用户名: 密码: 验证码:
高频地波雷达海洋动力学参数反演与应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,基于电磁散射理论的不同频段无线电探测已经发展成为遥感探测领域不可或缺的高新技术。高频地波雷达作为超视距高频雷达的一种,利用高频电磁波(3-30MHz)具有沿地面绕射的地波传播模式能探测到视距之外的海面风、浪、流等海洋动力学状态参数信息,也能探测舰船、低空飞机等硬目标,因此,近几十年来世界各国都广泛高度重视。作为新兴无线电海洋遥感方式的一种,高频地波雷达因为其探测距离远、精度高、面积大、实时性强、不易受恶劣气候影响等特点,已经成为海洋立体化信息监测网中最重要的遥感工具之一。
     国内用于海洋环境监测的高频地波雷达在国家863计划的支持下,武汉大学相继完成了近、中程高频地波雷达、远程高频地波雷达、便携式高频地波雷达和多频率高频地波雷达的研制工作,雷达工作形式从单频向多频发展,工作体制从单基地向双/多基地发展,系统从传统雷达向全数字化雷达发展。对于高频地波雷达海洋环境监测技术,目前海流参数提取工作早已进入业务化观测阶段,而风、浪探测精度尚处于研究阶段,目前武汉大学承担的十二五863计划项目“分布式超视距雷达组网理论与技术研究”旨在解决风、浪探测问题,集成天-地波探测模式,在传统地波单基地模式下增加双/多基地分布式探测模式以及天-地波一体化探测模式,对近海区域实现精细化观测,对中、远海区域实现大面积覆盖观测。本文在十二五项目背景下展开高频地波雷达海洋动力学参数反演与应用研究,主要研究内容如下:
     1.高频地波雷达风、浪反演算法:针对阵列式高频地波雷达工程应用中风、浪探测问题,发展了经验式高频地波雷达风、浪参数反演算法,利用雷达探测区域内同步浮标的风、浪观测数据,对算法的模型参数进行了估计和稳定性分析;将该经验模型算法应用到实际地波雷达风、浪探测工程中,通过分析六个月的反演结果和“凤凰”台风期间海面风、浪的观测结果,进一步证实了文中算法的有效性。
     2.高频地波雷达海面有向浪高谱反演算法:针对高频地波雷达海洋探测中的波谱反演问题,介绍了从高频地波雷达海面回波谱中反演海面波谱的理论与方法,研究了基于正则化方法的海浪谱反演方法。文中对不适定问题、正则化理论与处理方法、Tikhonov正则化方法进行了论述,对利用L-曲线确定正则化参数,通过奇异值分解法来求解海浪谱的处理方式进行了介绍。通过正、反演数据模拟仿真和实测数据反演分析,表明了本文提出算法的有效性。
     3.高频地波雷达潮间带/浅滩水深探测方法:针对高频地波雷达在潮间带/浅海区域的探测应用问题,介绍了高频地波雷达浅海水深探测的理论与方法,研究了多站水深反演算法。文中推导了利用多站高频地波雷达回波多普勒谱中反演海洋重力波相速度、浅海水深和矢量流的理论模型。通过深水条件的相速度反演验证了理论的有效性;通过三站探测和多站浅海探测的反演数值模拟和实测数据分析,表明了多站浅海探测的可行性和反演方法的有效性。
     4.基于高频地波雷达的海上漂移物轨迹预测方法:针对高频地波雷达海洋工程应用问题,介绍了利用高频地波雷达探测的风、浪、流数据进行海面漂移物跟踪的方法。文中利用变频多功能高频地波雷达探测的矢量流数据,采用拉格朗日追踪法进行了海上漂移浮标的跟踪实验,跟踪轨迹与浮标上搭建的GPS记录轨迹具有较好的一致性。该实验表明了利用高频地波雷达对海上漂移物进行跟踪的有效性。另外文中还分析了跟踪误差产生的主要因素,尤其对风速引起的误差进行了重点分析。
During the last decades serveral radio wave detection systems working on different frequency bands have become useful tools for remote sensing research based on the electromagnetic scattering theory. As one kind of HF over-the-horizon radar, high frequency surface wave radar(HFSWR) in ocean remote sensing working on ground wave propagation mode takes advantage of low attenuation characteristic of high frequency electromagnetic waves (3MHz to30MHz) propagating across the ocean surface to measure the horizontal ocean dynamic parameters such as current, wind and wave, and also can monitor ship, airplane and iceberg. Vertical polarization antennas are used to transmit the electromagnetic waves. HFSWR is capable of all-weather remote sensing of large area ocean surface dynamics with relatively high precision, not influenced by adverse weather, based on which it has become one of the most important remote sensing tools for ocean information monitoring integration network.
     Radio Oceanography Laboratory of Wuhan University has developed short-range, middle-range, long-range HFSWR, portable HFSWR and multiple frequency HFSWR supported by Chinese High-Technology research and development program(863Plan Project) from1987in China. Till now the capability of currents detection has been considered satisfying the requirements for routine marine observations while wind and wave detection accuracy cannot satisfy the matched status. The Twelfth-Five-Year Chinese High-Technology863Plan Project under grant2012AA091701(Distribution HF Over the Horizon Radar Network Theory and Technology)under development is aim to solve wind and wave detection problem. In the plan, sky wave propagation mode, surface wave propagation mode, sky-surface wave combination propagation mode and bistatic detection mode are all take into consideration to realize in short-range sophisticated observation and long-range covered observation. This work studies ocean dynamic parameters inversion from HFSWR, wind, wave and shallow water depth included, and introduces some primary results using current, wind wave detected by HFSWR to support ocean engineering application. The details in this research are presented as follows.
     1.Firstly, the empireical models of wave and wind inversion from high frequency surface wave radar are proposed in this paper. Some modifications are introduced into the Barrick's model of significant waveheight inversion to improve its performances under the affection of noises and interferences and an empirical model of ocean surface wind speed and significant wave height relation is proposed by analysis data obtained by buoy in-situ observations at the coverage of radar beam. To figure out the unknown coefficients in the modified model, we apply the modified model to the significant waveheight calculations from HFSWR field data and then fitting them to the significant waveheight and wind speed results output from a wave buoy located in the radiating coverage of the radar site. The models'parameters are estimated by minimum standard Euclidean norm method from six months'buoy in-situ measuring data and the estimation result shows the model's stability. The empireical inversion models are applied to monitor wind and wave more than six months and the comparison with that from the buoy shows that the proposed model works with relatively satisfactory accuracy, especially at the period of typhoon Fung-Wong, which confirms the inversion models'validity.2. The Doppler spectra of the HFSWR sea echoes contain ocean wave spectra information. In this paper a Tikhonov regularization method for extracting ocean wave spectral from the Doppler spectra with HFSWR is proposed. The theory and technology of ill-posed problem, regularization and Tikhonov regularization are all introduced. The method is developed by introducing a regularization mathematics model to the discrete linearization integral equation based on the principle of HF radio wave ocean detecting. The resolution of discrete linearization integral equation is obtained by singular value decomposition (SVD) method and the regularization parameter is determined by L-Curve method involved by Hansen. Validity and accuracy of the proposed method are demonstrated by numerical simulation with different noise level both at single radar and two radars of the same coverage detecting which show good agreement:Non-directional spectra can be extracted from single radar and directional spectra can be obtained by two radars at the same coverage. Some preliminary results from measured data detected by HFSWR OSMAR071located at Longhai of Fujian province are also introduced. Further study is needed for the practical use of this method. It's promising for HFSWR wave inversion in application.
     3. Ocean surface parameters detection from the HFSWR currently all have assumption that the water depth is deep. At this situation, the Bragg ocean gravity wave phase velocity is independent of water depth and the Doppler frequency is only a function of radio frequency. But in fact, there is shallow water in the ocean which may cause uncertain about the ocean gravity wave phase velocity, especially at the near shore area and inner sublittoral zone closely related with people's lives. This will influence the accuracy of ocean surface dynamic parameters inversion from HFSWR Facing these difficulties, this paper studies the shallow water detection theory and method with HFSWR and a shallow water depth extraction method is proposed. In this paper, we deduced the theory model of for shallow water depth and vector current inversion from multiple sites high frequency surface wave radar(HFSWR) sea echo. By field data analysis at deep water condition, the ocean gravity wave phase velocity inversion is verified by comparison with theoretical velocity based on deep water dispersion relationship.We verified the proposed shallow water depth inversion method with three and more than three sites, which gives spirit prospects. By analyzing data collected from three HFSWRs detection experiment at Jiangsu north, the inversion results show good performance, which is perspective for extraction ocean water depth and dynamic parameters in inner sublittoral zone and shallow water by HFSWR in engineering application.
     4. In order to fullfil the HFSWR data enginerring application, the floater trajectory tracking method with wind,wave, current detected by HFSWR is introduced in this paper. A Multi-Frequency high frequency surface wave radar (HFSWR) field experiment was conducted to verify the accuracy of the drifter tracking trajectory at East China Sea. The currents measurement with HFSWR is validated by an Acoustic Doppler Current Profilers(ADCP) in-situ observation. By using Lagrange-tracking method, the drifter on the ocean surface is tracked with currents detected by two Multi-Frequency HFSWR. The tracking drifter trajectory shows good agreement with the GPS records which indicates that drifter tracking by HFSWR is valid. And the main factors, especially the wind speed affecting the tracking accuracy are discussed.
引文
[1]United Nations Convention on the Law of the Sea.1982.12.10
    [2]侍茂崇等.海洋调查方法[M].中国海洋大学出版社.2009.8
    [3]Martin S. An introduction to ocean remote sensing [M]. Cambridge University Press,2004.
    [4]Glenn S M, Dickey T D, Parker B, et al. Long-term real-time coastal ocean observation networks [J]. OCEANOGRAPHY-WASHINGTON DC-OCEANOGRAPHY SOCIETY-, 2000,13(1):24-34.
    [5]Schofield O, Glenn S M, Moline M A, et al. Ocean Observatories and Information:Building a Global Ocean Observing Network [M] Earth System Monitoring. Springer New York,2013: 319-336.
    [6]Liggins, Martin E., David L. Hall, and James Llinas, eds. Handbook of multisensor data fusion: theory and practice. Vol.22. CRC,2008..
    [7]Tucker C J, Sellers P J. Satellite remote sensing of primary production [J]. International journal of remote sensing,1986,7(11):1395-1416.
    [8]Ulaby F, Moore R, Fung A. Microwave remote sensing active and passing Volume 2:radar remote sensing and surface scattering and emission theory[J].1987.
    [9]Popescu A, Schorstein K, Walther T. A novel approach to a Brillouin-LIDAR for remote sensing of the ocean temperature [J]. Applied Physics B:Lasers and Optics,2004,79(8): 955-961.
    [10]Soulat F, Caparrini M, Germain O, et al. Sea state monitoring using coastal GNSS-R[J]. Geophysical Research Letters,2004,31(21):L21303.
    [11]Crombie D.D..Doppler spectrum of sea echo at 13.56Mc/s[J].Nature,1955,175:681-682
    [12]Barnes L. HF Radar:The Key to Efficient Wide Area Maritime Surveillance. Edition 3. London:ICG Publishing LTD.1998:115-118
    [13]Georges, T. M., G. D. Thome,1990:An Opportunity for Long-Distance Oceanographic and Meteorological Monitoring Using Over-the-Horizon Defense Radars. Bull. Amer. Meteor. Soc.,71,1990:1739-1745.
    [14]Khan R, Gamberg B, Power D, et al. Target detection and tracking with a high frequency ground wave radar[J]. Oceanic Engineering, IEEE Journal of,1994,19(4):540-548.
    [15]Dzvonkovskaya A, Gurgel K W, Rohling H, et al. Low power high frequency surface wave radar application for ship detection and tracking[C]//Radar,2008 International Conference on. IEEE,2008:627-632.
    [16]Blake T M. Ship detection and tracking using high frequency surface wave radar[C]//HF Radio Systems and Techniques, Seventh International Conference on (Conf. Publ. No.441). IET,1997:291-295.
    [17]Bourdillon A, Gauthier F, Parent J. Use of maximum entropy spectral analysis to improve ship detection by over-the-horizon radar[J]. Radio science,1987,22(2):313-320.
    [18]Wait J R. Theory of HF ground wave backscatter from sea waves[J]. Journal of Geophysical Research,1966,71(20):4839-4842.
    [19]Barrick D E. Theory of ground-wave propagation across a rough sea at dekameter wavelengths[R]. BATTELLE MEMORIAL INST COLUMBUS OH COLUMBUS LABS, 1970.
    [20]Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. Antennas and Propagation, IEEE Transactions on,1972,20(1):2-10.
    [21]Barrick, D.E..Remote Sensing of Sea State by Radar, Chapter 12 of Remote Sensing of the Troposphere, V.E. Derr, Editor, NOAA/Environmental Research Laboratories,12.1-12.6 (1972).
    [22]Barrick D E, Evans M W, Weber B L. Ocean surface currents mapped by radar [J]. Science (New York, NY),1977,198(4313):138.
    [23]Evans, M.W., and T.M. Georges. Coastal Ocean Dynamics Radar (CODAR):NOAA's Surface Current Mapping System, IEEE Oceans,'79, Conference Record,379-384 (1979).
    [24]Barrick, D.E., and B.J. Lipa. Ocean Surface Features Observed by HF Coastal Ground-Wave Radars:A Progress Review. Ocean Wave Climate, M.D. Earle and A. Malahoff, Plenum, New York, N.Y.,129-152(1979).
    [25]Lipa B, Barrick D. Least-squares methods for the extraction of surface currents from CODAR crossed-loop data:Application at ARSLOE[J]. Oceanic Engineering, IEEE Journal of,1983, 8(4):226-253.
    [26]Barrick D E.30 Years of CMTC and CODAR[C].//Proceedings of the IEEE/OES/CMTC 9th Working Conference on Current Measurement Technology.2008:131-136
    [27]Barrick D, Lipa B. An evaluation of least-squares and closed-form dual-angle methods for CODAR surface-current applications[J]. Oceanic Engineering, IEEE Journal of,1986,11(2): 322-326.
    [28]Paduan J D, Cook M S. Mapping surface currents in Monterey Bay with CODAR-type HF radar[J]. Oceanography,1997,10(2):49-52.
    [29]Kaplan D M, Largier J, Botsford L W. HF radar observations of surface circulation off Bodega Bay (northern California, USA)[J]. J. Geophys. Res,2005,110:C10020.
    [30]Emery B M, Washburn L, Harlan J A. Evaluating Radial Current Measurements from CODAR High-Frequency Radars with Moored Current Meters[J]. Journal of Atmospheric and Oceanic Technology,2004,21(8):1259-1271.
    [31]Gurgel K W, Antonischki G, Essen H H, et al. Wellen Radar (WERA):a new ground-wave HF radar for ocean remote sensing[J]. Coastal Engineering,1999,37(3):219-234.
    [32]Wyatt L R, Green J J, Middleditch A, et al. Operational wave, current, and wind measurements with the Pisces HF radar[J]. Oceanic Engineering, IEEE Journal of,2006, 31(4):819-834.
    [33]Wyatt L R, Ledgard L J. OSCR wave measurements-some preliminary results[J]. Oceanic Engineering, IEEE Journal of,1996,21(1):64-76.
    [34]Ponsford A M, Sevgi L, Chan H C. An integrated maritime surveillance system based on high-frequency surface-wave radars.2. Operational status and system performance[J]. Antennas and Propagation Magazine, IEEE,2001,43(5):52-63.
    [35]Teague C C, Vesecky J F, Hallock Z R. A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3[J]. Oceanic Engineering, IEEE Journal of,2001,26(3):399-405.
    [36]Barrick D E, Lilleboe P M, Lipa B J, et al. Ocean surface current mapping with bistatic HF radar:U.S. Patent 6,774,837[P].2004-8-10.
    [37]Belinda Lipa, Chad Whelan, Bill Rector,Bruce Nyden.HF Radar Bistatic Measurement of Surface Current Velocities:Drifter Comparisons and Radar Consistency Checks[J].Remote Sensing,2009,1:1190-1211.
    [38]Paduan J D, Kosro P M, Glenn S M. A national coastal ocean surface current mapping system for the United States[J]. Marine Technology Society Journal,2004,38(2):102-108.
    [39]Harlan, Jack; Terrill, Eric; Hazard, Lisa; Keen, Carolyn; Barrick, Donald; Whelan, Chad; Howden, Stephan; Kohut, Josh. The Integrated Ocean Observing System High-Frequency Radar Network:Status and Local, Regional, and National Applications[J] Marine Technology Society Journal,2010,44(6):122-132
    [40]Heron M L. The Australian coastal ocean radar network facility[C]//Electrical and Computer Engineering,2009. CCECE'09. Canadian Conference on. IEEE,2009:23-26.
    [41]Heron M L, Prytz A. HF radar role in an integrated ocean observing system[C]//OCEANS 2009-EUROPE. IEEE,2009:1-4.
    [42]Riddolls R J. Ship Detection Performance of a High Frequency Hybrid Sky-Surface Wave Radar[M]. Defence R&D Canada-Ottawa,2007.
    [43]Riddolls R J. Limits on the detection of low-doppler targets by a high frequency hybrid sky-surface wave radar system[C]//Radar Conference,2008. RADAR'08. IEEE. IEEE,2008: 1-4.
    [44]Peng L, Junmei F, Peinan J, et al. The operating frequency selection in HF hybrid sky-surface wave system[C]//Antennas Propagation and EM Theory (ISAPE),2010 9th International Symposium on. IEEE,2010:513-516.
    [45]吴雄斌,杨子杰,赵正予,等.分布式超视距雷达组网探测理论与技术[R]十二五863计划课题实施方案.2011.10.
    [46]Frazer G J, Abramovich Y I, Johnson B A. Spatially waveform diverse radar:Perspectives for high frequency OTHR[C]//Radar Conference,2007 IEEE. IEEE,2007:385-390.
    [47]Chen C Y, Vaidyanathan P P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms[J]. Signal Processing, IEEE Transactions on,2008,56(12): 5926-5936.
    [48]Riddolls R J, Ravan M, Adve R S. Canadian HF over-the-horizon radar experiments using MIMO techniques to control auroral clutter[C]//Radar Conference,2010 IEEE. IEEE,2010: 718-723.
    [49]Frazer G J, Abramovich Y I, Johnson B A. Multiple-input multiple-output over-thehorizon radar:experimental results[J]. Radar, Sonar & Navigation, IET,2009,3(4):290-303.
    [50]Thomas J M,Griffiths H D,Baker C J.Ambiguity function analysis of digital radio mondiale signals for HF passive bistatic radar. Electronics Letters.2006
    [51]Thomas J M, Baker C J, Griffiths H D. DRM signals for HF passive bistatic radar[C]//Radar Systems,2007 IET International Conference on. IET,2007:1-5.
    [52]Fabrizio G,Colone F,Lombardo P,et al.Passive Radar in the High Frequency Band. Proc of IEEERadar Conference.2008
    [53]Coleman C J,Watson R A,Yardley H.A PracticalBistatic Passive Radar System for Use with DAB and DRM Illuminators. Proc of IEEE Radar Conference.2008
    [54]Thomas J M, Baker C J, Griffiths H D. HF passive bistatic radar potential and applications for remote sensing[C]//New Trends for Environmental Monitoring Using Passive Systems,2008. IEEE,2008:1-5.
    [55]Liu Y, Xu R, Zhang N. Progress in HFSWR research at Harbin Institute of Technology[C]//Radar Conference,2003. Proceedings of the International. IEEE,2003: 522-528.
    [56]Yinsheng W, Yongtan L. New anti-jamming waveform designing and processing for HF radar[C]//Radar,2001 CIE International Conference on, Proceedings. IEEE,2001:281-284.
    [57]郭汝江,袁业术,权太范.高频地波雷达飞行小目标跟踪方法研究[J].电子学报,2005,33(9):1586-1589.
    [58]侯杰昌.侯杰昌,吴世才,等.海洋表面流的高频雷达遥感[J]地球物理学报,1997,40(01):18-26.
    [59]杨子杰,吴世才.高频地波雷达总体方案及工程实施中的几个主要问题[J].武汉大学学报:理学版,2001,47(5):513-518.
    [60]吴世才,杨子杰,文必洋,等.高频地波雷达的东海试验[J].武汉大学学报(理学版),2001,47(1).
    [61]吴雄斌,杨绍麟,程丰,等.高频地波雷达东海海洋表而矢量流探测试验[J].地球物理学报,2003,46(3):340-346.
    [62]Liu L, Wu X, Cheng F, et al. Algorithm for HF radar vector current measurements[J]. Journal of oceanography,2007,63(1):47-66.
    [63]Yan S, Wu X, Chen Z. Remote sensing with TDMF radar:some preliminary results[J]. Progress In Electromagnetics Research Letters,2010,14:79-90.
    [64]Li L, Wu X, Yan S, et al. Drifter trajectory tracking experiment and analysis with multi-frequency HFSWR in the East China Sea[J]. Wuhan University Journal of Natural Sciences,2011,16(6):541-547.
    [65]Wu X, Li L, Shao Y, et al. Experimental determination of significant waveheight by OSMAR071:Comparison with results from buoy[J]. Wuhan University Journal of Natural Sciences,2009,14(6):499-504.
    [66]吴雄斌,李伦,李炎,等.高频地波雷达海面有效波高探测实验研究[J].海洋与湖沼,2012,43(2).
    [67]吴雄斌,李伦,杨子杰,等.高频地波雷达现状与发展趋势,第十届全国电波传播学术讨论年会论文,武汉,2009.11.
    [68]Li Lun,Wu Xiongbin, Liu Bin, Long Chao,Shen Zhiben. Test of HFSWR OSMAR071 Synchronization Network Detecting.2010 2rd International Conference on Information。 Electronic and Computer Science (ICIECS2010) Shan Dong.China,2010.
    [69]焦培南,杨龙泉,凡俊梅.短波天波反射/地波绕射组合新传播模式及其可能应用[J].电波科学学报,2007,22(5):746-750.
    [70]杨龙泉,凡俊梅,蔚娜,等.天波/地波组合传播模式下一阶海杂波特性分析[J].电波科学学报,2012,4:014.
    [71]刘春波,陈伯孝,陈多芳,等.岸-舰双基地高频地波雷达一阶海杂波特性分析[J].电波科学学报,2007,22(4):599-603.
    [72]陈伯孝,陈多芳,张红梅,等.双/多基地综合脉冲孔径地波雷达的信道化接收技术研究[J].电子学报,2006,34(9):1566-1570.
    [73]Wang Y F, I.E.Stepanova, V.N.Strakhov, A.G,Yagola. Inverse Problems in Geophysics and Solution Methods. Beijing:Higher education press,2011
    [74]王彦飞.反演问题的计算方法及其应用.[M]北京:;高等教育出版社.2007.
    [75]王家映.地球物理反演理论(第二版)[M].北京:高等教育出版社.2002.
    [76]杨文采.非线性地球物理反演方法:回顾与展望.地球物理学进展,2002,17(2):255-261
    [77]Srivastava S, Walsh J. An analysis of the second-order Doppler return from the ocean surface[J]. Oceanic Engineering, IEEE Journal of,1985,10(4):443-445.
    [78]Walsh J, Dawe B J. Development of a model for the first order bistatic ocean clutter radar cross section for ground wave radars[J].1994.
    [79]Gill E W, Walsh J. Ground wave radiation from slightly rough, good conducting surfaces[J]. Radio Science,2000,35(6):1323-1335.
    [80]Gill E W, Walsh J. High-frequency bistatic cross sections of the ocean surface[J]. Radio Science,2001,36(6):1459-1475.
    [81]Gill E, Huang W, Walsh J. On the development of a second-order bistatic radar cross section of the ocean surface:A high-frequency result for a finite scattering patch[J]. Oceanic Engineering, IEEE Journal of,2006,31(4):740-750.
    [82]Walsh J, Huang W, Gill E. The first-order high frequency radar ocean surface cross section for an antenna on a floating platform[J]. Antennas and Propagation, IEEE Transactions on,2010, 58(9):2994-3003.
    [83]Walsh J, Huang W, Gill E. The Second-order High Frequency Radar Ocean Surface Cross Section for an Antenna on a Floating Platform[J].2011.
    [84]Walsh J, Ryan B, Gill E, et al. Further analysis of the modulation of high frequency radar spectra due to sea-induced antenna platform motion[C]//OCEANS 2010 IEEE-Sydney. IEEE, 2010:1-4.
    [85]Wyatt L R, Green J J, Middleditch A. Wave, current and wind monitoring using HF radar[C]//Current Measurement Technology,2005. Proceedings of the IEEE/OES Eighth Working Conference on. IEEE,2005:53-57.
    [86]Li Lun, Wu Xiongbin, Xu Xing'an, Liu Bin,Long Chao; Ocean gravity wave phase velocity detection by HFSWR [J] IEICE Electron. Express, Vol.9, No.7, pp.724-730, (2012).
    [87]吴雄斌,刘斌,李伦,等.一种基于双频高频地波雷达的浅海水深测量方法[P].201210005542.92012/01/10.发明专利
    [88]Wu Xiongbin, Li Yan, Li Lun, Shen Zhiben. Remote Sensing of Sea Surface Conductivity Distribution by HF Surface Wave Radar. The 1st Ocean Radar Conference for Asia,17-18 May 2012, Mayfield Hotel, Seoul, Korea
    [89]Rice S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Commun. Pure Appl. Math.,1951,4.
    [90]Barrick, D.E., Lipa, B.J. The second-order shallow water hydrodynamic coupling coefficient in interpretation of HF radar sea echo. IEEE Journal of Oceanic Engineering, vol.11, pp.310-315,1986.
    [91]Lipa, B. J., and D. E. Barrick (1986), Extraction of sea state from HF radar sea echo: Mathematical theory and modeling, Radio Science.,21(1),81-100
    [92]Belinda Lipa, Bruce Nyden, Don Barrick and Josh. Kohut, "HF Radar Sea-echo from Shallow Water," Sensor, vol.8, pp.4611-4635,2008.
    [93]Liu L, Wu X, Cheng F, et al. Algorithm for HF radar vector current measurements [J]. Journal of oceanography,2007,63(1):47-66.
    [94]Schmidt R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, vol.24, no.3, pp.276-280,1986.
    [95]Long A E, Trizna D B. Mapping of North Atlantic winds by HF radar sea backscatter interpretation. IEEE Trans Antennas Propagation,1973, AP-21:680-685
    [96]Stewart R H, Barnum J R. Radio measurements of oceanic winds at long ranges:An evaluation. Radio Sci,1975,10(10):853-857
    [97]Heron M L, Rose R J. On the application of HF ocean radar to the observation of temporal and spatial changes in wind direction. IEEE J Oceanic Eng,1986, OE-11(2):210-218
    [98]Hasselmann,K., Determination of ocean-wave spectra from Doppler radio return from the sea surface. Nature,1971,299:16-17
    [99]Barrick D E. Extraction of Wave Parameters from Measured HF Radar Sea-Echo Doppler Spectra. Radio Science,1977,12(3):415-424
    [100]Maresca Jr J W, Georges T M. Measuring rms wave height and the scalar ocean wave spectrum with HF skywave radar[J]. Journal of Geophysical Research,1980,85(C5): 2759-2771.
    [101]Heron S F, Heron M L. A comparison of algorithms for extracting significant wave height from HF radar ocean backscatter spectra[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(5):1157-1163.
    [102]Wyatt L R, Green J J, Middleditch A. Signal sampling impacts on HF radar wave measurement[J]. Journal of Atmospheric and Oceanic Technology,2009,26(4):793-805.
    [103]Ramos R J, Graber H C, Haus B K. Observation of wave energy evolution in coastal areas using HF radar[J]. Journal of Atmospheric and Oceanic Technology,2009,26(9):1891-1909.
    [104]Haus B K, Shay L K, Work P A, et al. Wind speed dependence of single-site wave-height retrievals from high-frequency radars [J]. Journal of Atmospheric and Oceanic Technology, 2010,27(8):1381-1394.
    [105]Lipa B. Derivation of directional ocean-wave spectra by integral inversion of second-order radar echoes[J]. Radio Science,1977,12(3):425-434.
    [106]Lipa B. Inversion of second-order radar echoes from the sea[J]. Journal of Geophysical Research,1978,83(C2):959-962.
    [107]Wyatt L. R. The Measurement of the Ocean Wave Directional Spectrum from HF Radar Doppler Spectra. Radio Science,1986,21(3):473-485
    [108]Wyatt L R. A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum[J]. international Journal of remote sensing,1990,11(8): 1481-1494.
    [109]Howell R, Walsh J. Measurement of Ocean Wave Spectra Using Narrow-Beam HF Radar. IEEE Journal of Oceanic Engineering,1993,18(2):296-305
    [110]Hisaki Y. Nonlinear inversion of the integral equation to estimate ocean wave spectra from HF radar[J]. Radio Science,1996,31(1):25-39.
    [111]HASHIMOTO N, TOKUDA M. A Bayesian approach for estimation of directional wave spectra with HF radar[J]. Coastal Engineering Journal,1999,41(02):137-149.
    [112]Hashimoto N, Wyatt L R, Kojima S. Verification of a Bayesian method for estimating directional spectra from HF radar surface backscatter[J]. Coastal Engineering Journal,2003, 45(02):255-274.
    [113]Hisaki Y. Ocean wave directional spectra estimation from an HF ocean radar with a single antenna array:Methodology[J]. Journal of Atmospheric and Oceanic Technology,2006,23(2): 268-286.
    [114]Hisaki Y. Ocean wave directional spectra estimation from an HF ocean radar with a single antenna array:Observation[J]. Journal of geophysical research,2005,110(C11):C11004.
    [115]Hisaki Y. Quality control of surface wave data estimated from low signal-to-noise ratio HF radar Doppler spectra[J]. Journal of atmospheric and oceanic technology,2009,26(11): 2444-2461.
    [116]Green J J, Wyatt L R. Row-Action Inversion of the Barrick-Weber Equations. Journal of Atmospheric and Oceanic Technology,2006,23(3):501-510
    [117]Wyatt L R, Green J J. Measuring high and low waves with HF radar[C]//OCEANS 2009-EUROPE. IEEE,2009:1-5.
    [118]Shen W, Gurgel K W, Voulgaris G, et al. Wind-speed inversion from HF radar first-order backscatter signal[J]. Ocean Dynamics,2012,62(1):105-121.
    [119]Ahearn J L, Curley S R, Headrick J M. Tests of remote skywave measurement of ocean surface conditions. Proc IEEE,1974,62(6):681-687
    [120]Gaffard C, Parent J. Remote sensing of wind speed at sea surface level using HF skywave echoes from decametric waves. Geophys Res Lett,1990,17(5):615-618
    [121]Stewart R H, Barnum J R. Radio measurements of oceanic winds at long ranges:An evaluation. Radio Sci,1975,10(10):853-857
    [122]Stewart R H, Barnum J R. Measurement of oceanic wind speed from HF sea scatter by skywave radar. IEEE Trans Antennas Propagation,1977, AP-25:132-136
    [123]Dexter P E, Casey R. Ocean windfield mapping at long ranges with an HF radar. Aust Meteorol Mag,1978,26:33-44
    [124]Vesecky J F, Drake J, Laws K, et al. Using multifrequency HF radar to estimate ocean wind fields[R]. CALIFORNIA UNIV SANTA CRUZ,2005.
    [125]Mao Y, Heron M L. The influence of fetch on the response of surface currents to wind studied by HF ocean surface radar[J]. Journal of Physical Oceanography,2008,38(5): 1107-1121.
    [126]Green D, Gill E, Huang W. An Inversion Method for Extraction of Wind Speed From High-Frequency Ground-Wave Radar Oceanic Backscatter[J]. Geoscience and Remote Sensing, IEEE Transactions on,2009,47(10):3338-3346.
    [127]万显荣.基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J].雷达学报,2012,1(2):109-123.
    [128]Archer M R, Martinez-Pedraja J, Shay L K, et al. Application of High Frequency (HF) Radar and the Okubo-Weiss Parameter to Analyze Submesoscale Variability in the Florida Current[J]. 2012.
    [129]Fontan A, Esnaola G, Saenz J, et al. Variability in the air-sea interaction patterns and time-scales within the Southeastern Bay of Biscay, as observed by HF radar data[J]. Ocean Sci. Discuss,2012,9:2793-2815.
    [130]Gopalakrishnan G, Blumberg A F. Assimilation of HF radar-derived surface currents on tidal-timescales[J]. Journal of Operational Oceanography,2012,5(1):75-87.
    [131]Kuang L, Blumberg A F, Georgas N. Assessing the fidelity of surface currents from a coastal ocean model and HF radar using drifting buoys in the Middle Atlantic Bight[J]. Ocean Dynamics,2012:1-15.
    [132]Abascal A J, Castanedo S, Fernandez V, et al. Backtracking drifting objects using surface currents from high-frequency (HF) radar technology[J]. Ocean Dynamics,2012:1-17.
    [133]Stanev E V, Schulz-Stellenfleth J, Staneva J, et al. Coastal Ocean State Estimates and Forecasts based on HF Radar Data[C]//EGU General Assembly Conference Abstracts.2012, 14:6606.
    [134]Lipa B, Isaacson J, Nyden B, et al. Tsunami Arrival Detection with High Frequency (HF) Radar[J]. Remote Sensing,2012,4(5):1448-1461.
    [135]Lipa B, Barrick D, Diposaptono S, et al. High Frequency (HF) Radar Detection of the Weak 2012 Indonesian Tsunamis[J]. Remote Sensing,2012,4(10):2944-2956.
    [136]Lipa B, Isaacson J, Nyden B, et al. Lipa, B. et al. Tsunami Arrival Detection with High Frequency (HF) Radar. Remote Sens.2012,4,1448-1461 [J]. Remote Sensing,2012,4(11): 3363.
    [137]Gurgel K W, Schlick T, Figueroa D, et al. Observing the 2011 Honshu Tsunami at the Coast of Chile by HF radar[C]//EGU General Assembly Conference Abstracts.2012,14:7584.
    [138]Shirasawa K, Ebuchi N, Lepparanta M, et al. Ice-edge detection from Japanese C-band radar and high-frequency radar coastal stations[J]. Annals of Glaciology,2013,54(62):59.
    [139]Donncha F O, Ragnoli E, Zhuk S, et al. Surface flow dynamics within an exposed wind-driven bay:Combined HF radar observations and model simulations[C]//Oceans,2012. IEEE,2012:1-8.
    [140]Archer M R, Martinez-Pedraja J, Shay L K, et al. Application of High Frequency (HF) Radar and the Okubo-Weiss Parameter to Analyze Submesoscale Variability in the Florida Current[J]. 2012.
    [141]朱大勇,李立,李炎,等.台湾海峡西南部表层海流季节变化的地波雷达观测.科学通报,2008,(11):1339-1344.
    [142]李炎,吴祥柏,邵浩.台湾浅滩底床阻力特征的HF地波雷达观测与思考[C].厦门.2009:4-5
    [143]徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社.2001
    [144]侯一筠,文圣常.三参量的风浪频谱[J].海洋与湖沼,1990,21(6):495-504.
    [145]Longuet-Higgins M S, Cartwright D E. and Smith N D.Observations of the directional spectrum of sea waves using the motions of a floating buoy [C]//Ocean wave spectra: proceedings of a conference. Prentice-Hall,1963:111.
    [146]Phillips O M. On the generation of waves by turbulent wind[J]. Journal of fluid mechanics, 1957,2(05):417-445.
    [147]Mitsuyasu H, Tasai F, Suhara T, et al. Observations of the directional spectrum of ocean waves using a cloverleaf buoy[J]. J. Phys. Oceanogr.,1975,5:751-761.
    [148]Hasselmann D E, Dunckel M, Ewing J A. Directional wave spectra observed during JONSWAP 1973[J]. Journal of Physical Oceanography,1980,10(8):1264-1280.
    [149]Donelan M A, Hamilton J, Hui W H, et al. Directional spectra of wind-generated waves[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1985,315(1534):509-562.
    [150]Johnstone D L. Second-order electromagnetic and hydrodynamic effects in high-frequency radio-wave scattering from the sea[R]. STANFORD UNIV CA STANFORD ELECTRONICS LABS,1975.
    [151]焦培南,张忠治.雷达环境与电波传播特性[M].北京:电子工业出版社,2007.
    [152]Weber B L, Barrick D E. On the nonlinear theory for gravity waves on the ocean's surface. Part I:Derivations[J]. Journal of Physical Oceanography,1977,7(1):3-10.
    [153]Barrick D, Lipa B. The second-order shallow-water hydrodynamic coupling coefficient in interpretation of HF radar sea echo[J]. Oceanic Engineering, IEEE Journal of,1986,11(2): 310-315.
    [154]Bremmer H. Applications of operational calculus to ground-wave propagation, particularly for long waves[J]. Antennas and Propagation, IRE Transactions on,1958,6(3):267-272.
    [155]Wait J R. The ancient and modern history of EM ground-wave propagation[J]. Antennas and Propagation Magazine, IEEE,1998,40(5):7-24.
    [156]Barrick D E. Theory of HF and VHF propagation across the rough sea,1, The effective surface impedance for a slightly rough highly conducting medium at grazing incidence[J]. Radio Sci,1971,6(5):517-526.
    [157]Barrick D E, Lipa B J, Lilleboe P M, et al. Gated FMCW DF radar and signal processing for range/doppler/angle determination:U.S. Patent 5,361,072[P].1994-11-1.
    [158]Barrick D E, Lipa B J. Radar angle determination with MUSIC direction finding:U.S. Patent 5,990,834[P].1999-11-23.
    [159]Guinvarc'h R, Gillard R, Uguen B, et al. Improving the Azimuthal Resolution of HFSWR With Multiplicative Beamforming[J]. Geoscience and Remote Sensing Letters, IEEE,2012, 9(5):925-927.
    [160]吴雄斌,程丰.一种利用海洋回波进行阵列通道校正方法[P].CN1566983.2005.1.19
    [161]Xiongbin W, Feng C, Zijie Y, et al. Broad beam HFSWR array calibration using sea echoes[C]//Radar,2006. CIE'06. International Conference on. IEEE,2006:1-3.
    [162]Bin L, Xiongbin W, Lun L, et al. Array calibration method for gain-phase errors based on asynchronous interstation direct wave interference[J]. IEICE Electronics Express,2012,9(6): 450-457.
    [163]Long Chao, Wu Xiongbin, Liu Bin, Li Lun, Xu Xing'an; Array Calibration for Mutual Coupling Errors of High-frequency Surface Wave Radar [J] IEICE Electron. Express, Vol.9, No.8, pp.731-738, (2012).
    [164]刘斌.分布式高频地波雷达阵列误差有源校准[D].武汉大学,2012.
    [165]龙超.高频地波雷达阵列优化与校正算法研究[D].武汉大学,2012.
    [166]Barnum J R, Simpson E E. Over-the-horizon radar sensitivity enhancement by impulsive noise excision[C]//Radar Conference,1997., IEEE National. IEEE,1997:252-256.
    [167]Fabrizio G A, Abramovich Y I, Anderson S J, et al. Adaptive cancellation of nonstationary interference in HF antenna arrays[C]//Radar, Sonar and Navigation, IEE Proceedings-. IET, 1998,145(1):19-24.
    [168]Riddolls R J, Adve R S. Two-dimensional adaptive processing for ionospheric clutter mitigation in high frequency surface wave radar[C]//Radar Conference,2009 IEEE. IEEE, 2009:1-4.
    [169]Howell R., Khandekar M. Measuring Ocean Surface Wave Using HF Ground Wave Radar: Validation Against a Wave Model [J]. Canadian J. Remote Sensing.1993,19(1):102-109.
    [170]Wyatt L. R., Green J. J. The Availability and Accuracy of HF Radar Wave Measurements [C]//Geoscience and Remote Sensing Symposium,1GARSS'02,2002:515-517.
    [171]Wyatt L R. High order nonlinearities in HF radar backscatter from the ocean surface[C]//Radar, Sonar and Navigation, IEE Proceedings-. IET,1995,142(6):293-300.
    [172]Wyatt L R. Limits to the inversion of HF radar backscatter for ocean wave measurement [J]. Journal of Atmospheric and Oceanic Technology,2000,17(12):1651-1666.
    [173]Wyatt L R, Liakhovetski G, Graber H C, et al. Factors affecting the accuracy of Showex HF radar wave measurements [J]. Journal of Atmospheric and Oceanic Technology,2005,22(7): 847-859.
    [174]Wyatt L R, Green J J, Middleditch A. HF radar data quality requirements for wave measurement[J]. Coastal Engineering,2011,58(4):327-336.
    [175]Li L, Wu X, Li Y, et al. Ocean surface wind and wave monitoring at Typhoon Fung-Wong by HFSWR OSMAR 071 [J]. Yaogan Xuebao- Journal of Remote Sensing,2012,16(1):154-165.
    [176]Wang Y F. Regularization for inverse models in remote sensing. Progress in Physical Geography,2012,36 (1),38-59
    [177]王彦飞.地震波干涉偏移及预条件正则化最小二乘偏移成像方法对比.地球物理学报,2013,56(1):230-238
    [178]Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. New York:John Wiley and Sons,1977
    [179]Bakushinsky A, Goncharsky A. Ill-posed problems:theory and applications[M]. Kluwer Academic Pub.,1994.
    [180]Hansen P C. Regularization tools:A Matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical algorithms,1994,6(1):1-35.
    [181]刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社.2008.
    [182]Kirsch A. An introduction to the mathematical theory of inverse problems[M]. Springer, 2011.
    [183]Optimization and regularization for computational inverse problems and applications[M]. Springer,2011.
    [184]Hansen P C. Analysis of discrete Ill-problems by means of the L-curve. SIAM Review.1992,34:561-580
    [185]Hansen P C. The Use of the L-Curve in the Regularization of Discrete Ill-posed Problems, SIAM J. Science Compute,1993,14:1487-1503
    [186]Yuan Y. Gradient methods for large scale convex quadratic functions[J]. Optimization and regularization for computational inverse problems and applications,2011:141-155.
    [187]Maresca J W, Carlson C T. High-Frequency Skywave Radar Measurements of Hurricane Anita[J]. Science,1980,209(4462):1189-1196.
    [188]王永良,彭辉等.空间谱估计理论与算法[M].北京:清华大学出版社.2004.
    [189]陈江.高频地波雷达海流反演的算法与实验研究[D].武汉大学硕士论文.2005.
    [190]Ou Yang. Drift Model for Ship out of Control at Sea [D]. Dalian:Navigation College, Dalian Maritime University,2008(Ch).
    [191]Hu Zhiwu, Zhang Qiurong, Gu Weiguo. Prediction technique of drifting course of disabled ships[J]. Marine technology,2007,3:18-21.
    [192]Israelsson P H, Kim Young Do, Adams E E. A comparison of three Lagrange approaches for extending near field mixing calculations[J]. Environmental Modelling & Software,2006, 21(12):1631-1649.
    [193]Liu Y, Weisberg, R H, Hu C, et al. Tracking the deepwater horizon oil spill:A modeling perspective[J]. EOS Transactions, American Geophysical Union,2011,92(6):45-46.
    [194]Ullman, D. S., J. O'Donnell., et al, Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties[J]. JOURNAL OF GEOPHYSICAL RESEARCH,2005,11:1-14.
    [195]Ana J. A, Sonia C., and et al, Application of HF radar currents to oil spill modeling[J]. Marine Pollution Bulletin,2009,58:238-248.
    [196]Barrick D, Fernandez V, Ferrer M I, et al. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network[J]. Ocean Dynamics,2012:1-16.
    [197]Whelan C, Barrick D, Kjelaas A. Development of the rapidly deployable HF radar for oil spill response[C]//OCEANS,2012-Yeosu. IEEE,2012:1-4.
    [198]Frolov S, Paduan J, Cook M, et al. Improved statistical prediction of surface currents based on historic HF-radar observations[J]. Ocean Dynamics,2012:1-12.
    [199]Yu P, Kurapov A L, Egbert G D, et al. Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon[J]. Ocean Modelling,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700