用户名: 密码: 验证码:
FRP加固含缺陷钢结构的破坏力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(FRP)的抗拉强度是钢的2-10倍,是一种被广泛应用的新型高性能材料。FRP加固钢结构技术,具有不产生次生应力和缺陷、耐久性好、施工方便、维护费用低等优点,备受工程界关注。然而,FRP加固含缺陷的钢结构中,除了构件加固前就存在的缺陷外,粘结层是最薄弱的部位,粘结层的破坏将导致FRP剥离,并最终造成整个加固结构的失效。为此,本研究针对FRP加固含缺陷钢结构的两个最薄弱部位:FRP与钢结构的粘结界面、以及缺陷体局部,分别以碳纤维板(CFRP板)与钢板试件的粘结界面、以及碳纤维薄板(CFL)加固钢板试件中的三维表面裂纹为研究对象,采用理论推导、数值分析与实验相结合的方法,对上述CFRP片材加固含缺陷钢结构的破坏机理进行力学分析。主要研究内容及结论如下:
     1) CFRP与钢板的粘结界面应力计算公式的理论推导。建立了CFRP加固钢板的双剪模型,通过理论推导,给出了CFRP与钢板之间的界面剪应力和正应力、以及有效粘结长度等的计算公式,并讨论了界面剪应力的分布规律,探讨了剪应力与界面破坏机理的关联性。理论分析结果表明,钢板的几何尺寸、界面层的剪切模量和厚度、FRP片材和钢板的弹性模量、FRP片材的厚度等是界面粘结强度及影响加固效果的主要因素。
     2)利用大型商用软件ANSYS,建立了CFRP板加固钢板的双剪有限元分析模型,模拟CFRP板加固钢板的双剪实验过程及其受力状态,重点探讨了实验过程中CFRP板与钢板之间的粘结界面的剪应力变化及分布情况,并将有限元的界面剪应力计算结果与本文提出的理论公式的计算结果进行了对比分析。计算结果表明,界面剪应力的有限元计算结果与理论值基本吻合。这从一个侧面证明了本文提出的界面剪应力理论计算公式的有效性。
     3) CFRP板加固钢板的双剪实验研究。采用ASTM D3166和ISO9644中推荐使用的Single Lap Joint型钢板与CFRP搭接接头,实施了CFRP板与钢板之间的粘结界面的双剪实验,测定了CFRP板与钢板之间的界面剪应力,分析了CFRP板与钢板粘结界面的应力分布、界面应力的传递特点,探讨了界面的粘结剪切破坏过程及破坏特征。研究结果表明, CFRP板与钢板之间的界面剪应力的实测结果与本文公式的理论计算值以及有限元计算结果都吻合得较好。这进一步验证了本文理论计算公式的有效性。
     4) CFL加固受拉钢板中三维表面裂纹的应力强度因子的数值分析。首先,建立了三维半椭圆表面裂纹应力强度因子的有限元分析模型,探寻适合断裂力学分析的裂纹前缘网格划分的方法,优化模型及计算参数,并采用Newman-Raju公式验证了该数值方法的计算精度。然后,建立了受拉CFL加固含三维表面裂纹钢板的有限元分析模型,探讨了裂纹参数、加固方式和CFL参数对表面裂纹的应力强度因子的影响,提出了加固试件应力强度因子的半经验计算公式,探讨了拉伸载荷下CFL加固含缺陷钢结构的破坏机理。
     5) CFL受弯加固钢板中三维表面裂纹的应力强度因子的数值分析。建立了受弯CFL加固含三维表面裂纹钢板的有限元分析模型,探讨了裂纹参数、加固方式和CFL参数对表面裂纹的应力强度因子的影响,提出了在弯曲载荷作用下加固试件应力强度因子的半经验计算公式,探讨了弯曲载荷下CFL加固含缺陷钢结构的破坏机理。研究结果表明,细长的浅裂纹是钢结构中最危险的缺陷,而采用FRP片材对含该类缺陷的钢结构进行加固是非常有效的先进技术。
The tensile strength of fiber reinforced composites (FRP) is2-10times of that of the steel.FRP strengthening technology applied to the steel structures has achieved great concern for itsadvantages of free from the secondary stress and defects, good durability, easy constructionand low maintenance costs. But within the body of cracked steel structure strengthened withFRP, the bonding layer is the weakest part other than the initial defect of the steel structure.Damage of the bonding layer will result the debonding of FRP and ultimately caused thefailure of the entire strengthened structure. Therefore, this research focused on the twoweakest parts of FRP strengthened cracked steel structures:1) the bonding layer between FRPand steel structures,2) the initial defect local detail. The bonding layer between CFRP plateand steel plate specimen, the three-dimensional surface crack of the carbon fiber laminates(CFL) strengthened cracked steel plate specimen, are separately taken as the objects for theinvestigation on the mechanical property of the strengthened body. Compositive researchmethod of theoretical derivation, numerical analysis and experiment was employed to conductthe mechanical analysis of the failure mechanism of the CFRP strengthened cracked steelstructures. The main research content and conclusions were summarized as bellow:
     1) Establishement of the theoretical derivation of stress calculation formula of bondinglayer between CFRP and steel plate.
     The bi-shear model of steel plate strengthened with CFRP was constructed. Thecalculation formulas of shear stress, normal stress and effective bonding length of the bondinglayer were established. The shear stress distribution in the boding layer was also discussed.The relation of shear stress and failure mechanism of bonding interface was analysized.Theoretical analysis results showed that the size of steel plate, shear modulus and thickness ofbonding layer, elastic modulus of FRP and steel plate, thickness of FRP were the main factorsinfluence the bonding strength and strengthening effect.
     2) Finite element analysis on the stress distribution within the bonding layer.
     Bi-shear finite element model (FEM) was set up with ANSYS v10.0for the mechanicalanalysis of steel plate strengthened with CFRP. The FEM was used to simulate test processand stress state within the bi-shear specimen of steel plate strengthened with CFRP. Variation and distribution of interface shear stress in bonding layer between CFRP plate and steel platewere essentially studied. The interface shear stress result obtained from both the FEM and theabove theoretical formula were analyzed and compared. It was showed that the results of thetheoretical formula and FEM were basically consistent. This proved the effectiveness of thetheoretical method proposed in this paper for the calculation of bonding shear stress.
     3) Experimental study on the bi-shear specimen of CFRP strengthened steel plate.
     The CFRP and steel plate bonding specimen charaterized with Single Lap Jointrecommended in ASTM D3166and ISO9644was made to conduct bi-shear tests on thebonding layer between CFRP plate and steel plate. Interface shear stress between CFRP plateand steel plate was determined through the test. The stress distribution and the stress transfercharacteristics of the bonding layer were analyzed, and then, the interface shearing failureprocess and damage characteristics were discussed. The research showed: the interface shearstress obtained from the test, theoretical formula and FEM agreed well. This is a further proofto the effectiveness of the theoretical formula proposed in this paper.
     4) Numerical analysis on the stress intensity factor of three-dimensional surface crackin steel plate strengthened with CFL under tension load.
     First, the FEM of three-dimensional semi-elliptical surface crack was established toanalyze the stress intensity factor. The crack front meshing method for fracture mechanicsanalysis was explored, the model and calculation parameters were optimized. The calculationaccuracy of the FEM method was checked with the reference of Newman-Raju formula. Then,the FEM of steel plate with three-dimensional surface crack and strengthened with CFL undertension load was established to investigate the influences of crack parameters, strengtheningmethod and CFL parameters on the stress intensity factor of surface crack. A semi-empiricalcalculation formula of stress intensity factor of strengthened specimen was proposed. Thefracture mechanism of cracked steel structures strengthened with CFL under tension loadswas discussed.
     5) Numerical analysis on the stress intensity factor of three-dimensional surface crackin steel plate strengthened with CFL under bending load.
     The FEM of steel plate with three-dimensional surface crack and strengthened with CFLunder bending load was established to investigate the influences of crack parameters, strengthening method and CFL parameters on the stress intensity factor of surface crack. Asemi-empirical calculation formula of stress intensity factor of strengthened specimen underbending load was proposed. The fracture mechanism of cracked steel structures strengthenedwith CFL under bending loads was discussed. The research showed that the long and shallowcrack were the most dangerous defects in steel structures. The employment of strengtheningmethod with FRP sheet to the cracked steel structures was effective and proved to be anadvanced technology.
引文
[1]姜迎秋.工业皮带运输通廊钢析架腐蚀损坏状况和处理对策[J].工业建筑,1995,25(10):3-7
    [2]何金英,杨兴俭.循环水地下钢制管道的腐蚀[J].石油化工腐蚀与防护,1998,15(l):55-56
    [3]苏三庆,于家星.钢屋架下弦平台梁疲劳与断裂分析[J].工业建筑,1998,28(2):36-39
    [4]王光煌.钢结构缺陷及其处理[M].上海:同济大学出版社,1998
    [5]雷宏刚.钢结构事故分析与处理[M].北京:中国建材工业出版社,2003
    [6]杨占品,赵庆华,范传宝.钢质储油罐底板腐蚀调查与分析[J].油气储运,2003,22(4):25-26
    [7] Zhao Y., and roddis W.M..Fatigue crack investigation for the Arkansas River Bridge inHutchinson Kansas[J].Construction and Building Materials,2000,14(5):287-295
    [8] Kuhllnann U., Gunther H.P..Fathgue behaviour of plated girders with slender webs insteel and composite bridges[J],Journal of constructural steel research,2002,71(6):460-469
    [9]张术宽,黎华,王恋.超载水压实验泄漏筒体开裂分析与安全性能评估[J].石油化工设备技术,2010,39(S1):8-10
    [10]张术宽,王恋.某制冷压缩机爆炸事故的分析[J].流体机械,2010,38(6):82-84
    [11]赵国栋,孙会社,于立强等.某钢结构厂房火灾后结构安全性鉴定与安全措施[J].建筑结构,2010,40(S):511-4-514
    [12] Otegu J.L., Urquiza S., Rivas A., et al. Local collapse of gas pipelines under sleeverepairs[J]. International Journal of Pressure Vessels and Piping,2000,77(9):555-566
    [13] ChaPetti M.D., Otegui J.L., Manfredi C., et al. Full scale experimental analysis of stressstates in sleeve repairs of gas pipelines[J]. International Journal of Pressure Vessels andPiping,2001,78(5):379-387
    [14] Wipf T.J., Fanous F.S., Klaiber F.W., et al. Evaluation of appropriate maintenance,repair and rehabilitation methods for Iowa Bridge-Final Report[R]. Iowa: IowaDepartment of Transportation,2003
    [15]韩庆,许振清,王观军.加强常压储罐焊接缺陷检测的必要性及采取的措施[J].石油化工安全技术,2005,21(2):47-48
    [16]强健.更换焊条时防止焊接缺陷产生的方法[J].机械工人热加工,1982,(10):25-27
    [17]龙占云,张罡.焊接缺陷对结构强度的影响[J].无摘探伤,1995,(3):10-13,20
    [18] Chowdhury S.G., Mukhopadhyay N.K., Das G., et al. Failure analysis of a weld repairedsteam turbine casing[J]. Engineering Failure Analysis,1998,5(3):205-218
    [19] Otegui J.L, Rivas A., Manfredi C., et al. Weld failures in sleeve reinforcements ofpipelines[J]. Engineering Failure Analysis,2001,8(l):57-53
    [20] Clubley S.K., Winier S.N. On the fatigue and fracture of site splice welds at the RiverMardle Viaduct[J]. Engineering Failure Analysis,2003,10(5):593-604
    [21] Armstrong K.B. Carbon fibre fabric repairs to metal aircraft structures Engineeringwith composites[R]. London: Proceedings of the Third Technology Conference,1983:1-12
    [22]柳和平,何振星,黄培彦.FRP片材在桥梁加固工程中的应用[J].广东公路交通,2002,S(76):148-151
    [23]黄培彦,周绪平,赵琛.FRP片材在土木工程中应用的几个关键力学问题.华南理工大学学报(自然科学版),2002,30(11):101-105
    [24] Garden H.N., Holloway L.C. An experimental study of the influence of plate endanchorage of carbon fiber composite plates used to strengthen reinforced concretebeams[J]. Construction and Building Materials,1998,(4):203-219.
    [25] Ahmed O., Gemert D.V., Vandewalle L. Improved model for plate-end shear of CFRPstrengthened RC beams[J].Cement&Concrete Composites,2001,(23):3-19
    [26] Chen J.F., Teng J.G. Anchorage strength models for FRP and steel plates bonded toconcrete[J].J. Struct. Engine,2001,127(7):784-791
    [27] Chen J.F, Teng J.G. Shear capacity of FRP strengthened RC beams: FRPdebonding[J].Construction and Building Materials,2003,(17):27-41
    [28] Xiao Y., Ma R. Seismic retrofit of RC circular columns using prefabricated compositejacketing[J]. J. Struct. Engine,1997,123(10):1357-1364
    [29] Xiao Y., Wu H. prefabricated composite jacketing of RC columns for enhancedstrength[J].J. Struct. Engine,1999,125(3):255-264
    [30] Teng J.G., Smith S.T..Interfacial stresses in reinforced concrete beams bonded with asoffit plate: a finite element study[J].Construction and Building Materials,2002,16:1-14
    [31] Yang Q.S., Peng X.R, Kwan A.K.H. Finite element analysis of interfacial stresses inFRP-RC hybrid beams[J].Mechanics Research Communications,2004,31:331-340.
    [32] Shahawy M., Mirmirran A. Tests and modeling of carbon-wrapped concretecolumns[J].Composites: Part B,2000,31:471-480.
    [33]曹双寅,潘建伍等.外贴纤维与混凝土结合面的粘结滑移关系[J].建筑结构学报,2006,27(1):99-105
    [34] Masoud S., Soudki K., Topper T. CFRP-strengthened and corroded RC beams undermonotonic and fatigue loads[J]. Journal of Composites for Construction,2001,5(4):228-236.
    [35] Luke P., Lopez M.M., Naaman A.E., et al. Behavior of RC beams strengthened withFRP laminates and tested under cyclic loading at low temperatures[J]. InternationalJournal of Materials and Product Technology,2003,19(1-2):108-117.
    [36] Deng J., Marcus M.K., Stuart S.J. Stress analysis of steel beams reinforced with abonded CFRP plate[J].Composite Structures,2004,65:205–215
    [37] Karbhari V.M., Shulley S.B..Use of Composites for Rehabilitation of Steel Structures-Determination of Bond Durability[J].Journal of Materials in Civil Engineering,1995,7(4):239-245
    [38] Schnerch D., Stanford K., Sumne E., et al.Bond Behabiorof CFRP Strengthened SteelBridges and Structure.Proceedings of International Symposium on Bond Behaviour ofFRP in Structures.2005
    [39] Deng J.Integrity of the Adhesive Bonding in Steel Beams Strengthened with a CarbonFibre Composite Plate[D].SOUTHANPTOM: UNIVERSITY OF SOUTHAMPTON,2005
    [40] Triantafillou T.C. Strengthening of structures with advanced FRP[J]. Progress inStructural Engineering and Materials,1998,1(2):126-134
    [41]袁勇,刘海峰,姜世强.管道复合补强修复技术[J].天然气工业,2004,24(11):139-142
    [42]李煌英,高光军等.国外旧管道不停输外修复技术[J].油气储运,2000,19(3):53-57
    [43] Edberg W., Mertz D., Gillespie J.J. Rehabilitation of Steel Beams Using CompositeMaterials[R]. New York: Proceedings of the Materials Engineering Conference,Materials for the new Mllenium, ASCE,1996
    [44] Patnaik A.K., Bauer C.L. Strengthening of Steel Beams with CFRP Laminates.Advanced Composite Materials in Bridges and Structures Calgary,Alberta.2004.
    [45] Deng J., LEE M.M., MOY S.S. Stress Analysis of Steel Beams Reinforced with aBonded CFRP Plate[J]. Composite Structures,2004,65(2):205-215
    [46]陆胜,牛忠荣,胡宗军.CFRP加固焊接钢结构力学性能研究[J].钢结构,2008,23(3):33-37
    [47] Tavakkolizadeh M., Saadatmanesh H. Strengthening of Steel-Concrete CompositeGirders Using Carbon Fiber Reinforced Polymers Sheets[J]. Journal of StructuralEngineering,2003,129(1):30-40
    [48] Tavakkolizadeh M., Saadatmanesh H. Fatigue Strength of Steel Girders Strengthenedwith CFRP patch[J]. Journal of Structural Engineering,2003,129(2):186-196
    [49] Abdullah A.S., Klaiber F.W., Wipf T.J. Structural Behavior of Composite Steel BeamsStrengthened/Repaired with Carbon Fiber Reinforced Polymer Plates[D]. Ames, lowa:lowa State University,2001
    [50] Abdullah A.S., Klaiber F.W., et al. Repair of Steel Composite Beams with Carbon FiberReinforced Polymer Plates[J]. Journal of Composites for Construction,2004,8(2):163-172
    [51]江克斌,许特.采用预应力碳纤维技术提高钢结构承载力的分析[J].解放军理工大学学报,2003,4(4):58~60
    [52]赵启林,王景全.碳纤维加固的反拱预应力技术及其提高钢结构承载能力的分析仁[J].钢结构,2002,3(17):51~53
    [53]杨勇新,彭福明,岳清瑞.纤维增强复合材料加固金属管线的应力分析[J].港工技术.2005,(4):17-19
    [54] True W.R. Composite Wrap Approved for U.S. Gas-pipeline Repairs[J]. Oil&GasJournal, l995(2):l7-21
    [55]白真权,王献防,孔杰.含缺陷管道补强修复技术发展及应用现状分析[J].石油矿场机械,2004,33(1):41-43
    [56] Toutanji H., Dempsey S. Stress modeling of pipelines strengthened with advancedcomposites materials[J]. Thin-Walled Structures,2001,(39):153–165
    [57] Patrick C.P., Meade R. An Effective Repair Alternative[R]. Mexico:6th InternationalPipeline Exposition&Conference,2001
    [58] Valerie L., Erwin G., Law M. Strategies for the repair of stress-corrosion cracked gastransmission pipelines: Assessment of the potential for fatigue failure of dormantstress-corrosion cracks due to cyclic pressure service[J]. Global Pipeline Monthly,2008,4(1)
    [59] Patrick C.P., Jesse L.M. Pipeline Inspection and Rehabilitation Using Clock Spring[A].Proceedings of IPC2000: International Pipeline Conference[C]. Canada: Calgary,2000
    [60]袁勇,刘海峰,姜世强.管道复合补强修复技术[J].天然气工业.2004,24(11):139-142
    [61] Kesslera M.R., Roger H.W., Kadakia D., Et al. Evaluation of Carbon/EpoxyComposites for Structure Pipeline Repair[A]. Proceedings of IPC2004, InternationalPipeline Conference[C]. October4-8,2004Calgary, Alberta, Canada. IPC04-0486
    [62]沈士明,周剑秋,朱利洪.压力管道缺陷评定方法的现状与发展[J].南京化工大学学报,1999,21(1):74-78
    [63]李培宁,刘长军.我国压力管道缺陷评定推荐方法[J].压力容器,2001,18(6):1-7
    [64] Liu H.R., Zou J.H., Jiang H.B., et al. Structure analysis of continuous composite archbridge for rehabilitation[A]. Proceedings of the2nd International Conference onTransportation Engineering, ICTE2009[C],2009,345:645-650,2009
    [65] Shulley S.B., Huang X., Karbhari V.M., et a1.Fundamental Consideration of Designand Durability in Composite Rehabilitation Schemes for Steel Girders with WebDistress[A]. Proceedings of the Materials Engineering Conference,1994:1187-1194
    [66] Liu X., Silva P.F., Nanni A. Rehabilitation of steel bridge members with FRP compositematerials[A]. Proc1st int conf composites in construction(CCC2001),2001
    [67] Abdullah H., Klaiber F.W., Wipf T.J. RePair of Steel Composite Beams with CarbonFiber Reinforced Polymer Plates[J]. Journal of Composites for Construetion,2004,8(2):163-172
    [68] Tavakkolizadeh M., Saadatmanesh H. Repair of Damaged Steel-Concrete CompositeGirders Using Carbon Fiber Reinforced Polymer Sheets[J]. Journal of Composites forConstruction,2003,7(4):311~322
    [69] Trent C.M., Miehael J.C., Dennis R.M., et al. Strengthening of Steel Bridge GirderUsing CFRP Plates[J]. Journal of Bridge Engineering,2001,6(6):514~522
    [70]马建勋,宋松林,赖志生等.粘贴碳纤维布加固钢构件受拉承载力实验研究[J].工业建筑,2003,33(2):1~4
    [71] Shaat A., Fam A. Axial loading tests on short and long hollow structural steel columnsretrofitted using carbon fibre reinforced polymers[J]. Canadian Journal of CivilEngineering,2006,33(4):458-470
    [72] Liu X.D.,Namnni A. Rehabilitation of Steel Bridge Columns with FRP CompositeMaterials Structural Faults Repair[A].10th International Conference&Exhibition,2003
    [73] Bassetti A., Liechti P., Nussbaumer A. Fatigue Resistance and Repairs of RivetedBridge Members[R]. Espoo-Finland: Fatigue Design98,1998
    [74] Tavakkolizadeh M., Saadatmanesh H. Fatigue Strength of Steel Girders Strengthenedwith CFRP Patch[J]. Journal of Structural Engineering,2003,129(2):186~196
    [75] Jones J.C., Civjan S.A. Application of Fiber Reinforced Polymer Overlays to ExtendSteel Fatigue Life[J]. Journal of Composites for Construction,2003,7(4):331~338
    [76]张宁,岳清瑞,杨勇新等.碳纤维布加固钢结构疲劳实验研究[J].工业建筑,2004,34(4):19~21
    [77]邓军,黃培彦. CFRP板与钢梁粘接的疲劳性能研究[J].土木工程学报,2008.5,41(5):14-18
    [78] Plmtion N.K. Characterization of Adhesively Bonded Composite Plates for UpgradingStructural Steel Work[R]. Structural Faults+RePair2003-10th International Conference&Exhibition:2003
    [79] Katsuyoshi N. Repair of Fatigued Steel Bridge Girders with Carbon Fiber Strips[D].Minnesota:University of Minnesota,2002
    [80] Odi R.A., Friend C.M. An improved2D model for bonded composite joints[J].International Journal of Adhesion&Adhesives,2004,24:389-405
    [81]邓军,黃培彦. CFRP板与钢梁粘结剥离破坏的实验研究[J].华南理工大学学报(自然科学版),2007.7,35(7):10-14
    [82]邓军,黄培彦. CFRP板与钢梁粘结剥离破坏的实验研究[J].建筑结构学报,2007.10,28(5):124-129
    [83]杨勇新;岳清瑞;彭福明.碳纤维布加固钢结构的黏结性能研究[J].土木工程学报,2006,39(10):1-5(18)
    [84]郑云,叶列平,岳清瑞.CFRP加固疲劳损伤钢结构的断裂力学分析[J].工业建筑.2005,35(10):79-82
    [85] Chung K.H., Yang W.H. A study on the fatigue crack growth behavior of thickaluminum panels repaired with a composite patch[J]. Composite Structures,2003,60:1-7
    [86] Schubbe J.J., Mall S. Investigation of a cracked thick aluminum panel repaired with abonded composite patch[J]. Engineering Fracture Mechanics,1999,63:305-323
    [87] Sabelkin V., Mail S., Hansen M.A. Investigation into cracked aluminum plate repairedwith banded composite patch[J]. Composite Structure,2007,79:55-66
    [88] Toudensheky H.H. Effects of composite patches on fatigue crack propagation ofsingle-side repaired aluminum panels[J]. Composite Structure,2006,76:243-251
    [89] Zhang S.K., Huang P.Y., Zhao C.Y. Numerical analysis of SIF of semi-elliptical surfacecrack on steel plate strengthened with CFL[J]. Chinese Journal of Solid Mechanics,2010,23(S):180-184
    [90]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算[J].中国海洋平台,2006,21(3):23-26
    [91]周峰峦,高怡斐.半椭圆表面裂纹应力强度因子的有限元计算分析[J].物理测试,2009,27(3):34-35,56
    [92]黄培彦,曾竞成.纤维薄板及其应用[P],中国:ZL200410026742.8,2006.8.23
    [93] Abushaggur M., Damatty A.A. Testing of Steel Section Retrofitted Using FRP Sheets
    [R]. Annual Conference o f the Canadian Society for Civil Eng ineering. Moncton,Nouveau Brunswick Canadia:2003.
    [94]王孟钟,黄应昌.胶粘剂应用手册[M].北京:化学工业出版社,2002
    [95] Chen J.F, Teng J.G. Anchorage strength models for FRP and steel plates bonded toconcrete[J]. Journal of Structural Engineering,2001,127(7):784-791
    [96] Baker A. Joining and repair of aircraft composite structures[R]. Mech enggtrans, volME21,nos1and2,1996.
    [97] Chalkly P.D. Mathematical modeling of bonded fibre-composite repairs to metals[R].Aeronautical Research Laboratory Research Report AR-008-365, Department of Defenseand Technology Organisation,Australia,1993.
    [98] GB/T700-2006,碳素结构钢[S].北京:中国标准出版社,2006
    [99]彭福明.纤维增强复合材料加固修复金属结构界面性能研究[D].西安:西安建筑科技大学,2005
    [100]李娟.GFRP粘结加固钢构件的理论分析和实验研究[D].合肥:合肥工业大学,2008
    [101]韩强.CFRP-混凝土界面粘结滑移机理研究[D].广州,华南理工大学,2010
    [102] GB8923,涂装前钢材表面锈蚀等级和除锈等级[S].北京:国家质检总局,1988
    [103] ASTM D3039/D3039M, Standard Test Method for Tensile Properties of PolymerMatrix Composite Materials[S]. US: ASTM,2008
    [104] Newman J.C., Raju I.S. Analyses of Surface Cracks in Finite Plates Under Tension orBending Loads, NASA TP-1578,1979
    [105] GB/T19624-2004,在用含缺陷压力容器安全评定[S].北京:国家质量监督检验检疫总局,2004
    [106] ASTM E740, Standard Practice for Fracture Testing with Surface-Crack TensionSpecimens[S].2003
    [107] GB7732-87,金属板材表面裂纹断裂韧度KIE实验方法[S].北京:中国标准出版社,1987
    [108] Jones R., Chiu W.K. Composite repairs to cracks in thick metallic components[J].Composite Structures,1999,44:17-29
    [109]金丕彦,芮勇. BP算法各种改进算法的研究及应用[J].南京航空航天大学学报.1994,27(S):201-205
    [110]张术宽.基于有限元和神经网络的轮胎硫化温度场研究[D].广州:华南理工大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700