用户名: 密码: 验证码:
颅面统计复原关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅面复原以颅骨和面貌之间的内在生长变化规律为依据,推断未知颅骨的本来面貌,在考古学、法医学和医学整形等领域有重要的应用价值。基于统计理论的颅面复原方法比传统复原方法更具科学性和客观性,己成为近年来颅面形态学与颅面复原研究的热点。本文以国家自然科学基金重点项目“颅面形态学与颅面重构的研究”为背景,综合运用图像图形处理技术、多元统计分析理论以及法医人类学知识,以获取颅骨与面皮的形态关系统计规律为主线,深入研究颅面统计复原中分类模型库构建、特征点定位、点对应关系建立、颅面形态关系统计建模及面貌复原等关键技术。主要研究成果包括:
     1.颅面断层图像的三维表面模型重建:针对活体颅面样本CT数据的颅面模型表面重建问题,研究了力场优化的GVF-Snake改进模型,给出了GVF-Snake改进模型与射线法相结合的表面重建算法,提高了颅面外轮廓提取的准确度;模拟自然人眼观察三维物体的过程,提出了基于广度遍历与多视点可见性检测的重建算法,基本实现了颅面模型表面重建过程的自动化。
     2.颅面模型库的建立:提出了基于OLS线性回归的坐标校正方法,实现了颅面模型Frankfurt坐标系的准确建立;给出了基于生理对称性的网格修补算法及改进的基于邻接面法向约束的层进式破洞填充算法,实现了保持颅面孔洞区域曲面一致性的修补;提出了基于VTK的模型切割算法,给出基于Level-Set的网格简化算法,实现了对颅面模型的高效切割与简化;采用人类学分类方法对颅面样本进行分类。
     3.颅面特征点定位:根据颅面生理构造特征定义了颅面特征点集,提出了分类模板指导与层次筛选结合的基于多尺度特征相似距离的特征点定位方法。该方法以分类模板为指导建立初步候选点集,然后利用法向与局部统计特征相似性逐层筛选获得有效候选集,再根据基于体积积分不变量的多尺度特征相似距离定位特征点,提高了特征点定位的准确度,有效实现了颅面模型中关键特征点的自动定位。
     4.颅面三维模型点对应关系的建立:引入多特征加权距离约束,改进了基于ICP配准的颅面点对应算法;引入顶点间局部相对位置几何约束,提出了分区变形与多重约束结合的面皮层次点对应算法,以及TPS整体变形与多重约束结合的颅骨点对应算法。实验表明,本文方法提高了点对应的准确度,实现了具有局部生理形态几何特征一致性的颅面点对应关系的建立。
     5.颅面形态关系统计建模及面貌复原:研究构建基于PCA的颅面形状联合统计模型,并将其应用于未知颅骨的面貌复原,结合实验结果指出了其缺陷;将偏最小二乘回归(PLSR)引入到颅面复原中,提出了基于PLSR的颅面局部形态统计回归模型构建方法,提出了基于PLSR的颅面统计复原方法;提出了基于对应点集相似度的复原方法评估算法,并采用该算法对这两种复原方法进行了评估。实验结果表明,基于PLSR的颅面统计复原方法提高了复原的准确度。
Craniofacial reconstruction, which is used to infer the original appearance of the unknown skull based on the inherent law between skull and appearance, has significant application value in the fields such as archeology, forensic medicine and medical plastic. Statistical craniofacial reconstruction method is more scientific and objective than traditional reconstruction methods, and it has recently become a research focus in craniofacial morphology and reconstruction. With the support of "The researches on Craniofacial Morphology and Craniofacial Reconstruction"(key project of National Nature Science Foundation), comprehensively applying image and graphics processing technology, the theory of multivariate statistical analysis, and forensic anthropological knowledge, this dissertation, which aims to explore the statistical laws of the morphological relationship between skull and face, deeply researched key techniques on statistical craniofacial reconstruction, including the construction of3D craniofacial model database, the location of feature points, the establishment of physiological consistent correspondence for craniofacial models, the statistical modeling on craniofacial morphological relationship and its application in craniofacial reconstruction. The main contributions of this dissertation are as following:
     1. Surface reconstruction of craniofacial models based on CT images is researched. Aiming at surface reconstruction of craniofacial models based on3D CT images of living samples, the improved GVF-Snake model whose parameters are optimized by force field of Gradient Vector Flow(GVF), which improves the accuracy of the craniofacial outer contour extraction, is researched. A contour-based craniofacial model reconstruction algorithm in which the improved GVF-Snake model and ray method are combined is put forward. Simulating the process of human eye observing3D objects, a new craniofacial model reconstruction algorithm based on Breadth First Search(BFS) algorithm of graph and multi-view visibility detection is proposed, by which automatic and efficient surface reconstruction of craniofacial models is basically realized.
     2. The construction of3D craniofacial model database including skulls and faces is also researched. A coordinates correction approach based on Ordinary Least Square(OLS) linear regression is proposed, by which Frankfurt Coordinate system of craniofacial model is established accurately. A3D mesh repair algorithm for craniofacial model based on the physiological symmetry and improved layer-by-layer pulsive hole-filling algorithm for repairing defective craniofacial model based on normal constraint of adjacent triangular faces, which enable consistent curvature between the filled meshes and its surrounding, are presented.3D model cutting algorithms based on VTK and mesh simplification algorithm based on level-set method are present, and efficient cutting and simplifying of craniofacial model are realized. A classified3D craniofacial model database is established by adopting anthropological classification method.
     3. The location of feature points is researched. Two sets of feature points of skull and face are defined according to craniofacial physiological structural characteristics, and a new feature points location method for skull and face based on Multi-scale Geometric Features Similarity Distance(MGFSD), employing classified feature points template and hierarchical screening process, is proposed. At first, the Preliminary Candidate Set(PCS) of feature points is established under the guidance of classified feature points template. Next, the Effective Candidate Set(ECS) is obtained from PCS by hierarchical screening process based on similarities of normals and local statistical characteristics of corresponding feature points. Finally, according to MGFSD based on volume integral invariants, the optimal candidate in ECS can be determined as feature points. It improves the location accuracy of feature points, and automatic location of the key feature points in craniofacial model is effectively realized.
     4. The establishment of physiological consistent correspondence of3D craniofacial models is researched. The ICP-based correspondence algorithm for craniofacial models is improved by introducing the weighted distance constraint of multiple features. A hierarchical3D facial correspondence method based on regional deformation and multi-constraint and a3D cranial correspondence method based on global TPS deformation and multi-constraint are proposed by introducing local relative position geometric constraint. Experimental results demonstrate our methods improve the correct rates of correspondence substantially and can establish physiological correspondence with similar local shape between craniofacial models effectively.
     5. Statistical modeling on craniofacial morphological relationship and its application in craniofacial reconstruction is deeply researched. Firstly, the construction of the combined craniofacial shapes statistical model based on PCA is researched and the combined model is applied into craniofacial reconstruction, whose defects are pointed out according to the experimental results. Secondly, introducing partial least squares regression(PLSR) into craniofacial reconstruction, the statistical regression model of local craniofacial morphological correlation is first put forward, and a new statistical craniofacial reconstruction method based on this PLSR model is proposed. Thirdly, an evaluation algorithm based on the similarity of corresponding point sets is present in this dissertation and applied in the evaluations of the two craniofacial reconstruction methods. Experimental result demonstrates the new statistical craniofacial reconstruction method based on PLSR can improve the reconstruction accuracy substantially.
引文
[1]M.M.格拉西莫夫.从头骨复原面貌的原理[M].北京:科学出版社,1958.
    [2]Thorsten M. Buzug. Special Issue on Computer Assisted Craniofacial Reconstruction and Modeling[J]. Journal of Computing and Information Technology,2006,1:1-6.
    [3]周文峰.颅骨面相复原三部曲[J].检察风云,2004,2:46-49.
    [4]W.A. Aulsebrook, M.Y. iscanb, J.H. Slabbert, et al. Superimposition and reconstruction in forensic facial identification:a survey[J]. Forensic Science International,1995, Vol.75:101-120.
    [5]张继宗.法医人类学(第2版)[M].北京:人民卫生出版社.1999.
    [6]Gruner, Oskar. Forensic Analysis of the Skull[M]. Wiley-Liss, Inc., New York,1993.29-45.
    [7]Hajime Utsuno, Tooru Kageyama, Toshio Deguchi, et al. Facial soft tissue thickness in Japanese female children[J]. Forensic Science,2005,101-107.
    [8]Carl N. Stephan. Ellie K. Simpson. Facial Soft Tissue Depths in Craniofacial Identification (Part I):An Analytical Review of the Published Adult Data[J]. Forensic Sci,2008, Vol.53, No.6:1257-1272.
    [9]Carl N. Stephan. Ellie K. Simpson. Facial Soft Tissue Depths in Craniofacial Identification (Part II):An Analytical Review of the Published Sub-Adult Data[J]. Forensic Sci,2008, Vol.53, No.6:1273-1279.
    [10]G. Quatrehomme. A fully three-dimensional method for facial reconstruction based on deformable models[J]. Journal of Forensic Science,1997, Vol.42(2):649-652.
    [11]L.A. Nelson, et al. The application of volume deformation to three-dimensional facial reconstruction:a comparison with previous techniques[J], Forensic Science International,1998, vol.94:167-181.
    [12]M.W. Jones. Facial reconstruction using volumetric data[C], Proceedings of the 6th International Vision Modeling and Visualization Conference, Stutgart,2001,135-150.
    [13]Maxime Berar, Michel Desvignes, G'erard Bailly, et al.3D Semi-Landmarks-Based Statistical Face Reconstruction[J]. Journal of Computing and Information Technology,2006,14(1):31-43.
    [14]Sven De Greef, D.D.s., Guy Willems, et al. Three-dimensional Cranio-Facial Reconstruction in Forensic Identification:Latest Progress and New Tendencies in the 21st Century[J]. Journal of Forensic
    Science,2005,50(1):12-17.[15]周明全,耿国华,范江波.计算机辅助的颅骨面貌复原技术[J].西北大学学报:自然科学版,1997,27(5):375-378.
    [16]Philips VM, Smuts NA. Facial reconstruction utilization of computerized tomography tomeasure facial tissue thickness in a mixed racial population[J]. Forensic Sci. Int.,1996,83(1):51-9.
    [17]LI Hua-ming, ZHOU Ming-quan, GENG Guo-hua. Rapid pose estimation of Mongolian faces using projective geometry[C], IEEE Computer Society,The 33rd Applied Imagery Recognition Workshop (APR 2004).
    [18]Manhein MH. In vivo facial tissue depth measurements for children and adults[J]. J. Forensic Sci. 2000,45:48-60.
    [19]S.De Greef, P.Claes, D.Vandermeulen, et al. Large-scale in-vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction[J]. Forensic Science International,2006, Volume 159, Supplement, Pages S126-S146.
    [20]Monica Domaracki. and Carl N. Stephan, Facial Soft Tissue Thicknesses in Australian Adult CadaversfJ]. J Forensic Sci,2006, Vol.51(1),5-10.
    [21]兰玉文.颅像重合法研究与应用[M].北京:群众出版社.1999.
    [22]VETTER T, JONES M J, POGGIO T. A boost strapping algorithm for learning linear models of object classes[C]. In:Proceedings of 1997 Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997:40-47.
    [23]FENG Jun, HORACE H S IP, LAP YI LAI, et al. Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions[J]. Image and Vision Computing, 2008,26(6):761-775.
    [24]胡永利,尹宝才,谷春亮等.基于形变模型的三维人脸重建方法及其改进[J].计算机学报,2005,28(10):1671-1679.
    [25]Bookstein F L. Principal warps:Thin-plate splines and the decomposition of deformations[J]. IEEE Trans. Pattern Anal. Mach. Intel,1989, 11(6):567-585.
    [26]BESL P J, MCKAY N D. A method for registr-ation of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine,1992,14(2):239-256.
    [27]Yongli Hu, Mingquan Zhou and Zhongke Wu. A Dense Point-to-Point AlignmentMethod for Realistic 3D FaceMorphing and Animation. International Journal of Computer Games Technology-Special issue on cyber games and interactive entertainment,2009,9 pages.
    [28]Peter Claes, Dirk Vandermeulen, Sven De Greef, et al. Computerized craniofacial reconstruction: Conceptual framework and review[J]. Forensic Science International,2010, Vol.201(1-3):138-145.
    [29]Simon D. Michael. Computer Aided Facial Reconstruction for Forensic Identification. Volume Graphics, Min Chen, Arie E. Kaufman and Roni Yagel (Eds.), Springer, London,2000.
    [30]P. Vanezis, R.W. Blowes, A.D. Linney, et. al. Application of 3-D computer graphics for facial reconstruction and comparison with sculpting techniques[J]. Forensic Sci. Int.1989,42:69-84.
    [31]ARCHER, K. M. Craniofacial Reconstruction using hierarchical B-Spline Interpolation[D]. Master's thesis, Vancouver, University of British Columbia,1997.
    [32]Kolja Kahler, et al. Reanimating the Dead:Reconstruction of Expressive Faces from Skull Data[J]. ACM Trans. Graphics (Proc. SIGGRAPH 2003),2003,22(3),554-561.
    [33]Dirk Vandermeulen, Peter Claes, Dirk Loeckx, et al. Computerized craniofacial reconstruction using CT-derived implicit surface representations[J]. Forensic Science International,2006,159:164-174.
    [34]Cootes T F, Taylor C J, Cooper D, at al. Active Shape Models-their training and application[J]. Computer Vision and Image Understanding,1995,16(1):38-59.
    [35]T.F.Cootes, G J.Edwards, CJ.Taylor, Active Appearance Models[C], In Proceeding of European Conf. Computer Vision,1998,2:484-498.
    [36]Jun Feng, Horace H. S. Ip, Shuk H. Cheng et al. A Relational-Tubular (ReTu) Deformable Model for Vasculature Quantification of Zebrafish Embryo from Microangiography Image Series[J], Computerized Medical Imaging and Graphics,2004, Vol.28(6):333-344.
    [37]Jun Feng, Horace H. S Ip. Iterative 3D Point-Set Registration based on Hierarchical Vertex Signature (HVS)[C]. MICCAI 2005, Lecture Notes in Computer Science 3750,279-286.
    [38]Maxime Berar, Michel Desvignes and G'erard Bailly etal.3D Semi-Landmarks Based Statistical Face Reconstruction, Journal of Computing and Information Technology [J], CIT 14,2006,1:31-43.
    [39]Maxime Berar, Michel Desvignes and Gerard Bailly, et al. Statistical 3D Cranio-Facial Models[C]. Sixth IEEE International Conference on Computer and Information Technology (CIT'06),2006, pp.125.
    [40]DICOM3.0, Digital Imaging and Communications in Medicine[S]. America:International Electrical Commission,1993.
    [41]M Kass, A Wit kin, D Terzopoulos. Snake:Active contour models[J]. International Journal of Computer Vision,1988,1(4):321-331.
    [42]Xu Chenyang, Prinee J L. Snakes, shapes, and gradient vector flow[J]. IEEE Trans, on Image Processing,1998,7(3):359-369.
    [43]李天庆,张毅,刘志,胡东成Snake模型综述[J],计算机工程,2005,Vol.31(9):1-3.
    [44]宋亮.CT数据预处理与三维重建[D].西安:西北大学,2009.
    [45]曹之江.面向个性化服装定制的三维人体测量研究[D].上海:东华大学.2008.
    [46]DJ Williams, M Shab. A fast algorithm for active contours and curvature estimation[J]. CVGIP:Image understanding,1992,55(1):14-26.
    [47]冈萨雷斯.数字图像处理(MATLAB版)[M].北京:电子工业出版社.2005.
    [48]Christiansen H M, Sederberg T W. Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics[J]. Computer Graphics,1978,12(2):187-192.
    [49]Keppel E. Approximation Complex Surfaces by Triangulation of Contour Lines [J]. IBM Journal Res. Develop,1975, V19(1):2-10.
    [50]Fuchs H, Kedem Z M, Uselton S P. Optimal Surface Reconstruction from Planar Contours [J]. Communication of the ACM,1977, Vol.20 (10):693-702.
    [51]Ganapathy S, Dennehy T G. A New General Triangulation Method for Planar Contours[J]. Computer Graphics,1982, V16(3),69-75.
    [52]王菲.轮廓线提取和基于轮廓线的颅面模型重建算法研究[D].西安:西北大学,2010.
    [53]Lorensen W.E, Cline H.E. Marching Cubes:A High Resolution 3D Surface Construction AlgorithmfA]. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH)[C], New York:ACM,1987:163-169.
    [54]Montani C, Scateni R, Scopigno R. Discredited Marching Cubes[J]. In Proceedings of the Visualization,1994:281-287.
    [55]William J.S, Kenneth M.M, Li Sa. The VTK User's Guide[M]. New York:Kitware,2001.
    [56]www.cgal.org
    [57]www.openmesh.org
    [58]Mantyla M. An Introduction to Solid Modeling[M]. Computer Science Press, Rockville, MD,1988.
    [59]Kettner L. Using generic programming for designing a data structure for polyhedral surfaces[J]. Comput. Geom. Theory Appl.,1999,13:65-90.
    [60]Kaufman A, Cohen D, Yagel R. Volume graphics[J].IEEE Computer,1993,26:51-64.
    [61]Kaufinan A., Reuven Bakalash. Memory and processing architecture for 3D voxel-based imagery[J]. IEEE Computer Graphics & Applications,1998,8(6):10-23.
    [62]Jung-hong Chuang, Weun-jier Hwang. A New space subdivision for ray tracing CSG solids [J], IEEE Computer Graphics,1995,15(6):56-62.
    [63]吴晓军,刘伟军,王天然.基于八叉树的三维网格模型体素化方法[J].工程图学学报,2005,4:1-4.
    [64]Jones M W, Satherley R.Voxelisation:modeling for volume graphics[M]. In:Girod B, Greiner G, Niemann H,H.-P.Seidel(eds.),Vision,Modeling,and Visualization, IOS Press,2000,319-326.
    [65]Bradley, Christopher J. The Algebra of Geometry:Cartesian, Areal and Projective Co-ordinates[M]. Bath:High perception.2007.
    [66]T Moller, A Fast Triangle-Triangle Intersection Test[J]. Journal of Graphics Tools,1997.
    [67]李康.基于颅骨的人脸建模技术研究及在法医面貌复原中的应用[D].西安:西北大学,2006.
    [68]王慧文.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,2006.
    [69]Philip Schneider and David Eberly. Geometric Tools for Computer Graphics[M]. Morgan Kaufmann. 2002.
    [70]Licpa Peter. Filling Holes in Meshes[A]. Proceedings of the Euro Graphics/ACM SIGGRAPH Symposium on Geometry Processing[C]. Germany Publisher Euro Graphics Association,2003:200-205.
    [71]Chong C.S, Kumar A.S, Lee H.P. Automatic Mesh-Healing Technique for Model Repair and Finite Element Model Generation[J]. Finite Elements in Analysis and Design,2007:1109-1119.
    [72]Gen Li, Xiu Zi, San Yuan. An Algorithm for Filling Holes Complex Holes in Reverse Engineering^. Engineering with Computers,2008,24:119-125.
    [73]Jianning Wang, and Manuel M. Oliveira.Filling holes on locally smooth surfaces reconstructed from point clouds[J]. Image and Vision Computing.2007,25(1):103-113.
    [74]成欣.三维曲面破洞技术研究[D].西安:西北大学,2006.
    [75]刘燕武.基于DICOM医学数据的缺损颅骨修复技术研究应用[D].西安:西北大学,2009.
    [76]Pernot J.P, Moraru G Filling Holes in Meshes Using a Mechanical Model to Simulate the Curvature Variation Minimization[J]. Computers & Graphics,2006, Vol.30(4):892-902.
    [77]Cialet P.G The Finite Element Method for Elliptic Problem[M]. Amsterdam,1978:301-302.
    [78]王群,李爱平,马淑梅.局部网格狭长三角形的品质改善及其实现[J].同济大学学报(自然科学版),2004,Vol.32(11):1508-1511.
    [79]XIAO Shuang-jiu, ZHANG Sun-sheng.The date of disorderly point triangulation integrate improved and analyzed[J]. China Mechanical Engineering,2001,13(19):1666-1668.
    [80]CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions, In:Proceedings of the 28th annual conference on Computer graphics and interactive techniques,2001:67-76.
    [81]杜佶,张丽艳,王宏涛等.基于径向基函数的三角网格曲面空洞修补算法[J].计算机辅助设计 与图形学学报,2005,17(9):1976-1980.
    [82]J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces[J]. Lecture Notes in Mathematics, Berlin:Springer-Verlag,1977,85-100,
    [83]Davis J, Marschne S.R, Carr M, et al. Filling Holes in Complex Surfaces Using Volumetric Diffusion[A]. First International Symposium on 3D Data Processing[C], Italy:Padua,2002:428-438.
    [84]Jin Xiaogang, Sun Hanqiu, Peng Qunsheng. Subdivision Interpolation Implicit Surfaces[J]. Computers & Graphics,2003, V27(5):763-772.
    [85]贺毅岳,耿国华,周明全等.基于VTK的三维模型切割研究[J].计算机应用研究,2010,27(11):4322-4327.
    [86]WILLIAM JS, KENNETH MM, LISA. The VTK user's guide[M]. New York:Kitware,2001,96-97.
    [87]王晓强,周明全,耿国华.一种三维颅骨表面标志点平滑移动的方法[J].计算机工程,2004,30(17):61-62.
    [88]刘奇,周明全,刘晓宁.一种基于标志点的三维表面模型的切割方法闭.计算机应用研究,2007,24(2):163-164.
    [89]刘力强,周明全,耿国华.一种平行透视下的三维拾取方法[J].西北大学学报,2002,32(1):39-42.
    [90]王勇,马立元,王忠强.四元数法在计算机图形中的应用[J].军械工程学院学报,2001,13(2):48-51.
    [91]Schroeder W J, Zarger J a, Lorensen W E. Decimation of triangle meshes[J], Computer Graphics,1992, 26(2):65-70.
    [92]Hoppe H, DeRose T. Mesh optimization[J]. Computer Graphics,1993,27:19-26.
    [93]Eck M, DeRose T, Duchamp T. Multiresolution analysis of arbitrary meshes[C]. In:Proceedings of Los Angeles, ACM Press,1995,173-182.
    [94]M.Garland, Y. Zhou. Quadric-based Simplification in any Dimension[C]. ACM Transactions on Graphics,2005,24(2):209-216.
    [95]Osher S, Fedkiw R, Fedkiw,Ronald P. Level Set Methods and Dynamic Implicit Surfaces[M]. Berlin: Springer-Verlag,2002.
    [96]Zhao H. Implicit and nonpararnetric shape reconstruction from unorganized data using a variation level set method[J]. Computer Vision and Image Understanding,2001,80(3):295-314.
    [97]潘青,徐国良.曲面变形的水平集方法[J].计算机学报,2009,32(2):213-220.
    [98]姚军生,李然,魏伟波等.曲面扩散的变分水平集方法[J].计算机仿真,2010,27(4):240-224.
    [99]刘涛,张大龙.一种新颖的快速水平集初始化方法[J].中国图像图形学报,2010,15(5):776-781.
    [100]王孟阳.基于知识库的分区插值颅面复原方法研究与实现[D].西安:西北大学,2010.
    [101]Yingjie Wang, Chin-Seng Chua, Yeong-Khing. Facial feature detection and face recognition from 2D and 3D images[J]. Pattern Recognition Letters,23(2002):1191-1202.
    [102]Chenghua Xu, Tieniu Tana, Yunhong Wang, et al. Combining local features for robust nose location in 3D facial data[J]; Pattern Recognition Letters,2006, Vol.27(13):1487-1494.
    [103]Lucia Ballerini, Marcello Calisti, Oscar Cordon. Automatic Feature Extraction from 3D Range Image of Skull[C]. International Workshop on Computational Forensics. Berlin:Springer-Verlag.2008,58-69.
    [104]ISO/IEC JTC1/SC29/WG11 Document N3908, MPEG4 Video Verification Model version 18.0[S], 2001.
    [105]Dave Shreiner. OpenGL Programming Guide [M]. America:Addison-Wesley Professional,2009.
    [106]G Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximationfC]. In:WEL Grimson ed. Proceedings of International conference on Computer Vision, Los lamitos:IEEE Computer Society Press,1995:902-907.
    [107]神会存,周来水,安鲁陵等.曲面三角网格模型顶点法矢计算与交互分割[J].计算机辅助设计与图形学学报,2005,17(5):1031-1033.
    [108]Pottmann H, Wallner J, Huang Q.X., et al. Integral invariants for robust Geometry Processing[J]. Computer Aided Geometric Design,2009:37-60.
    [109]S. Manay, B.-W. Hong, A. J. Yezzi, and S. Soatto. Itegral invariant signatures[C], in Proceeds of ECCV 2004. Springer,2004.
    [110]D. Hulin and M. Troyanov. Mean curvature and asymptotic volume of small ballsfJ], Amer. Math. Monthly,2003,110:947-50.
    [111]H. Pottmann, J. Wallner, Y.-L. Yang, et al. Principal curvatures from the integral invariant viewpoint[J]. comput. Aided Geom. Design,2007,24:428-442
    [112]Huang Q X, Flory S, Gelfand N, et al. Reassembling Fractured Objects by Geometric Matching[C], Siggaph'06,2006,569-578.
    [113]BESL P J, MCKAY N D. A method for registr-ation of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine,1992,14(2):239-256.
    [114]SALVI J, MATABOSCH C, FOFI D. A review of recent range image registration methods with accuracy evaluation[J], Image and Vision Comput-ing,2007,25:578-596.
    [115]BRETT A D, HILL A, TAYLOR C J. A method of 3D surface correspondence and interpolation for merging shape examples[J], Image and Vision Computing,1999,17(8):635-642.
    [116]DAVIES R H, TWINING C J, TAYLOR C. Groupwise surface correspondence by optimizat-ion: Representation and regularization[J]. Medical Image Analysis,2008,12 (6):787-796.
    [117]MIAN A S, BENNAMOUN M, OWENS R A, et al. Automatic Correspondence for 3D Modeling: An Extensive Review[J]. International Journal of Shape Modeling,2005,11(2):253-292.
    [118]Hao Li, ROBERT W S, MARK P. Global Correspondence Optimization for Non-Rigid Registration of Depth Scans[C]. In:Proceedings of the Sixth Eurographics Symposium on Geometry Processing,2008, Vol.27, Issue 5.
    [119]MYRONENKO A, SONG X, CARREIRA-PERPINAN M. Nonrigid point set registration:Coherent point drift[C], In:Advances in Neural Information Processing Systems. Cambridge, MA:MTTPress,2007.
    [120]胡永利,尹宝才,谷春亮等.基于形变模型的三维人脸重建方法及其改进[J].计算机学报,2005,28(10):1671-1679.
    [121]FENG Jun, HORACE H S IP, LAP YI LAI, et al. Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions[J]. Image and Vision Computing, 2008,26(6):761-775.
    [122]白茹意,周明全,邓擎琼.基于ICP和CPD的颅骨自动配准算法[J].计算机技术与发展,2011,V21(2):120-126.
    [123]张彦飞,基于分区的颅面统计重建算法研究与实现[D].西安:西北大学,2010.
    [124]MEYER M, DESBRUN M, SCHRODER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds[J], Visualization and Mathematics,2002:35-57.
    [125]Yi Yue He, Guo Hua Geng, Ming Quan Zhou, et al. Hierarchical Correspondence of 3D Faces based on Thin Plate Spline Deformation (HCTD)[J]. Advanced Materials Research (Advanced Mechanical Design),2012, Vols.479-481:2235-2241.
    [126]Matthew Turk, Alex Pentlad. Eigenfaces for Recognition[M]. New York:Sprinser-verlag,1989.
    [127]Jun Feng and Horace H. S. Ip, A Multi-resolution Statistical Deformable Model (MISTO) for Soft-Tissue Organ Reconstruction, Pattern Recognition,2009,42(7):1543-1558.
    [128]Peter Tu. Automatic Face Recognition from Skeletal Remains. Computer Vision and Pattern Recognition, CVPR'07,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700