用户名: 密码: 验证码:
基于蛋白组学的肺结核病及其中医证候血清标志物筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:结核病(Tuberculosis, TB)是由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引起的一种慢性传染病。结核病疫情下降缓慢,肺结核(pulmonary tuberculosis, PTB)仍是影响全球特别是发展中国家公共卫生的重大传染疾病,急需新的策略提高肺结核的早期诊断质量。生物标志物对于疾病的筛查、诊断、预后、疗效判断以及检测十分重要,因此,寻找更为灵敏的特征性的生物标志物是早期诊断肺结核的当务之急。蛋白组学技术的发展为从整体水平分析血清蛋白质提供了技术平台,表面加强激光解析电离飞行时间质谱(surface-enhanced laser desorption ionization time of flight mass spectrometry, SELDI-TOF-MS)结合基质辅助激光解析电离飞行时间质谱(matrix assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS)、线性液质联用离子解串联质谱技术(linear ion chromatograph mass spectrometry/mass spectrometry, LC-MS/MS)技术,作为全新的蛋白组学技术可实现对血清中特异性标志物的筛选和鉴定。
     研究方法:采用弱阳离子(weak cation exchange, WCX)磁珠结合SELDI-TOFMS技术建立180例初治继发性肺结核患者和211例对照的血清蛋白指纹图谱,应用Biomarker Pattern Software (BPS)软件建立肺结核的诊断模型。通过反相高效液相色谱(reverse phase-high performance liquid chromatography, RP-HPLC)分离及纯化潜在的生物标志物蛋白,应用MALDI-TOF MS跟踪目标蛋白,进一步用线性液质联用离子肼串联质谱(linear ion chromatograph mass spectrometry/mass spectrometry, LC-MS/MS)进行分析,以鉴定潜在诊断标志物蛋白,并用酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)进行验证。
     研究结果:120例肺结核和120例非肺结核(60例健康对照、20例肺癌、20例肺炎、20例慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD))血清蛋白图谱比较,35个蛋白峰在肺结核和非肺结核组之间有显著差异(P<0.01,Fold≥1.5)。筛选2554.6,4824.4,5325.7和8606.8m/z四个蛋白峰构建了诊断模型Ⅰ,灵敏度为83.3%,特异度为84.2%,该模型显示在肺结核临床大规模的筛查具有较好的诊断能力,盲法检验灵敏度为75.0%,特异度为83.5%。以120例肺结核患者和60例肺结核其他疾病(肺癌、肺炎、COPD)筛选的差异峰为基础构建了由4180.1,5325.7,15103.6m/z3个蛋白峰组成的诊断模型Ⅱ,灵敏度为87.5%,特异度为90.0%。该模型在临床上对于有相似症状以及相似影像学改变的肺结核和其他肺部疾病的鉴别具有更强的应用性,该模型盲法灵敏度为81.7%,特异度为85.0%,阳性预测值为84.5%。在肺结核中相对高表达的2554.6m/z蛋白峰经RP-HPLC分离纯化,并利用MALDI-TOF MS及LC-MS/MS进行鉴定,为纤维蛋白原(fibrinogen, alpha polypeptide isoform alpha-E preproprotein)的一个片段。血清ELISA实验结果证实肺结核组的纤维蛋白原降解产物(fibrinogen degradation product, FDP)量均值高于健康对照组(5,005±1,297vs.4,010±1,181ng/mL,P<0.05),142例临床随机收集的肺结核病人血浆中的纤维蛋白原含量(5.45±1.65g/L)要高于正常值范围(2.0-4.0g/L)。
     结论:(1)建立纳米磁珠结合SELDI-TOF MS的肺结核蛋白指纹图谱检测技术,可快速稳定灵敏地构建肺结核蛋白指纹图谱;建立了RP-HPLC联合MALDI-TOF MS、LC-MS/MS鉴定SELDI-TOF MS特异差异峰技术。(2)筛选了肺结核相关的差异蛋白峰,构建了肺结核早期诊断的蛋白诊断模型,为建立肺结核病临床早期快速特异诊断的血清蛋白质组学标准,提高肺结核病的防治水平奠定基础。(3)鉴定和验证了纤维蛋白原可能为肺结核早期诊断的潜在生物标志物之一,为临床肺结核早期诊断奠定了基础。
     研究背景:肺结核属于中医学“肺痨”范畴,目前用于肺结核治疗的化学药物虽有疗效但毒副作用大且易形成耐药性,而中医基于患者机体正虚和痨虫感染辨证施治,尤其是近年来中西医结合治疗在耐药肺结核和疑难重症肺结核治疗中取得了一定的疗效。证候是中医辨证施治的核心,肺结核中医证候的诊断尚无科学量化的标准,严重影响临床治疗效果。蛋白质组学技术的很多特征如整体性、动态性、时空性、复杂性等与中医证候的特点十分吻合,以蛋白质组为切入点,深入进行证候实质的研究,有利于从微观的角度动态地了解证候的物质基础,可为中医证候诊断分型的客观化提供依据。
     研究方法:采用中医独立四诊辨证结合舌诊仪脉诊仪对180例肺结核患者进行辨证分型,纳入肺阴虚证(FYX)71例,阴虚火旺证(YXHW)64例,气阴两虚证(QYLX)45例。采用WCX磁珠结合SELDI-TOF MS技术建立血清蛋白指纹图谱,应用Biomarker Wizard软件比较各证候间的差异峰并进行证候共性分析。应用BPS软件建立肺结核证候的辨证模型。通过RP-HPLC分离及纯化潜在的生物标志物蛋白,应用MALDI-TOF MS和LC-MS/MS进行分析,以鉴定潜在证候标志物蛋白,并用蛋白芯片技术进行验证。
     研究结果:50例FYX证、40例YXHW证、30例QYLX证血清蛋白指纹图谱两两比较并作共性分析,FYX证与与其他两证候比较均存在差异的蛋白峰有12个(P<0.001), YXHW证与其他两证候比较均存在差异的蛋白峰有12个(P<0.001),QYLX证与其他两证候比较均存在差异的蛋白峰有34个(P<0.001);有7个蛋白峰在三证间的含量呈肺阴虚→阴虚火旺→气阴两虚逐渐降低变化。以三证候间两两有差异的74个差异峰(P<0.001)为基础构建了由3961.7、4679.7、5646.4、8891.2、9416.7m/z5个蛋白标志峰组成的肺结核中医证候蛋白质指纹图谱辨证模型,对于FYX证辨证的准确率为74.0%,对于YXHW证的准确率为72.5%,对于QYLX的准确率为96.7%。该模型对于肺结核三证候的分型具有较好的鉴别能力,盲法验证对于FYX证辨证的准确率为76.2%,对于YXHW证的准确率为70.8%,对于QYLX的准确率为80.0%。对筛选到的蛋白差异峰进行了鉴定和抗体芯片的验证,结果表明9416.7m/z蛋白峰是apolipoprotein C-Ⅲ载脂蛋白C-Ⅲ中的一段多肽。
     结论:(1)筛选归纳了肺结核各证候特有的差异蛋白峰,可能是证候外在表现的内在病理机制和物质基础,为整体性评价肺结核中医证候的实质提供证据;归纳了7个蛋白峰在三证间的含量呈肺阴虚→阴虚火旺→气阴两虚逐渐降低变化,结果与中医理论关于肺结核证候病情演变相契合,差异的标志蛋白峰体现了肺结核证候间一定的相互关系及演变规律。(2)构建了肺结核中医证候蛋白辨证模型,为肺结核证候诊断的客观化提供蛋白质标准,有助于规范肺结核中医治疗的辨证施治。(3)鉴定和验证了载脂蛋白C-Ⅲ在肺结核三证候中差异表达,可能为肺结核中医证候分型的血清潜在标志物之一,可在临床和功能方面作进一步的验证。
Background:Tuberculosis (TB) is a chronic respiratory infectious disease caused by Mycobacterium tuberculosis (MTB). Despite the availability of an effective therapy, pulmonary TB (PTB) continues to be a major global public health problem. Especially in developing countries, the epidemic situation of TB is alleviated slowly. The reversal of this scenario will require the development of new strategies to increase the quality and speed of TB diagnosis. Biomarkers play an irreplaceable role in early diagnosis, disease surveillance, efficacy and prognostic evaluation of the disease. At the present stage, there are few effective biomarkers for early diagnosis of TB. Therefore, how to use new technology and means to discover and verify more sensitive and specific biomarkers for early diagnosis of TB is a major challenge and urgent task for the disease control. The emergence of proteomics technology makes the analysis of all the proteins in the serum possible. The surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS), matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and linear ion chromatograph mass spectrometry/mass spectrometry (LC-MS/MS) as powerful proteomics technology can be used in detection effective biomarkers for TB.
     Methods:SELDI-TOF MS combined with Weak cation exchange (WCX) magnetic beads was used to screen serum samples from180cases of pulmonary TB and211control subjects. A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by reverse phase-high performance liquid chromatography (RP-HPLC), identified by MALDI-TOF MS, LC-MS/MS and validated using enzyme-linked immunosorbent assay (ELISA).
     Results:The protein profile from the240serum samples of the training set (consisting of120cases of TB patients,20cases of lung cancer patients,20cases of pneumonia patients,20cases of chronic obstructive pulmonary disease (COPD) patients and60cases of healthy volunteers) were analyzed with Biomarker Wizard software,35protein peaks were found to discriminate patients with TB and non-TB control subjects (P<0.01, Fold>1.5),69protein peaks were found to discriminate patients with TB and the differential diseases group (P<0.01, Fold≥1.5). The diagnosis model I based on the four biomarkers (2554.6,4824.4,5325.7, and8606.8m/z) was established which could distinguish TB from the non-TB controls with the sensitivity of83.3%and the specificity of84.2%. The diagnosis model Ⅱ based on the three biomarkers (4180.1,5325.7, and15103.6m/z) was established which could distinguish TB from the differential diseases controls with the sensitivity of87.5%and the specificity of90.0%. The candidate biomarker with m/z of2554.6was found to be up-regulated in TB patients. It was identified as a fragment of fibrinogen, alpha polypeptide isoform alpha-E preproprotein by RP-HPLC and LC-MS/MS. Analysis in patients with TB using ELISA showed increased fibrinogen degradation product (FDP)(5,005±1,297vs.4,010±1,181ng/mL, P<0.05) and in142patients showed elevated plasma fibrinogen levels.
     Conclusions:(1) SELDI-TOF MS combined with WCX magnetic beads can detect the protein peaks with good effectiveness and reproducibility by optimizing the experimental conditions.(2) Discriminating protein peaks were detected and a diagnostic model for TB with high sensitivity and specificity was developed using mass spectrometry combined with magnetic beads. This provided a biological basis for rapid diagnosis of TB using serum proteomics technology.(3) Fibrinogen was identified as a potential biomarker for TB and showed diagnostic values in clinical application. This provided a new foundation for clarifying TB pathogenesis and improving the standards of efficacy evaluation.
     Background:Chemotherapy is the mainstay of modern pulmonary TB control, while body injure, multidrug-resistant TB may be produced. Traditional Chinese medicine (TCM) can enhance apparently the effect of anti-tuberculosis drug, promote the absorption of the foci in the lung and reduce the toxicity of drug in chemotherapy. The effect of the combined treatment of TCM and Western Medicine is probably relevant with the strengthening of body immunity. In TCM, the determinations of treatment based in pathogenesis obtained through differentiation of symptoms and signs of TB. Determinations of treatment based in pathogenesis obtained through differentiation of symptoms and signs means deducing the causes of a disease and nature of disease according to the outer signs of a disease. Syndrome proteomics guided by the theory of syndrome, is applying the method of the formation of syndrome and to interpret the nature of syndrome in the level of integer proteins expression. So, it will help to reveal the biochemistry basis and pathogenesis of syndromes in TB.
     Methods:One hundred and eighty patients with TB were typed by syndrome differentiation and brought into71cases of FYX syndrome,64cases of YXHW syndrome and45cases of QYLX syndrome. SELDI-TOF MS combined with WCX magnetic beads was used to screen serum samples. A classification model was established by BPS. Candidate protein biomarkers were purified by RP-HPLC, identified by MALDI-TOF MS, LC-MS/MS and validated by ProteinChip Immunoassays.
     Results:The protein profile from the120serum samples of the TB patients (consisting of50cases of FYX syndrome,40cases of YXHW syndrome and30cases of QYLX syndrome) were analyzed with Biomarker Wizard software. Analysis of the common of changes in syndromes, we found12protein peaks to discriminate FYX syndrome and the other two syndromes (P<0.001),12protein peaks to discriminate YXHW syndrome and the other two syndromes (P<0.001) and34protein peaks to discriminate QYLX syndrome and the other two syndromes (P<0.001). Seven protein peaks were found to be down-regulated gradually from the syndrome of FYX to YXHW to QYLX (P<0.001). The diagnosis model for TB syndrome based on the five biomarkers (3961.7,4679.7,5646.4,8891.2and9416.7m/z) was established which could detect74.0%,72.5%and96.7%for classifying FYX syndrome patients, YXHW syndrome patients, QYLX syndrome patients. The candidate biomarker with m/z of9416.7was identified as a fragment of apolipoprotein C-III and validated by ProteinChip Immunoassays.
     Conclusions:(1) The differential protein peak of serum protein spectrum in TB patients with different syndrome may be internal material basis of external manifestation of syndrome, and close relationships among FYX, YXHW and QYLX syndrome, which are considered three different developing phases of TB. It is hopeful to reveal the nature of TCM by identifying the differential protein.(2) A diagnostic model for TB syndrome was developed using mass spectrometry combined with magnetic beads. This provided a biological basis for the determinations of treatment based different TB syndromes.(3) Apolipoprotein C-III was identified as a potential biomarker for TB syndrome and showed diagnostic values in clinical application.
引文
[1]Rosman MD, Oner-Eyupoglu AF. Clinical presentation and treatment of tuberculosis. In:Fishman AP, eds. Fishman's Pulmonary Diseases and Disorders. New York, USA:McGraw-Hill,1998:2483-2502.
    [2]Zaman K. Tuberculosis:a global health problem. J Health Popul Nutr 2010;28:111-1 13.
    [3]Kirschner DE, Young D, Flynn JL. Tuberculosis:global approaches to a global disea-se. Curr Opin Biotechnol 2010;21:524-531.
    [4]Global tuberculosis report 2012. [http://www.who.int/tb/publications/global_repo-rt/gtbr12_main.pdf].
    [5]Hari BN, Chitra KP, Bhimavarapu R, et al. Novel technologies:a weapon against tuberculosis. Indian J Pharmacol 2010;42:338-344.
    [6]Small PM. Tuberculosis:a new vision for the 21st century. Kekkaku 2009;84(11): 721-726.
    [7]McNerney R, Maeurer M, Abubakar I, et al. Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities. J Infect Dis 2012;205:147-158.
    [8]Phillips PP, Davies GR, Mitchison DA. Biomarkers for tuberculosis disease activity, cure, and relapse.Lancet Infect Dis.2010;10(2):69-70.
    [9]Wallis RS, Doherty TM, Onyebujoh P, et al. Biomarkers for tuberculosis disease acti-vity, cure, and relapse.Lancet Infect Dis.2009;9(3):162-172.
    [10]Lange C, Mori T. Advances in the diagnosis of tuberculosis. Respirology 2010;15: 220-240.
    [11]Dowdy DW, Maters A, Parrish N, et al. Cost-effectiveness analysis of the gen-probe amplified mycobacterium tuberculosis direct test as used routinely on smear-positive respiratory specimens. J Clin Microbiol,2003;41(3):948-953.
    [12]Tissot F, Zanetti G, Francioli P, et al. Influence of bacille Calmette-Guerin vaccinati-on on size of tuberculin skin test reaction:to what size? Clin Infect Dis 2005;40:211-7.
    [13]Marko-Varga G, Lindberg H, Lofdahl CG, et al. Discovery of biomarker candidates within disease by protein profiling:principles and concepts. J Proteome Res 2005;4:1200-1212.
    [14]Meier T, Eulenbruch HP, Wrighton-Smith P, et al. Sensitivity of a new commercial enzyme-linked immunospot assay(T SPOT-TB) for diagnosis of tuberculosis in clinical practice. Eur J Clin Microbiol Infect Dis.2005;24(8):529-536.
    [15]Piana F, Ruffo Codecasa L,Baldan R, et al. Use of T-SPOT.TB in latenttuberculosis infection diagnosis in general and immunosuppressedpopulations. New Microbio-logica 2007;30(3):286-290.
    [16]Brock I, Munk ME, Kok-Jensen A, et al. Performance of whole blood IFN-gam-ma test for tuberculosis diagnosis based on PPD or the specific antigens ESAT-6 and CFP-10. Int J Tuberc Lung Dis.2001;5(5):462-467.
    [17]Ewer K, Deeks J, Alvarez L, et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet.2003;361(9364):1168-1173.
    [18]Lalvani A, Nagvenkar P, Udwadia Z, et al. Enumeration of T cells specif-ic for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis.2001;183(3):469-477.
    [19]Andersen AB, Hansen EB. Structure and mapping of antigenic domains of p-otein antigen b, a 38,000-molecular-weightprotein of Mycobacterium tuberculosis. Infect Im-mun.1989;57(8):2481-2488.
    [20]Lyashchenko K, Colangeli R, Houde M, et al. Heterogeneous antibody response-s in tuberculosis. Infect Immun.1998;66(8):3936-3940.
    [21]Silva VM, Kanaujia G, Gennaro ML, et al. Factors associated with humo-ral response to ESAT-6,38 kDa and 14 kDa in patients with a spectrum of tuberculosis. Int J Tuberc Lung Dis.2003;7(5):478-484.
    [22]Hendrickson RC, Douglass JF, Reynolds LD, et al. Mass spectrometric ident-ificationn of mtb81, a novel serological marker for tuberculosis. J Clin Microbio-1.2000;38(6):2354-2361.
    [23]Lodes MJ, Dillon DC, Mohamath R, et al.Serological expression cloning and imm-unological evaluation of MTB48, a novel Mycobacterium tuberculosis antigen. J Clin Microbiol.2001;39(7):2485-2493.
    [24]Mukherjee S, Daifalla N, Zhang Y, et al. Potential serological use of a recombine-nt protein that is a replica of a Mycobacterium tuberculosis protein found in the urine of infected mice. Clin Diagn Lab Immunol.2004;11(2):280-286.
    [25]van Altena R, Duggirala S, Groschel MI, et al.Immunology in tuberculosis:challen-ges in monitoring of disease activity and identifying correlates of protection. Curr Pharm Des 2011;17:2853-2862.
    [26]Pinto LM, Grenier J, Schumacher SG, et al. Immunodiagnosis of tuberculosis:state of the art. Med Princ Pract 2012;21:4-13.
    [27]Li Y, Zeng J, Shi J, et al. A proteomescale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. J Proteome Res 2010;9:4812-4822.
    [28]Mehaffy C, Hess A, Prenni JE, et al. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 2010; 10:1966-1984.
    [29]Trifonova O, Larina I, Grigoriev A, et al. Application of 2-DE for studying the variation of blood proteome. Expert Rev Proteomics.2010;7(3):431-438.
    [30]Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 2007;5:77-85.
    [31]Yang SY, Xiao XY, Zhang WG, et al.Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer 2005;5:83-89.
    [32]Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer 2010;103:391-400.
    [33]Helgason HH, Engwegen JY, Zapatka M, et al. Identification of serum proteins as prognostic and predictive markers of colorectal cancer using surface enhanced laser desorption ionization-time of flight mass spectrometry. Oncol Rep 2010;24:57-64.
    [34]Cho WC. Research progress in SELDI-TOF MS and its clinical applications. Chin J Biotech 2006;22:871-876.
    [35]Dursun E, Monari E, Cuoghi A, et al. Proteomic profiling during atherosclerosis progression using SELDI-TOF-MS:effect of darbepoetin treatment. Acta Histochem 2010;112:432-443.
    [36]Cieniewski-Bernard C, Acosta A, Dubois E, et al. Proteomic analysis in cardiovascular diseases. Clin Exp Pharmacol Physiol 2008;35:362-366.
    [37]Stanley BA, Gundry RL, Cotter RJ, et al. Heart disease, clinical proteomics and mass spectrometry. Dis Markers 2004;20:167-178.
    [38]Cho WC, Yip TT, Chung WS, et al. Potential biomarkers found by protein profiling may provide insight for the macrovascular pathogenesis of diabetes mellitus. Dis Markers 2006;22:153-166.
    [39]Cho WC, Yip TT, Chung WS, et al. Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. J Cell Biochem 2006;99:256-268.
    [40]Pang RT, Poon TC, Chan KC, et al. Serum proteomic fingerprints of adult patients with severe acute respiratory syndrome. Clin Chem 2006;52:421-429.
    [41]Hodgetts A, Levin M, Kroll JS, Langford PR. Biomarker discovery in infectious diseases using SELDI. Future Microbiol 2007;2:35-49.
    [42]Agranoff D, Stich A, Abel P, et al. Proteomic fingerprinting for the diagnosis of human African trypanosomiasis. Trends Parasitol 2005;21:154-157.
    [43]List EO, Berryman DE, Bower B, et al. The use of proteomics to study infectious diseases. Infect Disord Drug Targets.2008;8(1):31-45.
    [44]Liu C, Pan C, Shen J, et al. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer. Int J Med Sci 2011;8:39-47.
    [45]Kafka AP, Klefffmann T, Rades T,et al. The application of MALDI TOFMS in biopharmaceutical research. Int J Pharm.2011;417(1-2):70-82.
    [46]中国结核病防治规划实施工作指南.卫生部疾病预防控制局、医政司编,2008;23-29.
    [47]World Health Organization; International Union Against Tuberculosis and Lung Disease; Royal Netherlands Tuberculosis Association. Revised international definitions in tuberculosis control.Int J Tuberc Lung Dis.2001;5(3):213-215.
    [48]贝政平.内科疾病诊断标准(第二版).科学出版社;2007.
    [49]Ligon LS, Hayden JD, Braunstein M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 2012;92:121-132.
    [50]Zhang J, Wu X, Shi L, et al. Diagnostic serum proteomic analysis in patients with active tuberculosis. Clin Chim Acta 2012;413:883-887.
    [51]Sinha S, Kosalai K, Arora S, et al. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology 2005;151:2411-2419.
    [52]Ray S, Reddy PJ, Jain R, et al. Proteomic technologies for the identification of disease biomarkers in serum:advances and challenges ahead. Proteomics 2011;11:2139-2161.
    [53]Zhang J, Wu X, Shi L, et al. Diagnostic serum proteomic analysis in patients with active tuberculosis. Clin Chim Acta 2012;413:883-887.
    [54]Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagno-stic markers for tuberculosis by proteomic fingerprinting of serum. Lancet 2006; 368:1012-1021.
    [55]Liu Q, Chen X, Hu C, et al. Serum protein profiling of smear-positive and smear-negative pulmonary tuberculosis using SELDI-TOF mass spectrometry. Lung 2010;188:15-23.
    [56]Zheng ZG, Yu HQ, Ling ZQ, et al.Comprehensive profiling of the low molecular weight proteins and peptides in weak cation exchange beads human serum retentate. Protein Pept Lett 2011; 18:498-506.
    [57]Song QB, Hu WG, Wang P, et al. Identification of serum biomarkers for lung cancer using magnetic bead-based SELDI-TOF-MS. Acta Pharmacol Sin 2011;32:1537-1542.
    [58]Deng B, Dong Z, Liu Y, et al. Effects of pretreatment protocols on human amniotic fluid protein profiling with SELDI-TOF MS using protein chips and magnetic beads. Clin Chim Acta 2010;411:1051-1057.
    [59]蒋惟,SELDI血清蛋白质谱肿瘤标志物挖掘方法研究.2010浙江大学硕士论文.
    [60]Shi L, Zhang J, Wu P, et al. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia. Proteome Sci 2009;7:7-18.
    [61]Robson SC, White NW, Aronson I, et al.Acute-phase response and the hypercoagul-able state in pulmonary tuberculosis. Br. J. Haematol 1996;93:943-949.
    [62]Das PC, Allan AG, Woodfield DG, et al. Fibrin degradation products in sera of normal subjects. Br Med J 1967;4:718-720.
    [63]Kwaan HC, Barlow GH. Nature and biological activities of degradation products of fibrinogen and fibrin. Annu Rev Med 1973;24:335-344.
    [64]Thomas DP, Niewiarowski S, Myers AR, et al. A comparative study of four methods for detecting fibrinogen degradation products in patients with various diseases. N Engl J Med 1970;283:663-668.
    [65]Yatzidis H. Fibrin/fibrinogen degradation products in glomerulonephritis. Br Med J 1971;3:767.
    [66]Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005;3:1894-1904
    [67]范秉琳,朱武凌,贺立山.纤维蛋白原在肝硬化贺原发性肝癌患者血浆中的含量分析.中国现代医学杂志2006;16(4)622-624.
    [68]Turken O, Kunter E, Sezer M, et al. Hemostatic changes in active pulmonary tuberculosis. Int J Tuberc Lung Dis 2002;6:927-932
    [69]Awodu OA, Ajayi IO, Famodu AA. Haemorheological variables in Nigeria pulmonary tuberculosis patients undergoing therapy. Clin Hemorheol Microcirc 2007; 36:267-275.
    [70]Sakamoto K, Geisel RE, Kim MJ, et al.Fibrinogen dimycolate regulates the cytotoxicity of mycobacterial trehalose but is not required for cell recruitment, cytokine response, or control of mycobacterial infection. Infect Immun 2010; 78:1004-1011.
    [71]Hernandez-Pando R, Arriaga AK, Panduro CA, et al.The response of hepatic acute phase proteins during experimental pulmonary tuberculosis. Exp. Mol. Pathol 1998; 65:25-36.
    [72]周建民,王胜圣,周杰,等.肺结核中医证候的古文献研究.长春中医药大学学报.2010;26(1):41-42.
    [73]周鹏程,赵冰洁,余薇,等.中西医结合治疗初治继发性肺结核30例.世界中西医结合杂志.2012;7(1):52-54.
    [74]刘贤会,罗威.120例初治继发性肺结核患者中医证候规律总结.中医临床研究, 2011;(3)21:3-5.
    [75]中华医学会编著.临床治疗指南·结核分册.人民卫生出版社2005.
    [76]彭卫生,王英年,肖成志.新编结核病学.北京:中国医药科学技术出版2003:551.
    [77]郭晓燕,张惠勇,鹿振辉.中医药治疗耐药肺结核的研究进展.时珍国医国药2010;21(8):2028-2029.
    [78]杨亦德,侯伟,谢红东.中西医结合治疗肺结核患者的生活质量评估.中华中医药学刊2012;30(3):517-519.
    [79]欧书祥.谈肺结核的中西医治疗.中外医疗.2009;15:189-190
    [80]林存智,朱新红,邓凯,等.中药肺腑汤治疗耐药性肺结核病的临床治疗.中华中医药学刊.2008;26(1):2472-2473.
    [81]林文锋.中西医结合治疗难治性肺结核24例观察.实用中医药杂志,2004;20(7):376-377.
    [82]李伯棠,谭安萍,殷兰馨.金盾胶囊治疗难治性肺结核133例临床观察.浙江中医杂志,1999;34(4):179.
    [83]弓显凤,张熙炜,张锦博,等.中医辨证配合化疗治疗肺结核54例.陕西中医,2012;33(2):183-185.
    [84]赖平芳,杨惠敏.肺结核的中医辨证治疗体会.现代中医药2004;2:35.
    [85]胡学军,蔡光先,刘柏炎,等.蛋白质组学在中医“证”实质研究中的应用.中华中医药杂志2008;23(2):87-91.
    [86]Song YN, Zhang H, Guan Y, et al. Classification of Traditional Chinese Medicine Syndromes in Patients with Chronic Hepatitis B by SELDI-Based ProteinChip Analysis. Evid Based Complement Alternat Med.2012;626-320.
    [87]刘友平,王磊琼,郭芳宏,等.慢性乙型肝炎肝肾阴虚证血浆蛋白质组学.世界华人消化杂志2011;19(7):718-722.
    [88]赵健,黄维华,王远东,等.应用SELDI-TOF-MS技术于肺癌中医辨证的初步研究.肿瘤基础与临床2008;21(5):419-421.
    [89]熊新贵,陈疆,梁清华,等.中医肝阳化风证本质蛋白质组学研究.中国中西医 结合杂志2011;31(7):913-920.
    [90]褚瑜光,石洁,胡元会,等.高血压病中医肝胆湿热证患者血清蛋白质组学研究.中国中西医结合杂志2010;30(1):37-41.
    [91]崔佩佩,朱明丹,姜明,等.痰浊内阻及心气虚弱型冠心病患者的比较蛋白质组学研究.中医杂志2011;52:75-77.
    [92]内科常见病诊疗指南.中华中医药学会,2008.
    [93]朱文锋编.常见症状中医鉴别诊疗学.人民出版社,2006.
    [94]郭晓燕,张惠勇,耿佩华,等.基于现代文献的肺结核中医证候及证候要素分布规律研究.辽宁中医杂志2012;39(1):68-70.
    [95]王胜圣,周杰,董芳,等.肺结核中医证候规律及其与客观指标相关性的研究.中医临床研究2011;3(15):13-14.
    [96]王胜圣,田洋,刘嵋松,等.基于中医文献检索的肺结核病中医证候规律分析.中华中医药杂志2011;26(11):2491-2493.
    [97]张尊敬,刘忠达,马云莉,等.肺结核中医证候规律的临床研究.浙江中医杂志2012;47(11):790-791
    [98]杜武勋,朱明丹,姜民,等.中医证候及证候物质基础研究的思考.辽宁中医杂志2010;37(8):1497-1499.
    [99]汤朝晖,鲁法庭,严石林.从中医辨证论治的层次看“异病同证”和“同证异治”.辽宁中医药大学学报2008;10(1):22-23.
    [100]赵琳,尤辉,任郭侠等.肺结核中医证候规律的临床研究.陕西中医2011;32(2):173-174.
    [101]贡秀云,王前.肺结核的中医辨证证型与X线影像及痰菌关系的研究.现代中西医结合杂志2009;18(6):597-599.
    [102]Mauger JF, Couture P, Bergeron N, et al. Apolipoprotein C-III isoforms:kineti-cs and relative implication in lipid metabolism. J Lipid Res.2006;47(6):1212-1218.
    [103]Talmud PJ, Humphries SE. Apolipoprotein C-III gene variation and dyslipidaemia. Curr Opin Lipidol.1997;8(3):154-158.
    [104]Hirano T, Sakaue T, Misaki A, et al. Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy:comparison with apoprotein CⅢ. Kidney Int. 2003;63(6):2171-2177.
    [105]Kypreos KE. ABCA1 promotes the de novo biogenesis of apolipoprotein CⅢ-co-ntaining HDL particles in vivo and modulates the severity of apolipoprot-ein CⅢ-induced hypertriglyceridemia.Biochemistry.2008;47(39):10491-10502.
    [106]Ito Y, Azrolan N, O'Connell A,et al.Hypertriglyceridemia as a result of human ap-o CIII gene expression in transgenic mice. Science.1990;249(4970):790-793.
    [107]Maeda N, Li H, Lee D,et al. Targeted disruption of the apolipoprotein C-III ge-ne in mice results in hypotriglyceridemia and protection from postprandial hypertrigly-ceridemia. J Biol Chem.1994;269(38):23610-23616.
    [108]Onat A, Hergenc G, Sansoy V, et al. Apolipoprotein C-III, a strong discrimina-nt of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis.2003;168(1):81-89.
    [109]Ooi EM, Barrett PH, Chan DC, et al. Apolipoprotein C-III:understand-ding an emerging cardiovascular risk factor. Clin Sci (Lond).2008;114(10):611-624.
    [110]王磊.肾母细胞瘤血清非炎症性标记物的筛选、鉴定及验证.2010郑州大学博士学位论文.
    [111]Fan Y, Shi L, Liu Q, et al. Discovery and identification of potential biom-arkers of papillary thyroid carcinoma. Mol Cancer.2009;8:79.
    [112]Paton NI, Ng YM. Body composition studies in patients with wasting associa-ted with tuberculosis. Nutrition.2006;22(3):245-251.
    [113]胡天桥.肺结核患者血清小分子标志蛋白分离鉴定的初步研究,2009广西医科大学硕士论文.
    [114]李翠萍,胡天桥,农炳金.肺结核病人血清差异蛋白的分离及鉴定.中国实验诊断学2012;16(9):1633-1636.
    [1]杜武勋,朱明丹,姜民,等.中医证候及证候物质基础研究的思考.辽宁中医杂志2010;37(8):1497-1499.
    [2]林宗广.乙肝后肝硬化失代偿期血清前白蛋白、转铁蛋白、铜蓝蛋白的临床意义及与中医辨证关系.中国中西医结合脾胃杂志,2000;8(5):275-277.
    [3]解渝,张芝兰.原发性肝癌和肝硬化患者触珠蛋白测定的临床意义.现代中西医结合杂志2003;12(12):1237-1238.
    [4]申维玺.论中医“证本质”的科学内涵. 中国中医基础医学杂志2001;7(6):410-414.
    [5]司富春,刘平.深入进行中医证分子实质研究的思考.中国中医基础医学杂志2009;15(12):959.
    [6]雷英,刘丽莎.蛋白质组学在中医证候学研究中的应用.西部中医药2011;24(12):89-91.
    [7]梁丽娟,谢俊大,赵奎君.蛋白组学在中医药研究中的应用.北京中医药2008;27(12):974-977.
    [8]陈冰.双向凝胶电泳技术在中医证候研究中的应用.世界中医药2010;5(5):361-363.
    [9]胡学军,蔡光先,刘柏炎,等.蛋白质组学在中医“证”实质研究中的应用.中华中医药杂志2008;23(2):87-91.
    [10]徐舒,蔡红兵,孙学刚,等.中医证候现代研究的”组学”发展之路.医学与哲学2011;32(1):71-72.
    [11]刘为民,姚乃礼,吴志奎,等.中医证候学研究与证候蛋白质组学.中医药学报2003;31(3):1.
    [12]Chaerkady R, Pandey A. Applications of proteomics to lab diagnosis. Annu Rev Pathol 2008;3:485-98.
    [13]Paik YK, Kim H, Lee EY, et al. Overview and introduction to clinical proteomics. Methods Mol Biol 2008;428:1-31.
    [14]Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr Opin Chem Biol 2008;12(5):483-90.
    [15]Petricoin EF, Liotta LA. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol.2004; 15:24-30.
    [16]Walsh PC. Serum proteomic patterns for detection of prostate cancer. J Urol. 2003;169:1592.
    [17]Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics.2007;5:77-85.
    [18]崔轶凡,王庆国.证候动物模型对中医药研究的意义及方法学探讨.中华中医药学刊2009;27(12):2525-2527.
    [19]刘涛,王伟.证候动物模型研究的思索.中华中医药杂志2006;21(9):550-551.
    [20]卢德赵,沃兴德,施孟如,等.激素型肾阳虚动物肝线粒体蛋白质组与能量代谢相关性.中国生物化学与分子生物学报,2005;21(6):807-814.
    [21]马增春,高月,谭洪玲,等.四物汤对辐射致血虚证小鼠血清蛋白质表达的影响.中国中药杂志2003;28(11):1050-1053.
    [22]郭平,马增春,李鹰飞,等.四物汤对放射线致血虚证小鼠骨髓蛋白质表达的影响.中国中药杂志2004;29(9):893-896.
    [23]刘丽丽,马增春,王宇光,等.四物汤对环磷酰胺致血虚证小鼠骨髓蛋白质组的影响.中国中药杂志2006;31(14):1172-1175.
    [24]战丽彬,刘莉,路小光,等.脾阴虚证大鼠海马蛋白质组双向凝胶电泳的研究.中华中医药杂志2009;24(2):149-152.
    [25]苗兰,刘建勋.气虚血瘀证模型大鼠血清蛋白质组学研究.中国实验方剂学杂志2009;9(15):42-45.
    [26]刘涛,徐秋玲.气虚血瘀证大鼠模型缺血心肌蛋白质组学研究.江苏中医药2010;42(7):66-68.
    [27]谢文光,马晓昌,邵宁生,等.赤芍治疗热毒血瘀证的血清蛋白质组变化的初步研究.中国中西医结合杂志2005;25(6):520-524.
    [28]钟小兰,吕志平,钱令嘉,等.肝郁证模型大鼠血清蛋白质组的差异表达研究.中华中医药杂志2006;21(7):399-401.
    [29]李智,李炜,陈泽奇等.天麻钩藤饮对偏头痛肝阳上亢证大鼠下丘脑蛋白质的影响.中国临床康复2006;10(47):45-48.
    [30]李臻琰,李炜,颜永平,等.天麻钩藤饮对高血压肝阳上亢证大鼠下丘脑差异蛋白质表达的影响.中国临床康复2006;10(47):58-61.
    [31]周凌燕,陈泽奇,李炜,等.甲状腺功能亢进肝阳上亢证大鼠下丘脑组织蛋白质差异表达的观察.中国中医药信息杂志2007;14(5):18-20.
    [32]李炜.甲亢肝阳上亢证大鼠肾上腺组织蛋白质组的双向电泳分析.中国医师杂志2007;9(1):20-23.
    [33]胡建军,陈泽奇,钟广伟,等.偏头痛肝阳上亢型大鼠脾脏淋巴细胞的比较蛋白质组学分析[J].中国中医药信息杂志,2008;15(8):34-38.
    [34]张娴,曾星,段小军,等.高血压肝阳上亢证大鼠模型建立和蛋白质表达分析.四川中医2008;26(3):9-11.
    [35]黄黎明,梁恒.运用蛋白质组学方法研究肾阳虚异病同证的思路与方法.上海中医药杂志2005;39(5):44-46.
    [36]陈家旭.“异病同证”与“同病异证”自议.贵阳中医学院学报1996;18(1):1-2.
    [37]汤朝晖,鲁法庭,严石林.从中医辨证论治的层次看“异病同证”和“同证异治”辽宁中医药大学学报2008;10(1):22-23.
    [38]谭秦湘,吕志平,张绪富,等.蛋白质组学在肝郁证研究中的应用.中国临床康复2006;10(11):144-146.
    [39]谭秦湘.肝郁证辨证相关血清蛋白质组差异表达研究.第一军医大学2006.
    [40]熊新贵,陈疆,梁清华,等.中医肝阳化风证本质蛋白质组学研究.中国中西医结合杂志2011;31(7):913-920.
    [41]虞桂,王阶.冠心病血瘀证实质的系统生物学研究现状与思考.中医杂志2012;53(23):2049-2051.
    [42]赵慧辉,侯娜,王伟,等.冠心病气虚血瘀证的蛋白质组学特征研究.中国中西医结合杂志2009;29(6):489-492.
    [43]赵慧辉,陈建新,史琦,等.基于差异凝胶双向电泳技术的冠心病不稳定性心绞痛血瘀证患者血浆差异蛋白特征研究.中国中西医结合杂志2010;30 (5):488-492.
    [44]王刚,姜民,朱明丹,等.冠心病心血瘀阻证和心肾阴虚证的蛋白组学研究.辽宁中医杂志2011;38(3):405-407.
    [45]吴红金,马增春,高月,等.蛋白质组学技术对冠心病血瘀证相关蛋白的研究.中西医结合心脑血管病杂志2005;3(3):189-191.
    [46]袁宏伟,杜武勋,朱明丹,等.冠心病心气虚弱证/心肾阴虚证血清蛋白质组学特征研究.时珍国医国药2012;23(4):1014-1016.
    [47]崔佩佩,朱明丹,姜明,等.痰浊内阻及心气虚弱型冠心病患者的比较蛋白质组学研究.中医杂志2011;52:75-77.
    [48]周倩倩,李治国,黄力.冠心病血瘀证的血清差异蛋白质组学研究.微循环学杂志2012;22(1):13-16.
    [49]褚瑜光,石洁,胡元会,等.高血压病中医肝胆湿热证患者血清蛋白质组学研究.中国中西医结合杂志2010;30(1):37-41.
    [50]刘军莲.高脂血症及动脉粥样硬化痰瘀证候的蛋白质组学研究[博士学位论文].中国中医科学院中医基础理论研究所2006:44-96.
    [51]杨鸿,周春喜,李晶哲,等.利用磁珠法结合MALDI-TOF MS进行慢性心衰气阴虚证血液蛋白质组学研究的方法学探讨.中国中医基础医学杂志2011;17(9):957-959.
    [52]程小燕,李顺民.比较分析气阴两虚型IgA肾病患者与正常人肾系膜细胞的蛋白质组.新中医2010;42(8):41-42.
    [53]钟云良,谢桂权.原发性肾病综合征湿热证的蛋白质组学研究.实用预防医学2010;17(7):1249-1252.
    [54]孙晓敏,谭为,罗仁,等.慢性肾小球肾炎肾阴虚证血浆蛋白质双向凝胶电泳分析.热带医学杂志2011;11(4):433-443.
    [55]郝一鸣,洪名超,王文静,等.慢性肾功能衰竭中医不同证型患者尿液相关蛋白研究.中国中西医结合杂志2012;32(9):1196-1199.
    [56]赵健,黄维华,王远东,等.应用SELDI-TOF-MS技术于肺癌中医辨证的初步研究.肿瘤基础与临床2008;21(5):419-421.
    [57]黄争荣,张小卿,叶韵斌,等.蛋白指纹图谱在原发性肝癌中医辨证分型应用的初步研究.现代中西医结合杂志2012;21(33):3660-3,664.
    [58]王忆勤,李福凤,王文静,等.慢性胃炎中医湿证血清蛋白组学研究.中西医结合学报2007;5(5):514-516.
    [59]刘晓谷,蔡淦,何磊,等.慢性胃炎脾虚湿热证患者的舌苔蛋白质组学初探.上海中医药大学学报2012;26(1):31-35.
    [60]刘友平,郭芳宏,王磊琼,等.慢性乙肝肝郁脾虚证血浆蛋白质组学分析.时珍国医国药2011;22(9):2135-2136.
    [61]刘友平,王磊琼,郭芳宏,等.慢性乙型肝炎肝肾阴虚证血浆蛋白质组学.世界华人消化杂志2011;19(7):718-722.
    [62]苏式兵,胡义扬,赵立平,等.慢性乙型病毒性肝炎中医证候生物学基础的研究思路.中国中西医结合杂志2011;3(2):252-255.
    [63]Song YN, Zhang H, Guan Y, et al. Classification of Traditional Chinese Medicine Syndromes in Patients with Chronic Hepatitis B by SELDI-Based ProteinChip Analysis. Evid Based Complement Alternat Med.2012;626-320.
    [64]陈疆,张雨星.椎动脉缺血型颈椎病肝阳化风证患者外周血淋巴细胞蛋白质组学研究[J].实用预防医学,2010;17(7):1249-1252.
    [65]刘萍,章怡祎,乔健.脾肾虚型重症肌无力患者血清双向电泳图谱的建立及分析.中西医结合学报2007;5(2):150-154.
    [66]谭秦湘,吕志平,钟小兰,等.肝郁证辨证与相关蛋白关系初步研究.辽宁中医杂志2006;33(2):157-158.
    [67]方肇勤,潘志强,卢文丽,等.同病异证和异病同证的物质基础.上海中医药大学学报2010;24(5):58-67.
    [68]匡调元.同病异治与异病同治机理探讨.中医药通报2003;2(1):21-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700