.,1999,38(11):2161-2170
    [111] V.V.Dudorov, M.A.Vorontsov. Speckle-field propagation in "frozen" turbulence: brightnessfunction approach [J]. J. Opt. Soc. Am. A,2006,23(8):1924-1936
    [112]王英俭,吴毅.扩展物体漫反射光传输及成像的数值模拟研究[J].光学学报,1998,18(10):1470-1472
    [113]吕乃光.傅立叶光学[M].北京:机械工业出版社,2006
    [114]刘明娜,王小强,吴毅,侯再红,张守川.湍流大气中激光聚焦光束后向散射的数值模拟[J].2005,17(12):1799-1802
    [115]张宇,李新阳,饶长辉.基于空间频率域滤波的漫反射光大气湍流传输数值仿真方法.光学与光电技术,2011,9(5):52-57
    [116]陆长明,饶长辉,黄惠明,邢强林.大气湍流光学长曝光像的数值计算[J].飞行器测控学报,2005,24(2):73-77
    [117]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2008,55-77
    [118](美)贝达特JS,皮尔索AG.相关分析及谱分析的工程应用(凌福根译)[M].北京:国防工业出版社,1983
    [119]李春明.优化方法.南京:东南大学出版社,2009
    [120]解可新,韩健,林友联.最优化设计.天津:天津大学出版社,2004
    [121]王广熊,何朕.控制系统设计[M].北京:清华大学出版社,2008,20-30
    [122] J. W.顾德门.统计光学(秦克诚等译)[M].北京:科学出版社,1992
    [123] Joseph W. Goodman. Speckle Phenomena in Optics-Theory and Applications (曹其智,陈家璧译)[M].北京:科学出版社,2008,89-158
    [124] E.M.Johansson, T.W.Lawrence, J.P.Fitch, and R.J.Sherwood. Simulating speckleinterferometryt [J]. Proc. SPIE Vol.1237,1990
    [125] Larry C.Andrews, Ronald L.Phillips, Cynthia Y.Hopen. Laser BeamScintillation withApplicatio [M]. SPIE: The International Society for Optical Engineering,2001
    [126]陈陆毅,杨华民,姜会林.大气光通信中大孔径接收性能分析与孔径尺寸选择[J].中国激光.2009,36(11)
    [127]许晓军,陆启生,舒柏宏,刘泽金,杜少军,郭少峰,赵伊君.激光照明的大气后向散射理论模拟和试验研究[J].红外与激光工程.2001,30(1)
    [128]邢超.激光回波信号采集技术[J].红外.2006,27(4)
    [129]熊飞,孙华燕,谷锁林.一种激光主动探测的回波信号检测方法[J].仪器仪表学报.2006,27(6)
    [130]方海涛,吴永华.激光雷达回波接收装置及控制方法[P].中国,发明专利,03113496.3
    [131]张珂殊,龚强,李芳菲.一种无扫描激光探测回波信号的接收方法及装置[P].中国,发明专利,200910082112.5,2009
    [132]陈慧敏,才德,程合蛟.基于偏振的收发一体化亚纳秒脉冲激光探测系统[P].中国,发明专利,201210188888.7,2012
    [133]唐义,张丽君,黄刚,倪国强,张宁,王雷.共孔径激光主动照明成像系统[P].中国,发明专利,201010271609.4,2010
    [134]张宏江.大气湍流中激光波束和脉冲传输特性[D]西安电子科技大学.2009
    [135]张永清,郑耿,李相银,伍仕宝.激光目标反射偏振特性及探测系统[J].南京理工大学学报.1998,22(4)
    [136]翟东升,伏红林,何少辉.漫反射激光测距特性研究[J].天文研究与技术.2009,16(11)
    [137]戴阳,程学武.目标反射特性与激光测距回波强度关系的研究[J].激光杂志.2007,28(3)
    [138]文晶娅,杨坤涛,章秀华.非合作目标相位式激光测距中目标漫反射特性的实验研究[J].光学与光电技术.2007,5(1)
    [139]张雷洪,杨艳,臧华国,胡善江,陈卫标,陆雨田.目标反射特性对激光测距的影响[J].中国激光.2008,35(7)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700