用户名: 密码: 验证码:
黄土丘陵沟壑区优势植物对不同侵蚀环境的适应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原严重的土壤侵蚀,造成了该区梁峁起伏、地形破碎、立地环境复杂多变,使得水、热等生态因子的空间分布存在异质性,形成了多样的侵蚀环境。植物随着生长环境的改变,在群落组成、生殖策略、形态结构、生理特性上不断的调整来适应相应的环境。本文通过陕北黄土丘陵沟壑区3个植被带(森林带、森林草原带、草原带)坡沟系统中5种不同侵蚀环境下(阳沟坡、阳峁坡、峁顶、阴峁坡、阴沟坡)植物群落组成的调查,分析群落中各物种的生态位宽度和重要值,据此筛选出不同侵蚀环境下的优势物种。研究了九种优势植物(猪毛蒿、铁杆蒿、茭蒿、白羊草、长芒草、芦苇、达乌里胡枝子、杠柳、狼牙刺)在不同侵蚀环境下的繁殖、形态、解剖和生理响应特征,并从中选取了4种枝系构型植物(聚丛型铁杆蒿、疏丛型茭蒿、簇丛型白羊草、主杆型狼牙刺),研究了其对坡面微环境的影响。主要研究结果如下:
     (1)由森林带向草原带过渡,植物群落结构变的简单,物种多样性减小,但物种个数反而有增加趋势;中生植物、高位芽植物减少,旱生植物、隐芽植物增加。坡沟系统不同侵蚀环境下物种均匀度差异不显著,但阴坡群落物种多样性和丰富度较阳坡提高;阳沟坡旱生植物和隐芽植物比例大;而峁顶一年生植物比例增大。从阳沟坡至阴沟坡随着侵蚀程度的减小,物种数量和密度增加,但各物种生态位宽度和重要值减小。旱生和旱中生植物在黄土丘陵沟壑区有着广泛的分布。
     (2)同种植物单个花序(花)重、单个种子重量表现出一定的遗传稳定性,在坡沟系统不同侵蚀环境下差异不明显。阳沟坡和阴沟坡植物有性生殖投入低,但该侵蚀环境下隐芽植物比例大,使得其上物种主要以芽库完成地上植被更新。峁顶和阳峁坡植物有性生殖投入量大,产生大量的种子有利于植物种群的扩大。相对其他供试物种,达乌里胡枝子有性繁殖分配比例大,而两种灌木狼牙刺与杠柳则相反。在芽库季节动态上,植物返青期较大的永久性芽库存量保证了植物迅速更新,开花结实期大量季节性芽库确保了植物光合产物积累。
     (3)同种植物叶片形态解剖结构在3个植被带相同坡沟侵蚀环境下变化差异性不显著,但坡沟系统不同的侵蚀环境下植物叶片形态和解剖结构变化差异明显。随着侵蚀程度的增加,叶片叶片厚度、干物质量积累、角质层厚度、栅栏组织厚度、木质部韧皮部面积比增加,叶面积、表皮细胞大小、海绵组织厚、细胞间隙减小。输送水分的木质部与植物适应环境能力关系密切。不同植物适应黄土高原半干旱的气候也有不同的策略:猪毛蒿叶具有发达贮水组织,铁杆蒿全栅型叶片,茭蒿和狼牙刺具有双栅型叶片和大的维管束鞘细胞,达乌里胡枝子叶具有发达的粘液细胞,白羊草和芦苇叶上表皮具有发达的泡状细胞,长芒草叶上表皮下多层厚壁组织,杠柳厚的角质层。综合隶属函数分析表明,叶片保护组织发达的长芒草从叶片形态与解剖角度分析对环境适应能力最强。
     (4)三个植被带相同坡沟侵蚀环境下植物叶片生理特性变化未达到显著性,但坡沟系统不同侵蚀环境下植物叶片生理特性差异明显。从阴沟坡至阳沟坡随着侵蚀程度增加,细胞受伤害和叶绿素受破坏程度增加,但植物通过叶片保水力、渗透调节物质、抗逆酶活性、非酶抗氧化物质的加强来应对环境胁迫,同时减小叶片相对含水量、自由束缚水比值,以牺牲植物生长速率的代价来应对胁迫环境。所测生理指标中,与植物环境适应相关性最大的是抗坏血酸氧化酶。隶属函数综合分析表明两种灌木杠柳和狼牙刺从生理角度分析对环境适应性较强。
     (5)不同构型植物拦截坡面径流沉积物和保护植冠下土体而形成不同形态的土堆。随着坡度的增加,土堆由对称堆型圆帽结构转变为不对称的台阶型结构,主杆型狼牙刺转折点在15-25°的陡坡,聚丛型铁杆蒿和簇丛型白羊草在26-35°的极陡坡,疏丛型茭蒿在≥36°的险坡。坡度和植丛顺坡基部直径影响着土堆的高度;而植丛垂直坡面的基部直径、植丛分枝数量及整个植丛的冠幅影响着土堆的面积。随着坡度的增加土堆高度总体上呈增加趋势而土堆面积趋势相反。植物拦截形成的土堆成为坡面的“营养岛”,相对于植被间表现出良好的土壤理化特性及较高的物种多样性。茭蒿以其发达且扩张的枝系、狼牙刺以其较大的植冠在形成土堆和对坡面微环境的改善方面能力较强。
     (6)在繁殖策略方面,供试物种猪毛蒿、铁杆蒿、茭蒿、白羊草、杠柳趋向于r-生殖策略,长芒草、达乌里胡枝子、狼牙刺更趋向于K-生殖策略。依据植物适应环境时的形态解剖与生理特点,供试植物可分为Ⅰ:御逆型,猪毛蒿、芦苇、长芒草;Ⅱ:胁变修复型,茭蒿、白羊草、达乌里胡枝子;Ⅲ:御胁变型,铁杆蒿、狼牙刺、杠柳。综合植物繁殖、形态、解剖和生理特征,供试物种综合隶属函数值与物种重要值呈正相关关系,供试植物的侵蚀环境适应能力表现为:两种灌木狼牙刺和杠柳较强,在黄土丘陵沟壑区不同侵蚀环境有着广泛分布的铁杆蒿、达乌里胡枝子、长芒草次之,而对侵蚀环境具有选择性的白羊草、茭蒿、芦苇和猪毛蒿相对较小。
The serious soil erosion on the Loess Plateau cause the deep cut gullies, fragmentation oflandform and form a complicated landform, thus result in spatial heterogeneity of water andheat. Then, there are series of adjustments occur on plant community structure, reproductivestrategies, leaf morphological and physiological characteristics to adapt different soilenvironments. In this study, the community structures in five soil erosion environments onslope-gully system (sunny gully slope, sunny hilly slope, hilltop, shady hilly slope, and shadygully slope) on three vegetation zones (forest zone, forest-steppezone, and steppe zone) on thehilly-gully region of the Loess Plateau were examined. The species niche breadth andimportant value in community were analysed to identify dominant species at different soilerosion environments. The reprodution, morphology, anatomy, and physiology of seclectednine dominant species (Artemisia scoparia, Artemisia gmelinii, Artemisia giraldii,Bothriochloa ischcemum, Stipa bungeana, Phragmites australis, Lespedeza davurica,Periploca sepium and Sophora davidii) were studied. And, four typical shoot architecturespecies (A. gmelinii, with dense shoot architecture; A. giraldii, with expanding shootarchitecture; B. ischaemum, with a tussock-formingshoot architecture; and S. viciifolia, with amain-stem shoot architecture) was selected to analysis the shape of phytogenic mounds andits influence of mirco-environmnent on slope. The main results are as follows:
     (1) Fom forest to steppe zone, plant community structures become simple, speciesdiversity decreased, and the number of species showed a slight increased with mesophytesand phanerophytes decreased, while xerophytes and cryptophytes increased. At different soilerosion environments on slope-gully system, the variation of species evenness was notsignificant. On shady slope, the species diversity and richness were relative larger than sunnyslope. The xerophyte and cryptophytes increased at sunny gully slope. Hilltop had a higher therophyte proportion than the other erosion environments. From sunny to shady gully slope,the species niche and important value in community decreased with the decreasing of erosiondegree. Xerophyte and xero-mesophytes have a wide range of distribution on the hilly-gullyregion of the Loess Plateau.
     (2) For same species, single dry weight of inflorescence (flower) and seed mass showedcertain genetic stability, and no significant difference existed in different soil erosionenvironments on slope-gully system. At the sunny gully slope and shady gully slope, plantreproductive investment was low, but the high proportion of cryptophytes on theseenvironments made vegetation regeneration relying mainly on bud bank. The reproductiveinvestment of species on hilltop and sunny hilly slope were larger than the other three erosionenvironments which result in a large number of seeds and thus was beneficial to the expansionof seed dispersal plants. L. davurica had a larger reproductive allocation, while two shrubs (P.sepium and S. davidii) were relatively less. In vegetation turning-green season, the largerperennial bud bank ensure a rapid vegetation renewal. The larger seasonal bud bank onfruit-setting season ensure the accumulation of photosynthate.
     (3) The leaf morphological and anatomical characteristics at same slope-gully erosionenvironment on the three vegetation zones had a slight changes, but these characteristicsshowed significant changes at different erosion environments on slope-gully system. With theincreasing of soil erosion degree, leaf thickness, dry matter content, cuticle thickness, palisadetissue thickness, xylem area/phloem area increased, while leaf area, epidermal cell size,spongy tissue thickness, intercellular space decreased. In those leaf morphological andanatomical indices, xylem area, which mediate plant water transportation, had the closestrelationship with plant environmental adaptability. Different plants have its special structureto adapt the semi-arid climate on the Loess Plateau: water storage parenchyma of A. scoparia,total-palisade tissue of A. gmelinii, bi-palisade tissue and big bundle sheath cells of A. giraldiiand S. davidii, mucilage cell of L. daurica; special bulliform cells of B. ischcemum and P.australis; multilayer sclerenchyma of S. bungeana; thick cuticle of P. sepium. From leafmorphological and anatomical characteristics, comprehensive analysis of the subordinatefunction showed that S. bungeana, which has a well developed protective tissues, had thestrongest environmental adaptability.
     (4) Similar to plant morphological characteristics, plant physiological indices at sameslope-gully erosion environment on the three vegetation zones showed a slight changes, butthose characteristics presented significant changes at different erosion environments on slope-gully system. From sunny to shady gully slope,with the increasing of soil erosiondegree, the degree of cell damage and amount of chlorophyll destruction increased. But plantresistance to environmental stress by increasing leaf water-holding ability, osmotic adjustmentsubstances, stress-resistance enzymes, non-enzymatic antioxidants, meanwhile by decreasingleaf relative water content and free water/bound water. This processes are at the expense ofplant growth rate to deal with the environmental stress. Among the21measured physiologicalindices, ascorbic acid oxidase (APX) had the closest relationship with plant environmentaladaptability. From plant physiological indices, comprehensive analysis of the subordinatefunction showed that two testing shrubs, S. davidii and P. sepium, had a strong environmentaladaptability.
     (5) Different shoot architecture species have different ability of preventing soil erosionand retaining sediment, thus the shape of phytogenic mound changes with slope gradientincreasing. Mound shapes changed from symmetrical mound-type structures intoasymmetrical terrace-type structures as slope gradient increased, but the change at0-15°forS. viciifolia, at26-35°for A. gmelinii and B. ischaemum, at>35°for A. giraldii. Among theplant shoot architecture parameters, plant basal diameter along the slope was significantlycorrelated with mound height, while the plant basal diameter perpendicular to the slope andtotal cross-sectional area of the stem at the plant base were associated with mound area.Mound height increased with slope for all species, while mound area showed oppositetendency. The phytogenic mounds can act as ‘resource islands’, thus improved speciesrichness and stress resistance of plant community on slope. A. giraldii with expanding shootarchitecture and S. viciifolia with its large canopy can create relatively large mounds.
     (6) In reproductive strategy, K-reproductive strategyare adopted by A. scoparia, A.gmelinii, A.giraldii, B. ischcemum and P. sepium; and r-reproductive strategy by S. bungeana,L. davurica and S. davidii. According to the palnt anatomical and physiological characteristicsof environmental adaptation, the testing plants were divided into three types: I, stressavoidance, including A. scoparia, S. bungeana and P. australis; II, strain repair, including A.giraldii, B. ischcemum and L. davurica; III, strain avoidance, A. gmelinii, P. sepium and S.davidii. Integrative subordinative value was calculated based on reproductive, morphological,anatomical and physiological characteristics of plant. The integrative subordinative values oftesting plants on different soil erosion environments of slope-gully system were positivelycorrelated with the species important value in community. From the results of comprehensiveanalysis of the subordinate function, two shrubs, S. davidii and P. sepium, showed higher environmental adaptability than another testing plants, followed by widespread plants (A.gmelinii, L. davurica, S. bungeana), the environmental adaptability of B. ischcemum, A.giraldii, P. australis, A. scoparia which only distributed on certain erosion environments,were relatively weak among testing plants.
引文
[1] Shao HB, Chu LY, Jaleel CA, et al. Water-defcit stress-induced anatomical changes in higher plants[J].Plant biology and pathology,2008,331:215-225
    [2] Sultan SE. Promising directions in plant phenotypic plasticity[J]. Perspectives in Plant Ecology,Evolution and Systematics,2004,6:227-233
    [3] Valladares F, Gianoli E, Gómez JM. Ecological limits to plant phenotypic plasticity[J]. NewPhytologist,2007,176:749-763
    [4] Kleunen MV, Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants[J].New Phytologist,2005,166:49-60
    [5] de Witt TJ, Scheiner SM. Phenotypic plasticity: functional and conceptual approaches[M]. New York:Oxford University Press,2004
    [6] Silvertown J. Plant phenotypic plasticity and non-cognitive behaviour[J]. Trends in Ecology&Evolution,1998,17:255-256
    [7] Nicotra AB, Atkin OK, Bonser SP, et al. Plant phenotypic plasticity in a changing climate[J]. Trends inPlant Science,2010,15:684-692
    [8] Donohue K. Setting the stage: phenotypic plasticity as habitat selection[J]. International journal ofplant sciences,2003,164: S79-S92
    [9] Donohue K. Niche construction through phenological plasticity: life history dynamics and ecologicalconsequences[J]. New Phytologist,2005,166:83-92
    [10] Minera BG, Sultanb SE, Morgana SG, et al. Ecological consequences of phenotypic plasticity[J].Trends in Ecology&Evolution,2005,20:685-692
    [11] Niklas KJ. Functional adaptation and phenotypic plasticity at the cellular and whole plant level[J].Journal of Biosciences,2009,34:613-620
    [12] Kim E, Donohue K. Demographic, developmental and life-history variation across altitude inErysimum capitatum[J]. Journal of Ecology,2011
    [13]陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002:339-345
    [14]李军,陈兵,李小芳,等.黄土高原不同植被类型区人工林地深层土壤干燥化效应[J].生态学报,2008:1429-1445
    [15]李鹏,李占斌,澹台湛.黄土高原退耕草地植被根系动态分布特征[J].应用生态学报,2005:849-853
    [16]王晗生.黄土高原环境异质性与植被的恢复与重建[J].生态学报,2009:2445-2455
    [17]许炯心.黄土高原植被-降水关系的临界现象及其在植被建设中的意义[J].生态学报,2005,25:1233-1239
    [18]安慧,上官周平.黄土高原植被不同演替阶段优势种的光合生理特性[J].应用生态学报,2007:1175-1180
    [19]邹厚远,焦菊英.黄土丘陵沟壑区抗侵蚀植物的初步研究[J].中国水土保持科学,2010,8:22-27
    [20]《唐克丽论文选集》编辑委员会.唐克丽论文选集[M].西安:陕西人民出版社,2004
    [21] Boardman J, Poesen J. Soil Erosion in Europe[M]. Chichester: John Wiley&Sons,2006
    [22] Poesen JWA, Hooke JM. Erosion, flooding and channel management in Mediterranean environmentsof southern Europe[J]. Progress in Physical Geography,1997,21:157-199
    [23] Bochet E, García-Fayos P, Poesen J. Topographic thresholds for plant colonization on semi-arideroded slopes[J]. Earth Surface Processes and Landforms,2009,34:1758-1771
    [24]高均凯.土壤侵蚀的环境效应[J].生态农业研究,1993:19-24
    [25]史德明.土壤侵蚀对生态环境的影响及防治对策[J].水土保持学报,1991:1-8
    [26] Cantón Y, Solé-Benet A, de Vente J, et al. A review of runoff generation and soil erosion across scalesin semiarid south-eastern Spain[J]. Journal of Arid Environments,2011,75:1254-1261
    [27] García-Ruiz JM. The effects of land uses on soil erosion in Spain: a review[J]. Catena,2010,81:1-11
    [28] Cantón Y, Barrio GD, Solé-Benet A, et al. Topographic controls on the spatial distribution of groundcover in the Tabernas badlands of SE Spain[J]. Catena,2004,55:341-365
    [29]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究Ⅰ、土壤水分状况及植被建设区划[J].水土保持研究,2000:102-110
    [30] Grime JP. Plant strategies, vegetation processes, and ecosystem properties[M]. Chichester: John Wiley&Sons,2001
    [31] Aerts R, Maes W, November E, et al. Surface runoff and seed trapping efficiency of shrubs in aregenerating semiarid woodland in northern Ethiopia[J]. Catena,2006,65:61-70
    [32] Bochet E, Rubio JL, Poesen J. Modified topsoil islands within patchy Mediterranean vegetation in SESpain[J]. Catena,1999,38:23-44
    [33] Guerrero-Campo J, Montserrat-MartíG. Effects of soil erosion on the floristic composition of plantcommunities on marl in northeast Spain[J]. Journal of Vegetation Science,2000,11:329-336
    [34] Thornes JB. Vegetation and erosion[M]. Chichester, UK: British Geomorphological Research Group.Symposia Series. Wiley,1990
    [35] Tsuyuzaki S, Titus J. Vegetation development patterns in erosive areas on the Pumice Plains of MountSt. Helens[J]. The American Midland Naturalist,1996,135:172-177
    [36] Kleyer M, Bekker RM, Knevel IC, et al. The LEDA Traitbase: a database of life-history traits of theNorthwest European flora[J]. Journal of Ecology,2008,96:1266-1274
    [37] Ricklefs RE, Wikelski M. The physiology/life-history nexus[J]. Trends in Ecology&Evolution,2002,17:462-468
    [38] Bond WJ, Midgley JJ. Ecology of sprouting in woody plants: the persistence niche[J]. Trends inEcology&Evolution,2001,16:45-51
    [39] Bacelar EA, Correia CM, Moutinho-pereira JM, et al. Sclerophylly and leaf anatomical traits of fivefield-grown olive cultivars growing under drought conditions[J]. Tree Physiology,2004,24:233-239
    [40] Chaves MM, Pereira JS, Maroco J, et al. How plants cope with water stress in the fieldphotosynthesisand growth[J]. Annals of Botany,2002,89:907-916
    [41] Guerrero-Campo J, Palacio S, Montserrat-MartíG. Plant traits enabling survival in Mediterraneanbadlands in northeastern Spain suffering from soil erosion[J]. Journal of Vegetation Science,2008,19:457-464
    [42] Benson EJ, Hartnett DC, Mann KH. Belowground bud banks and meristem limitation in tallgrassprairieplant populations[J]. American Journal of Botany,2004,91:416-421
    [43] Danin A, Orshan G. The distribution of Raunkiaer life forms in Israel in relation to the environment[J].Journal of Vegetation Science,1990,1:41-48
    [44] Shiro T, Moral RD. Species attributes in early primary succession on volcanoes[J]. Journal ofVegetation Science,1995,6:517-522
    [45] Stearns SC. The evolution of life histories[M]. Oxford: Oxford University Press,1992
    [46] Clauss MJ, Aarssen LW. Patterns of reproductive effort in Araabidopsis thaliana: Confounding effectsof size and developmental stage[J]. Ecoscience,1994,1
    [47] Guo H, Weiner J, Mazer SJ, et al. Reproductive allometry in Pedicularis species changes withelevation[J]. Journal of Ecology,2012,100:452-458
    [48] Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in27species of herbaceous plants[J]. Perspectives in Plant Ecology, Evolution and Systematics,2000,3:115-127
    [49] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levelsof light, CO2, nutrients and water: A quantitative review[J]. Australian Journal of Plant Physiology,2000,27:595-607
    [50] Weiner J. The influence of competition on plant reproduction, in Plant Reproductive Ecology: Patternsand Strategies[M], Doust LL, Editor1988, Oxford University Press: New York. p.228-245.
    [51] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolutionand Systematics,2004,6:207-215
    [52]Csontosa P, Tamása J, Podani J. Slope aspect affects the seed mass spectrum of grassland vegetation[J].Seed science research,2004,14:379-385
    [53] Westoby M, Leishman M, Lord J. Comparative ecology of seed size and dispersal[J]. PhilosophicalTransactions: Biological Sciences,1996,351:1309-1318
    [54] Greene DF, Johnson EA. Seed mass and dispersal capacity in wind-dispersed diaspores[J]. Oikos,1993,67:69-74
    [55] Moles AT, Falster DS, Leishman MR, et al. Small-seeded species produce more seeds per squaremetre of canopy per year, but not per individual per lifetime[J]. Journal of Ecology,2004,92:384-396
    [56] Guo QF, Brown JH, Valone TJ, et al. Constraints of seed size on plant distribution and abundance[J].Ecology2000,81:2149-2155
    [57]于顺利, Sternberg M,蒋高明,等.地中海沿岸沙丘种子大小对植物及其种子多度的影响[J].生态学报,2005,25:749-755
    [58] Carrillo-Garcia A, Bashan Y, Bethlenfalvay GJ. Resource-island soils and the survival of the giantcactus, cardon, ofBaja California Sur[J]. Plant and Soil,2000,218:207-214
    [59] Leishman MR, Westoby M. The role of seed size in seedling establishment in dry soilconditions--experimental evidence from semi-arid species[J]. Journal of Ecology,1994,82:249-258
    [60] Turnbull LA, Rees M, Crawley MJ. Seed mass and the competition/colonization trade-off: a sowingexperiment[J]. Journal of Ecology,1999,87:899-912
    [61] Westoby M, Falster DS, Moles AT, et al. Plant ecological strategies: some leading dimensions ofvariation between species[J]. Annual Review of Ecology and Systematics,2002,33:125-159
    [62] García-Fayos P, García-Ventoso B, CerdàA. Limitations to plant establishment on eroded slopes insoutheastern Spain[J]. Journal of Vegetation Science,2000,11:77-86
    [63] Garcia-Plazaola JI, Faria T, Abadia J, et al. Seasonal changes in xanthophyll composition andphotosynthesis of cork oak (Quercus suber L.) leaves under Mediterranean climate[J]. Journal ofExperimental Botany,1997,48:1667-1674
    [64]程杰,程积民,呼天明.气候变化对黄土高原达乌里胡枝子种群分布格局的影响[J].应用生态学报,2011,22:35-40
    [65] Latzel V. Tolerance and resistance of plants to disturbance[M]. University of South Bohemia: eskéBudéjovice,2008
    [66]孙书存,陈灵芝,植物种群的构件理论与实践.生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集[M],中国科学院生物多样性委员会,1996,中国林业出版社:北京
    [67] Peltzer D, Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymes in twocontrasting species[J]. Plant Physiology and Biochemistry2002,40:141-150
    [68] Peltzer DA. Does clonal integration improve competitive ability? A test using aspen (Populustremuloides) invasion into prairie[J]. American Journal of Botany,2002,89:494-499
    [69] Agrawal AA. Optimal foraging and phenotypic plasticity in plants[J]. Trends in Ecology&Evolution,2002,17:305
    [70] Guerrero-Campo J, Palacio S, Pérez-Rontomé C, et al. Effect of root system morphology onroot-sprouting and shoot-rooting abilities in123plant species from eroded lands in North-eastSpain[J]. Annals of Botany,2006,98:439-447
    [71] Dech JP, Maun MA. Adventitious root production and plastic resource allocation to biomass determineburial tolerance in woody plants from central Canadian coastal dunes[J]. Annals of Botany,2006,98:1095-1105
    [72] Zhang JT, Mu CS, Wang DL,et al. Shoot population recruitment from a bud bank over two seasons ofundisturbed growth of Leymus chinensis[J]. Botany,2009,87:1242-1249
    [73] Klimesová J, Klime a L. Bud banks and their role in vegetative regeneration-a literature review andproposal for simple classification and assessment[J]. Perspectives in Plant Ecology, Evolution andSystematics,2007,8:115-129
    [74] Klime ová J, Klime L. Clonal growth diversity and bud banksin the Czech flora: evaluation usingCLO-PLA3database[J]. Preslia,2007,80:255-275
    [75] Latzel V, Mihulka S, KlimesováJ. Plant traits and regeneration of urban plant communities afterdisturbance: Does the bud bank play any role?[J]. Applied Vegetation Science,2008,11:387-394
    [76] Lehtil K, Tuomi J, Sulkinoja M. Bud demography of the mountain birch Betula pubescens ssp.tortuosa near tree line[J]. Ecology,1994,75:945-955
    [77] Vesk PA, Westoby M. Drought damage and recovery-a conceptual model[J]. New Phytologist,2003,160:7-14
    [78] Bellingham PJ, Sparrow AD. Resprouting as a life history strategy in woody plant communities[J].Oikos,2000,89:409-416
    [79] Davis SD, Ewers FW, Sperry JS, et al. Shoot dieback during prolonged drought in Ceanothus(Rhamnaceae) chaparral of California: a possible case of hydraulic failure[J]. American Journal ofBotany,2002,89:820-828
    [80] Matos FS, Wolfgramm R, Gon alves FV,et al. Phenotypic plasticity in response to light in the coffeetree[J]. Environmental and Experimental Botany2009,67:421-427
    [81] Sadras VO, Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: Areview[J]. Field Crops Research,1996,47:253-266
    [82] Guerfel M, Baccouri O, Boujnah D, et al. Impacts of water stress on gas exchange, water relations,chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars[J].Scientia Horticulturae,2009,119:257-263
    [83] Richardson AD, Berlyn GP. Changes in foliar spectral reflectance and chlorophyll fluorescence of fourtemperate species following branch cutting[J]. Tree Physiology,2002,22:499-506
    [84] Sultan SE. Phenotypic plasticity for plant development, function and life history[J]. Trends in plantscience,2000,5:537-542
    [85] Sultan SE. Phenotypic plasticity in plants: a case study in ecological development[J]. Evolution andDevelopment,2003,5:25-33
    [86] Poorter H, Niinemets ü, Poorter L, et al. Causes and consequences of variation in leaf mass per area(LMA): a meta-analysis[J]. New Phytologist,2009,182:565-588
    [87]Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature,2004,428:821-827
    [88] Niinemets ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in treesand shrubs[J]. Ecology,2001,82:453-469
    [89] Whitehead D, Beadleb CL. Physiological regulation of productivity and water use in Eucalyptus: areview[J]. Forest Ecology and Management,2004,193:113-140
    [90] Nautiyal S, Badola HK, Pal M, et al. Plant responses to water stress: changes in growth, dry matterproduction, stomatal frequency and leaf anatomy[J]. Biologia Plantarum,1994,36:91-97
    [91] Werner C, Correia OA, Ryel RJ, et al. Two different strategies of Mediterranean macchia plants toavoid photoinhibitory damage by excessive radiation levels during summer drought[J]. ActaOecologica,1999,20:15-23
    [92] Ryser P, Eek L. Consequences of phenotypic plasticity vs. interspecific differences in leaf and roottraits for acquisition of aboveground and belowground resources[J]. American Journal of Botany,2000,87:402-411
    [93] Tjoelker MG, Craine JM, Wedin D, et al. Linking leaf and root trait syndromes among39grasslandand savannah species[J]. New Phytologist,2005,167:493-508
    [94] Wright IJ, Westoby M. Leaves at low versus high rainfall: coordination of structure, lifespan andphysiology[J]. New Phytologist,2002,155:403-416
    [95] Wright IJ, Westoby M, Reich PB. Convergence towards higher leaf mass per area in dry andnutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology,2002,90:534-543
    [96] Bussotti F. Functional leaf traits, plant communities and acclimation processes in relation to oxidativestress in trees:a critical overview[J]. Global Change Biology,2008,14:2727-2739
    [97] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment,2002,25:239-250
    [98] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affectingATP synthesis[J]. Trends in Plant Science,2000,5:187-188
    [99] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J].Nature,2003,424:901-908
    [100] Mediavilla S, Escudero A. Stomatal responses to drought at a Mediterranean site: a comparativestudy of co-occurring woody species differing in leaf longevity[J]. Tree Physiology,2003,23:987-996
    [101] Fraser LH, Greenall A, Carlyle C, et al. Adaptive phenotypic plasticity of Pseudoroegneria spicata:response of stomatal density, leaf area and biomass to changes in water supply and increasedtemperature[J]. Annals of Botany,2009,103:769-775
    [102] Xu ZZ, Zhou GS. Responses of leaf stomatal density to water status and its relationship withphotosynthesis in a grass[J]. Journal of Experimental Botany,2008,59:3317-3325
    [103] Larcher W. Temperature stress and survival ability of Mediterranean sclerophyllous plants[J]. PlantBiosystems,2000,134:279-295
    [104] Nevo E, Pavliek T, Beharav A, et al. Drought and light anatomical adaptive leaf strategies in threewoody species caused by microclimatic selection at "evolution canyon", Israel[J]. Israel Journal ofPlant Sciences2000,48:33-46
    [105] Chartzoulakis K, A. P, G. K, et al. Water stress affects leaf anatomy, gas exchange, water relationsand growth of two avocado cultivars[J]. Scientia Horticulturae,2002,95:39-50
    [106] Mediavilla S, Escudero A, Heilmeier H. Internal leaf anatomy and photosynthetic resource-useefficiency: interspecific and intraspecific comparisons[J]. Tree Physiology,2001,21:251-259
    [107] Schwabe WW, Lionakis SM. Leaf attitude in olive in relation to drought resistance[J]. Journal ofHorticultural Science,1996,71:157-166
    [108] Bosabalidis AM, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olivecultivars[J]. Plant Science,2002,163:375-379
    [109] Mohanty P, Allakhverdiev SI, Murata N. Application of low temperature during photoinhibitionallows characterization of individual steps in photodamage and repair of photosystem II[J].Photosynthesis Research,2007,94:217-234
    [110] Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmentalstress[J]. Biochimica et Biophysica Acta,2007,1767:414-421
    [111] Valladares F, Niinemets U. Shade tolerance, a key plant feature of complex nature andconsequences[J]. Annual Review of Ecology, Evolution, and Systematics,2008,39:237-257
    [112] Logan BA, Kornyeyev D, Hardison J, et al. The role of antioxidant enzymes in photoprotection[J].Photosynthesis Research2006,88:119-132
    [113] Allakhverdiev SI, Kreslavski VD, Klimov VV, et al. Heat stress: an overview of molecular responsesin photosynthesis[J]. Photosynthesis Research,2008,98:541-550
    [114] Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recoveryin Mediterranean plants with different growth forms[J]. New Phytologist,2007,175:81-93
    [115] Silva EN, Ribeiro RV, Ferreira-Silva SL, et al. Comparative effects of salinity and water stress onphotosynthesis, water relations and growth of Jatropha curcas plants[J]. Journal of Arid Environments,2010,74:1130-1137
    [116] Holt NE, Zigmantas D, Valkunas L, et al. Carotenoid cation formation and the regulation ofphotosynthetic light harvesting[J]. Science,2005,307:433-436
    [117] Zheng WJ, Zheng XP, Zhang CL. A survey of photosynthetic carbon metabolism in4ecotypes ofPhragmites communis in northwest China: leaf anatomy, ultrastructure, and activities of ribulose1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase[J].Physiologia Plantarum,2000,110:201-208
    [118] Smit J, Driessche RVD. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii(Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings[J]. Tree Physiology,1992,11:401-410
    [119]武维华.植物生理学[M].北京:科学出版社,2003
    [120]孙群,胡景江.植物生理学研究技术[M].杨凌:西北农林科技大学出版社,2006
    [121] Markesteijn L, Poorter L, Paz H, et al. Ecological differentiation in xylem cavitation resistance isassociated with stem and leaf structural traits[J]. Plant, Cell&Environment,2011,34:137-148
    [122] Hessine K, Martínez JP, Gandour M, et al. Effect of water stress on growth, osmotic adjustment, cellwall elasticity and water-use efficiency in Spartina alterniflora[J]. Environmental and ExperimentalBotany,2009,67:312-319
    [123] Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses[J]. Plant Cell,1995,7:1099-1111
    [124] Pérez-Pérez JG, Robles JM, Tovar JC, et al. Response to drought and salt stress of lemon ‘Fino49’under field conditions: water relations, osmotic adjustment and gas exchange[J]. ScientiaHorticulturae,2009,122:83-90
    [125] Silva EN, Ferreira-Silva SL, Viégas RA, et al. The role of organic and inorganic solutes in theosmotic adjustment of drought-stressed Jatropha curcas plants[J]. Environmental and ExperimentalBotany,2010,69:279-285
    [126] Osório J, Osório ML, Chaves MM, et al. Water deficits are more important in delaying growth thanin changing patterns of carbon allocation in Eucalyptus globulus[J]. Tree Physiology,1998,18:363-373
    [127] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivationstress: a review[J]. Annals of Botany,2003,91:179-194
    [128] Zheng GW, Tian. B, Zhang FJ, et al. Plant adaptation to frequent alterations between high and lowtemperatures: remodeling of membrane lipids and maintenance of unsaturation levels[J]. Plant, Cell&Environment,2011
    [129] Delatorre J, Pinto M, Cardemil L. Effects of water stress and high temperature on photosyntheticrates of two species of Prosopis[J]. Journal of Photochemistry and Photobiology B: Biology,2008,92:67-76
    [130]肖家欣,齐笑笑,张绍铃.锌和铁缺乏对枳生理指标、矿物质含量及叶片超微结构的影响[J].应用生态学报,2010,21:1974-1980
    [131] Stewart P, Globig S. Plant Physiology[M]. Oakville, Canada: Apple Academic Press Inc.,2012
    [132] Reddy AR, Chaitanya KV, Jutur PP, et al. Differential antioxidative responses to water stress amongfive mulberry (Morus alba L.) cultivars[J]. Environmental and Experimental Botany,2004,52:33-42
    [133] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. TRENDS in Plant Science,2002,7:405-410
    [134] Fu JM, Huang BR. Involvement of antioxidants and lipid peroxidation in the adaptation of twocool-season grasses to localized drought stress[J]. Environmental and Experimental Botany,2001,45:105-114
    [135] Bian SM, Jiang YW. Reactive oxygen species, antioxidant enzyme activities and gene expressionpatterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery[J].Scientia Horticulturae,2009,120:264-270
    [136] M ller IM. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, andmetabolism of reactive oxygen species[J]. Annual Review of Plant Physiology,2001,52:561-591
    [137]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报,1999,19:787-792
    [138] Moeskops B, Buchan D, van Beneden S, et al. The impact of exogenous organic matter on SOMcontents and microbial soil quality[J]. Pedobiologia,2012,55:175-184
    [139] Zhu BB, Li ZB, Li P, et al. Soil erodibility, microbial biomass, and physical-chemical propertychanges during long-term natural vegetation restoration: a case study in the Loess Plateau, China[J].Ecological Research,2010,25:531-541
    [140] Bainard LD, Koch AM, Gordon AM, et al. Growth response of crops to soil microbial communitiesfrom conventional monocropping and tree-based intercropping systems[J]. Plant and Soil,2013,363:345-356
    [141] Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology,2012,93:930-938
    [142]秦富仓,余新晓,张满良,等.小流域林草植被控制土壤侵蚀机理研究[J].应用生态学报,2005:1618-1622
    [143] Sheffer E, Yizhaq H, Gilad E, et al. Why do plants in resource-deprived environments form rings?[J].Ecological Complexity,2007,4:192-200
    [144] Cavieres LA, Quiroz CL, Molina-Montenegro MA, et al. Nurse effect of the native cushion plantAzorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of centralChile[J]. Perspectives in Plant Ecology, Evolution and Systematics,2005,7:217-226
    [145] Bochet E, Poesen J, Rubio JL. Mound development as an interaction of individual plants with soil,water erosion and sedimentation processes on slopes[J]. Earth Surface Processes and Landforms,2000,25:847-867
    [146] Isselin-Nondedeu F, Bédécarrats A. Influence of alpine plants growing on steep slopes on sedimenttrapping and transport by runoff[J]. Catena,2007,71:330-339
    [147] El-Bana MI, Nijs I, Khedr AA. The importance of phytogenic mounds (Nebkhas) for restoration ofarid degraded rangelands in Northern Sinai[J]. Restoration Ecology,2003,11:317-324
    [148] Ravi S, D'Odorico P, Okin GS. Hydrologic and aeolian controls on vegetation patterns in aridlandscapes[J]. Geophysical Research Letters,2007,34: L24S23
    [149] Parsons AJ, Abrahams AD, Simanton JR. Microtopography and soil-surface material on semi-aridpiedmont hillslope, southern Arizona[J]. Journal of Arid Environments,1992,22:107-115
    [150] Meyer LD, Dabney SM, Harmon WC. Sediment-trapping Effectiveness of Stiff-grass Hedges[J].Transactions of the American Society of Agricultural and Biological Engineers,1995,38:809-815
    [151] Buis E, Temme AJAM, Veldkamp A, et al. Shrub mound formation and stability on semi-arid slopesin the Northern Negev Desert of Israel: A field and simulation study[J]. Geoderma,2010,156:363-371
    [152] Aguiar MN, Sala OE. Patch structure, dynamics and implications for the functioning of aridecosystems[J]. Trends in Ecology and Evolution,1999,14:273-277
    [153] Bhark EW, Small EE. Association between Plant Canopies and the Spatial Patterns of Infiltration inShrubland and Grassland of the Chihuahuan Desert, New Mexico[J]. Ecosystems,2003,6:185-196
    [154] Nash MS, Jackson E, Whitford WG. Effects of intense, short-duration grazing on microtopographyin a Chihuahuan Desert grassland[J]. Journal of Arid Environments,2004,56:383-393
    [155] Schlesinger WH, Pilmanis AM. Plant-soil Interactions in Deserts[J]. Biogeochemistry,1998,42:169-187
    [156] Giladi I, Segoli M, Ungar ED. Shrubs and herbaceous seed flow in a semi-arid landscape: dualfunctioning of shrubs as trap and barrier[J]. Journal of Ecology,2013:DOI:10.1111/1365-2745.12019
    [157]张昌顺,谢高地,包维楷,等.地形对澜沧江源区高寒草甸植物丰富度及其分布格局的影响[J].生态学杂志,2012,31:2767-2774
    [158]中国科学院黄土高原综合考察队.黄土高原地区土壤侵蚀区域特征及其治理途径[M],北京:科学技术出版社,1991
    [159]高旺盛,董孝斌.黄土高原丘陵沟壑区脆弱农业生态系统服务评价——以安塞县为例[J].自然资源学报,2003:182-188
    [160]陈云明,刘国彬,杨勤科.黄土高原人工林土壤水分效应的地带性特征[J].自然资源学报,2004,19:195-200
    [161]蔡国强.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,4:84-91
    [162]张金屯.数量生态学[M].北京:科学出版社,2011
    [163]中国植被编辑委员会编著.中国植被[M].北京:科学出版社,1980
    [164]雷明德.陕西植被[M].北京:科学出版社,1999
    [165]操国兴,钟章成,谢德体,等.不同群落中川鄂连蕊茶的生殖分配与个体大小之间关系的探讨[J].植物生态学报,2005:261-266
    [166]李清河,辛智鸣,高婷婷,等.荒漠植物白刺属4个物种的生殖分配比较[J].生态学报,2012:5054-5061
    [167] Mathieson AC, Guo ZY. Patterns of fucoid reproductive biomass allocation[J]. British PhycologicalJournal,1992,27:271-292
    [168] Garnier E, Shipley B, Roumet C,et al. A standardized protocol for the determination of specific leafarea and leaf dry matter content[J]. Functional ecology,2001,15:688-695
    [169] Catoni R, Gratani L, Varone L. Physiological, morphological and anatomical trait variations betweenwinter and summer leaves of Cistus species[J]. Flora—Morphology, Distribution, Functional Ecologyof Plants,2012,207:442-449
    [170]张鹤山,张德罡,刘晓静,等.灰色关联度分析法对不同处理下草坪质量的综合评判[J].草业科学,2007,24:73-76
    [171]高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000
    [172]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999
    [173]刘向莉,高丽红,刘明池.植物组织中自由水和束缚水含量测定方法的改进[J].中国蔬菜,2005,4:9-11
    [174]中科院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978
    [175] Lee DH, Lee CB. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays[J]. Plant Science,2000,159:75-85
    [176]张宪政.植物叶绿素含量测定—丙酮乙醇混合液法[J].沈阳农学院学报,1986,3:26-28
    [177] Arshad MA, Lowery B, Grossman B, Physical Tests for Monitoring Soil Quality, in Methods forassessing soil quality[M], Doran, JW, Jones, AJ. Editors.1996, Madison: Wisconsin. p.123-141.
    [178]尚浩博.资源环境常规分析方法[M].杨凌:西北农林科技大学出版社,2010
    [179] Johnson E, Miyanishi K. Plant disturbance ecology the process and the response. New York:Academic Press,2007
    [180] Lundholm JT. Plant species diversity and environmental heterogeneity: spatial scale and competinghypotheses[J]. Journal of Vegetation Science,2009,20:377-391
    [181] Tamme R, Hiiesalu I, Laanisto L, et al. Environmental heterogeneity, species diversity andco-existence at different spatial scales[J]. Journal of Vegetation Science,2010,21:796-801
    [182] Lundholm JT, Larson DW. Relationships between spatial environmental heterogeneity and plantspecies diversity on a limestone pavement[J]. Ecography,2003,26:715-722
    [183] Reynolds HL, Mittelbach GG, Mittelbach GG, et al. No effect of varying soil resource heterogeneityon plant species richness in a low fertility grassland[J]. Journal of Ecology,2007,95:723-733
    [184] Solbrig OT. Plant traits and adaptive strategies: their role in ecosystem function[J]. Biodiversity andEcosystem Function,1993,99:97-116
    [185] Tansley AG. An introduction to plant ecology[M]. London: Discovery Publishing House,2010
    [186]刘利峰,毕华兴,李孝广,等.黄土高原的植被演替研究现状及发展趋势[J].干旱区资源与环境,2004,18:30-35
    [187]吴元芝,黄明斌,赵世伟.黄土高原植被演替不同阶段植物系数的变化与适应性评价[J].自然资源学报,2008,23:849-857
    [188]庄丽,向本春,李卫红.新疆干旱、半干旱区植被的生理生态响应和适应策略[M].杨凌:西北农林科技大学出版社,2010
    [189] Hautier Y, Niklaus PA, Hector A. Competition for Light Causes Plant Biodiversity Loss AfterEutrophication[J]. Science,2009,324:636-638
    [190] Riegel GM, Miller RF, Krueger WC. The effects of aboveground and belowground competition onunderstory species composition in a Pinus ponderosa forest [J]. Forest Science,1995,41:864-889
    [191] Murcia C. Edge effects in fragmented forests: implications for conservation[J]. TRENDS in Ecology&Evolution,1995,10:58-62
    [192] Fu BJ, Chen LD, Ma KM, et al. The relationships between land use and soil conditions in the hillyarea of the loess plateau in northern Shaanxi, China[J]. Catena,2000,39:69-78
    [193] Beatty SW. Influence of Microtopography and Canopy Species on Spatial Patterns of ForestUnderstory Plants[J]. Ecology,1984,65:1406-1419
    [194] Chipman SJ, Johnson EA. Understory vascular plant species diversity in the mixedwood borealforest of western Canada[J]. Ecological Applications,200212:588-601
    [195] Zhu JT, Yu1JJ, Wang P, et al. Distribution patterns of groundwater-dependent vegetation speciesdiversity and their relationship to groundwater attributes in northwestern China[J]. Ecohydrology,2013,6:191-200
    [196] Sasaki T, Lauenroth WK. Dominant species, rather than diversity, regulates temporal stability ofplant communities[J]. Oecologia,2011,166:761-768
    [197] Puigdefábregas J. The role of vegetation patterns in structuring runoff and sediment fluxes indrylands[J]. Earth Surface Processes and Landforms,2005,30:133-147
    [198] Lambers H. Dryland salinity: a key environmental issue in southern Australia[J]. Plant Soil,2003,257:5-7
    [199] Cihacek LJ, Swan JB. Effects of erosion on soil chemical properties in the north central region of theUnited States[J]. Journal of Soil and Water Conservation,1994,49:259-265
    [200] Breshears DD, Whicker JJ, Johansen MP, et al. Wind and water erosion and transport in semi-aridshrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driventransport[J]. Earth Surface Processes and Landforms,2003,28:1189-1209
    [201] Ludwig JA, Wilcox BP, Breshears DD, et al. Vegetation patches and runoff-erosion as interactingecohydrological processes in semiarid landscapes[J]. Ecology,2005,86:288-297
    [202] Brown JH. On the Relationship between Abundance and Distribution of Species[J]. The AmericanNaturalist,1984,124:255-279
    [203] Rosenzweig M. Species diversity in space and time[M]. Cambridge: Cambridge University Press,1995
    [204] Aarssen LW. Ecological combining ability and competitive combining ability in plants: toward ageneral evolutionary theory of coexistence in systems of competition[J]. The American Naturalist,1983,122:707-731
    [205] Donohue K, de Casas RR, Burghardt L, et al. Germination, postgermination adaptation, and speciesecological ranges[J]. Annual Review of Ecology, Evolution, and Systematics,2010,41:293-319
    [206] Ackerly DD. Community assembly, niche conservatism, and adaptive evolution in changingenvironments[J]. International Journal of Plant Sciences,2003,164: S165-S184
    [207] Whittaker RH. Evolution and measurement of species diversity[J]. Taxon,1972,21:213-251
    [208] Bossuyt B, Honnay O, Hermy M. Scale-dependent frequency distributions of plant species in duneslacks: Dispersal and niche limitation[J]. Journal of Vegetation Science,2004,15:323-330
    [209] Silvertown J, Dodd ME, Gowing DJG, et al. Hydrologically defined niches reveal a basis for speciesrichness in plant communities[J]. Nature1999,400:61-63
    [210]刘加珍,陈亚宁,张元明.塔里木河中游植物种群在四种环境梯度上的生态位特征[J].应用生态学报,2004,15:549-555
    [211] Whittaker RH. Dominance and diversity in land plant communities---numerical relations of speciesexpress the importance of competition in community function and evolution[J]. Science,1965,147:250-260
    [212] Baer SG, Blair JM, Collins SL, et al. Plant community responses to resource availability andheterogeneity during restoration[J]. Oecologia,2004,139:617-629
    [213]焦菊英,张振国,贾燕锋,等.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类[J].生态学报,2008,28:2981-2997
    [214] Reekie EG, Bazzaz FA. Reproductive allocation in plants[M]. Burlington, VT, USA: ElsevierAcademic Press,2005
    [215]张玉芬,张大勇.克隆植物的无性与有性繁殖对策[J].植物生态学报,2006,30:174-183
    [216] Silvertown JW. Introduction to plant population ecology[M]. London and New York: Longman,1982
    [217]杨允菲,李建东.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J].应用生态学报,2003,14:30-34
    [218] Dalgleish HJ, Hartnett DC. Below-ground bud banks increase along a precipitation gradient of theNorth American Great Plains: a test of the meristem limitation hypothesis[J]. New Phytologist,2006,171:81-89
    [219] Hartnett DC, Setshogo MP, Dalgleish HJ. Bud banks of perennial savanna grasses in Botswana[J].African Journal of Ecology,2006,44:256-263
    [220] Hendrickson JR, Briske DD. Axillary bud banks of two semiarid perennial grasses: occurrence,longevity, and contribution to population persistence[J]. Oecologia,1997,110:584-591
    [221]程积民,万惠娥,胡相明.黄土高原草地土壤种子库与草地更新[J].土壤学报,2006,43:679-683
    [222] Wang N, Jiao JY, Du HD, et al. The role of local species pool, soil seed bank and seedling pool innatural vegetation restoration on abandoned slopeland[J]. Ecological Engineering,2013,52:28-36
    [223]张希彪,王瑞娟,上官周平.黄土高原子午岭油松林的种子雨和土壤种子库动态[J].生态学报,2009,29:1877-1884
    [224] van Noordwijk AJ, de Jong G. Acquisition and Allocation of Resources: Their Influence on Variationin Life History Tactics[J]. The American Naturalist,1986,128:137-142
    [225] Taylor DR, Aarssen LW, Loehle C. On the Relationship between r/K Selection and EnvironmentalCarrying Capacity: A New Habitat Templet for Plant Life History Strategies[J]. Oikos,1990,58:239-250
    [226] Obesoa JR. A hierarchical perspective in allocation to reproduction from whole plant to fruit andseed level[J]. Perspectives in Plant Ecology, Evolution and Systematics,2004,6:217-225
    [227] Lloret F, Casanovas C, Penuelas J. Seedling survival of Mediterranean shrubland species in relationto root:shoot ratio, seed size and water and nitrogen use[J]. Functional Ecology,1999,13:210-216
    [228] de Jong G, van Noordwijk AJ. Acquisition and Allocation of Resources: Genetic (CO) Variances,Selection, and Life Histories[J]. The American Naturalist,1992,139:749-770
    [229] Pickering CM. Size-dependent reproduction in Australian alpine Ranunculus[J]. Australian Journalof Ecology,1994,19:336-344
    [230]邹厚远.陕北黄土高原植被区划及与林草建设的关系[J].水土保持研究,2000,7:96-100
    [231] Guàrdia R, Gallart F, Ninot JM. Soil seed bank and seedling dynamics in badlands of the Upperllobregat Basin (Pyrenees)[J]. Catena,2000,40:189-202
    [232] Begon M, Harper JL, Townsend CR. Ecology: Individuals, Populations, and Communities[M].London: Blackwell,1996
    [233]陈宇,黄土丘陵沟壑区撂荒地种子输入与输出动态变化特征[D].杨凌,西北农林科技大学2012
    [234] Moles AT, Ackerly DD, Webb CO, et al. Factors that shape seed mass evolution[J]. PNAS,2005,102:10540-10544
    [235] Sargent RD, Goodwillie C, Kalisz S, et al. Phylogenetic evidence for a flower size and numbertrade-off[J]. American Journal of Botany,2007,94:2059-2062
    [236] Eckert CG. The loss of sex in clonal plants[J]. Evolutionary Ecology,2001,15:501-520
    [237] Vesk PA, Westoby M. Funding the bud bank: a review of the costs of buds[J]. Oikos,2004,106:200-208
    [238] Hough-Snee N, Long AL, Jeroue L, et al. Mounding alters environmental filters that drive plantcommunity development in a novel grassland[J]. Ecological Engineering,2011,37:1932-1936
    [239] Klime L, Klime ová J. Root sprouting in Rumex acetosella under different nutrient levels[J]. PlantEcology,1999,141:33-39
    [240]董鸣.克隆植物生态学[M].北京:科学出版社,2011
    [241]肖培青,郑粉莉,史学建.黄土坡面侵蚀垂直分带性及其侵蚀产沙研究进展[J].水土保持研究,2002,9:1-8
    [242] Valladares F, Saldana A, Gianoli E. Costs versus risks: Architectural changes with changing lightquantity and quality in saplings of temperate rainforest trees of different shade tolerance[J]. AustralEcology,2011
    [243]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989
    [244] Wilson P, Thompson K, Hodgson J. Specificleaf areaand leaf dry matter content as alternativepredictors of plant strategies[J]. New Phytologist,1999,143:155~162
    [245]邓蕾,王鸿喆,上官周平,等.水蚀风蚀交错区柠条锦鸡儿叶片比叶面积和营养元素变化动态[J].生态学报,2010,30:4889-4897
    [246]龚时慧,温仲明,施宇.延河流域植物群落功能性状对环境梯度的响应[J].生态学报,2011,31:6079-6088
    [247]杜华栋.陕北黄土高原优势物种叶片结构与生理特性不同立地环境的生态响应[D].杨凌:西北农林科技大学,2010
    [248]杨超,梁宗锁.陕北撂荒地上优势蒿类叶片解剖结构及其生态适应性[J].生态学报,2008:4732-4738
    [249]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22:118-127
    [250]中国科学院黄土高原综合科学考察队.黄土高原地区植被资源及其合理利用[M].北京:科学出版社,1991
    [251]张振万,张春林,陈彦生,等.陕北黄土高原植物区系分区界线初探[J].西北植物学报,1992,12:303-308
    [252]周晓红,赵景波.黄土高原气候变化与植被恢复[J].干旱区研究,2005:116-119
    [253] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easymeasurement of plant functional traits[J]. Australian Journal of Botany,2003,51:335-380
    [254] Shipley B. Trade-offs between net assimilation rate and specific leaf area in determining relativegrowth rate: relationship with daily irradiance[J]. Functional Ecology,2002,16:682-689
    [255] Fichtner K, Schulze ED. The effect of nitrogen nutrition on growth and biomass partitioning ofannual plants originating from habitats of different nitrogen availability[J]. Oecologia,1992,92:236-241
    [256] Thompson WA. Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees growth, leaf my andmutrient content[J]. Australian Journal of Plant Physiology,1992,65:1~18
    [257] Garnier E. Growth analysis of congenericannual and perennial grass species[J]. Journal of Ecology,1992,80:665~675
    [258] Gao X, Ai YF, Qiu BS. Drought adaptation of a terrestrial macroscopic cyanobacterium, Nostocflagelliforme, in arid areas: A review[J]. African Journal of Microbiology Research,2012,6:5728-5735
    [259]刘穆.种子植物形态解剖学导论[M].北京:科学出版社,2010
    [260] Lack AJ, Evans DE. Plant biology[M]. Oxford: Bios Scientific Publishers Limited,2001
    [261]简令成,王红.逆境植物细胞生物学[M].北京:科学出版社,2009
    [262] Pang JY, Yang JY, Ward P, et al. Contrasting responses to drought stress in herbaceous perenniallegumes[J]. Plant and Soil,2011,348:299-314
    [263]周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19:35-40
    [264]黄振英,吴鸿,胡正海.新疆10种沙生植物旱生结构的解剖学研究[J].西北植物学报,1995,15:56-61
    [265] Castro-Díez P, Puyravaud JP, Cornelissen JHC. Leaf structure and anatomy as related to leaf massper area variation in seedlings of wide range of woody plant species and types[J]. Oecologia,2000,124:476~486
    [266] Martinez JP, Kinet JM, Bajji M, et al. NaCl alleviates polyethylene glycolinduced water stress in thehalophyte species Atriplex halimus[J]. Journal of Experimental Botany,2005,56:2421-2431
    [267]单长卷,韩蕊莲,梁宗锁.干旱胁迫下黄土高原4种乡土禾草抗氧化特性[J].生态学报,2012:170-180
    [268]王勇,韩蕊莲,梁宗锁.水分胁迫对4种菊科蒿属植物抗氧化特性的影响[J].西北农林科技大学学报(自然科学版),2010:178-186
    [269]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13:92-100
    [270] Fahn A. Structural and functional properties of trichomes of xeromorphic leaves[J]. Annual ofBotany,1986,57:631~637
    [271] Ivancich HS, Lencinas MV, Pastur GJM, et al. Foliar anatomical and morphological variation inNothofagus pumilio seedlings under controlled irradiance and soil moisture levels[J]. Tree physiology,2012,32:554-564
    [272] Souza RP, Machado EC, Silva JAB, et al. Photosynthetic gas exchange, chlorophyll fluorescenceand some associated metabolic changes in cowpea (Vigna unguiculata) during water stress andrecovery[J]. Environmental and Experimental Botany,2004,51:45-56
    [273] Patakas A, Nikolaou N, Ziozioiu E, et al. The role of organic solute and ion accumulation in osmoticadjustment in drought-stressed grapevines[J]. Plant Science,2002,163:361-367
    [274] Shabala S, Cuin TA. Potassium transport and plant salt tolerance[J]. Plant Physiology,2007,133:651-669
    [275] Turner NC, Kramer PJ. Adaptation of plants to water and high temperature[M]. New York: JohnWiley and Sons,1980
    [276] Irigoyen JJ, Einerich DW, Sánchez-Díaz M. Water stress induced changes in concentrations ofproline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants[J]. PhysiologiaPlantarum,1992,84:55-60
    [277] Iannucci A, Russo M, Arena L, et al. Water deficit effects on osmotic adjustment and soluteaccumulation in leaves of annual clovers[J]. European Journal of Agronomy2002,16:111-122
    [278] Johnson SM, Doherty SJ, Croy RRD. Biphasic superoxide generation in potato tubers: a selfamplifying response to stress[J]. Plant Physiology,2003,13:1440-1449
    [279] Nayyar H, Gupta D. Differential sensitivity of C3and C4plants to water deficit stress: Associationwith oxidative stress and antioxidants[J]. Environmental and Experimental Botany,2006,58:106-113
    [280] Khanna-Chopra R, Selote DS. Acclimation to drought stress generates oxidative stress tolerance indrought-resistant than-susceptible wheat cultivar under field conditions[J]. Environmental andExperimental Botany,2007,60:276-283
    [281] Reddy AR, Chaitany KV, Vivekanandan M. Drought-induced responses of photosynthesis andantioxidant metabolism in higher plants[J]. Journal of Plant Physiology,2004,161:1189-1202
    [282]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14:1446-1450
    [283] Sapeta H, Costa JM, Louren o T, et al. Drought stress response in Jatropha curcas: Growth andphysiology[J]. Environmental and Experimental Botany,2013,85:76-84
    [284]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理与分子生物学学报,1991,17:177-182
    [285] Schlesinger WH, Raikes JA, Hartley AE, et al. On the spatial pattern of soil nutrients in desertecosystems[J]. Ecology,1996,7:364-374
    [286] Biederman LA, Whisenant SG. Using mounds to create microtopography alters plant communitydevelopment early in restoration[J]. Restoration Ecology,2011,19:53-61
    [287] Rango A, Tartowski SL, Laliberte A, et al. Islands of hydrologically enhanced biotic productivity innatural and managed arid ecosystems[J]. Journal of Arid Environments,2006,65:235–252
    [288]李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30:1217-1226
    [289]马祥华,焦菊英,白文娟,等.黄土丘陵沟壑区退耕土地土壤养分因子对于植被恢复的贡献[J].西北植物学报,2005,25:328-335
    [290]米述军,李辉霞,张建国.黄土高原坡地单株植物下的微地形研究[J].山地学报,2003,21:106-109
    [291] Shi H, Shao MA. Soil and water loss from the Loess Plateau in China[J]. Journal of AridEnvironments,2000,45:9-20
    [292] Fox DM, Bryan RB. The relationship of soil loss by interrill erosion to slopegradient[J]. Catena,2000,38:211-222
    [293] Bochet E, Rubio JL, Poesen J. Relative efficiency of three representative matorral species inreducing water erosion at the microscale in a semi-arid climate (Valencia, Spain)[J]. Geomorphology,1998,23:139-150
    [294] Sanchez G, Puigdefabregas J. Interactions of plant growth and sediment movement on slopes in asemi-arid environment[J]. Geomorphology,1994,9:243-260
    [295] de Baets S, Poesen J, Reubens B, et al. Methodological framework to select plant species forcontrolling rill and gully erosion: application to a Mediterranean ecosystem[J]. Earth SurfaceProcesses and Landforms,2009,34:1374-1392
    [296] Offer ZY, Goossens D. Ten years of aeolian dust dynamics in a desert region (Negev Desert, Israel):analysis of airborne dust concentration, dust accumulation and the high-magnitude dust events[J].Journal of Arid Environments,2001,47:211-249
    [297] Shachak M, Lovett GM. Atmospheric deposition to a desert ecosystem and its implications formanagement[J]. Ecological Applications,1998,8:455-463
    [298] Fenner M. Seeds: the Ecology of Regeneration in Plant Communities[M]. Wallingford: CABInternational,1992
    [299] Blackburn WH. Factors influencing infiltration and sediment production of semiarid rangelands inNevada[J]. Water Resources Research,1975,11:929-937
    [300] Eavis BW. Soil physical conditions affecting seedling root growt[J]. Plant and Soil,1972,36:613-622
    [301] Zimmerman RP, Karods LT. Effect of bulk density on root growth[J]. Soil Science,1961,91:280-288
    [302] Bashan Y, Salazar B, PuenteMa E, et al. Enhanced establishment and growth of giant cardon cactusin an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plantgrowth-promoting microorganisms and compost[J]. Biology and Fertility of Soils,2009,45:585-594
    [303] Callaway RM. Positive interactions among plants[J]. Botanical Review,1995,61:306-349
    [304] Callaway RM, Walker LR. Competition and facilitation: a synthetic approach to interactions in plantcommunities[J]. Ecology,1997,78:1958-1965
    [305] Debussche M, EscarréJ, Lepart J, et al. Changes in Mediterranean plant succession: old-fieldsrevisited[J]. Journal of Vegetation Science,1996,7:519-526
    [306]张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社,2004
    [307] K rner C,吴宁,等译.高山植物功能生态学[M].北京:科学出版社,2009
    [308]钟章成.植物种群的繁殖对策[J].生态学杂志,1995,14:37-42
    [309] Valladares F, Wright SJ, Lasso E, et al. Plastic phenotypic response to light of16congeneric shrubsfrom a Panamanian rainforest[J]. Ecology,2000,81:1925-1936

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700