用户名: 密码: 验证码:
干旱驱动机制与评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱作为一种长期困扰人类的自然现象,已引起气象、水文、农业及生态环境领域的普遍关注,气候变化和人类活动对干旱影响及其驱动机制逐渐成为科学研究热点,也是我国经济社会可持续发展面临的重大挑战。开展干旱驱动机制及评估方法研究,是科学应对干旱、保障国家水资源安全进而支撑经济社会可持续发展的重大需求。
     从干旱表象不同角度,可将其分为气象干旱、水文干旱和农业干旱等,实质上体现为“自然-人工”复合水循环不同环节发生异常。本文主要以“自然-人工”复合水循环理论为指导,结合气候系统理论及作物生理生态学理论,识别气象、水文和农业干旱驱动因素,探讨干旱驱动机制,构建干旱评估指标,完善干旱评估方法,构建干旱驱动模拟平台,提出干旱驱动定量分析方法,结合典型流域开展实证研究。主要研究成果如下:
     (一)总结了国内外干旱驱动机制与评估方法研究进展
     从干旱驱动机制、干旱评估方法、干旱驱动分析等几个方面总结了国内外研究进展,指出了当前研究亟待解决的问题,进而拟定了论文研究内容和技术路线。
     (二)揭示了气象干旱、水文干旱和农业干旱驱动机制及其内在联系
     在剖析干旱内涵基础上,界定了气象干旱、水文干旱和农业干旱的概念,分析了干旱事件从孕育、开始、缓冲、发展到解除的发生发展过程;从水循环角度识别了气象干旱、水文干旱和农业干旱主要驱动因素,系统揭示了气象、水文和农业干旱驱动机制及其内在联系。大气环流异常和下垫面变化是气象干旱的主要驱动因素,气候变化、土地利用变化和水资源开发利用是水文干旱和农业干旱主要驱动因素。
     (三)构建了基于全口径水资源量的水文干旱评估指标,优选了气象干旱和农业干旱指标,完善了干旱评估方法
     从数据准备、干旱特征指标计算和干旱特征统计分析三个层面总结提出了干旱评估基本框架;构建了基于全口径水资源量的水文干旱指标,优选了气象干旱和农业干旱指标,形成了干旱评估指标体系,完善了干旱历时、面积、强度、频率等特征指标计算方法;从单变量特征、双变量特征和多变量特征三个方面系统总结完善了干旱特征分析方法;实现了干旱评估方法的程序化。
     (四)建立了基于“驱动力-压力-状态-响应”模式的干旱驱动分析框架,提出了干旱驱动定量分析方法
     从系统思想角度出发,建立了基于“驱动力-压力-状态-响应”模式的干旱驱动分析框架;结合干旱驱动机制分析结果,对主要驱动因素进行量化,总结了干旱驱动因素变化规律分析方法,明确了干旱形成和演变系统的驱动力及压力,在此基础上构建了干旱驱动模拟方案集;结合干旱特征指标及其之间的关系,构建了干旱综合响应度量指标;提出了基于统计学手段的气象干旱驱动分析方法;结合WACM模型和干旱评估方法构建了干旱驱动模拟平台,提出了气候变化、土地利用变化和水资源开发利用对水文干旱和农业干旱驱动作用的定量分析方法。
     (五)评估了海河北系干旱时空分布规律
     将海河北系划分为4619个水循环模拟单元,基于1951~2009年实测气象数据以及其他有关数据,对WACM模型进行了率定和验证,并运用WACM模型模拟了1956~2009年的水循环过程。基于实测的气象数据和模拟的水资源量以及土壤含水率数据,运用干旱评估方法分别对海河北系气象、水文和农业干旱进行评估,分析了各类干旱的时空分布规律以及其之间的关系:
     (1)1951~2009年共发生了159次气象干旱,平均干旱历时、面积和强度分别为2.5个月、54%、0.85,且干旱事件主要集中于强度在0-1、面积在30%~70%、历时在1-3个月之间的区域。
     (2)1956~2009年共发生了34次水文干旱,平均干旱历时、面积和强度分别为16个月、24%、3.25,且干旱事件主要集中于强度在0-6、面积在5%~25%、历时在1-20个月之间的区域。
     (3)1956~2009年共发生了102次农业干旱,平均干旱历时、面积和强度分别为4.8个月、40%、1.13,且干旱事件主要集中于强度在0-3、面积在30%~50%、历时在1-8个月之间的区域。
     (4)采用指数分布、正态分布等函数分别拟合了干旱历时、面积和强度的边缘概率分布并进行了拟合优度检验,基于平方欧式距离法优选Copula函数对干旱强度-面积、强度-历时的联合概率分布进行了拟合,可计算给定任意特征值的干旱发生频率。
     (5)气象、水文和农业干旱历时呈现出明显线性相关关系;气象干旱与水文干旱强度呈现较好的相关性,而气象干旱和农业干旱强度相关性则不显著,灌溉作用削弱了气象干旱和农业干旱强度之间的相关性;气象、水文、农业干旱面积之间的相关关系不显著;区域内灌区农业干旱历时和强度较周围其他地区明显要小。
     (六)定量研究了海河流域北系干旱驱动归因并提出干旱应对建议
     结合海河北系1951~2009年长序列资料,在分析干旱主要驱动因素变化规律基础上,界定了基准期与影响期,在此基础上设置了干旱驱动分析模拟方案,定量研究了气象、水文和农业干旱驱动归因,并提出干旱应对建议:
     (1)气候因素变化规律分析结果显示,气温呈升高趋势,降水、日照时数、风速、相对湿度均呈减小趋势,各因素突变点集中在1979-1990年之间;而人类活动对海河北系的干扰在1970年之后迅速增大,综合二者界定1951~1970年为基准期,1990~2009年为影响期,中间的1971~1989年为过渡期。
     (2)降水减小是气象干旱最为敏感的因素,其次是日照时数减小、相对湿度减小、气温升高和风速减小,其中,降水减小、气温升高加剧干旱,其它因素减小可缓解干旱。若降水减小10%,气象干旱历时、面积、强度及综合指标分别增加10%、7%、21%和18%。
     (3)气候变化、土地利用变化和水资源开发利用对水文干旱驱动作用分别为57%、33%和10%,气候变化是驱动海河北系水文干旱的主要因素。
     (4)气候变化、土地利用变化和水资源开发利用对农业干旱影响作用分别为40%、4%和-56%,表明水资源开发利用可显著缓解农业干旱,各种因素综合作用下农业干旱呈减轻趋势。
     (5)从建立科学的观测体系、加强水利基础设施建设、全面建设节水型社会、强化生态环境保护和完善抗旱管理体制等五个方面提出了海河北系干旱应对建议。
Drought, as a natural phenomenon which has been disturbing us for a long time, has attracted wide attention in the field of weather, hydrology, agriculture and ecological environment. The driving mechanism and influence of climate change and human activities on drought has become the hotspot in scientific research as well as the great challenge to the sustainable development of our economy and society. The research on driving mechanism and the assessment method is of great demand in coping with drought, guaranteeing the national water resource security and supporting sustainable development to our economy and society.
     Drought can be divided into meteorological drought, hydrological drought and agricultural drought from different perspectives, which can be considered as the reflection of natural-artificial dualistic characteristics of hydrological cycle anomaly. Based on the theory of natural-artificial dualistic characteristics of hydrological cycle, climatic system and physiological ecology of crop, the drought driving factors of meteorological drought, hydrological drought and agricultural drought were identified and the driving mechanism were investigated in this study. The quantitative analysis of drought driving was conducted through building drought evaluation index and improving assessment method of drought. It is verified in typical watershed using the simulation platform designed. The main contents of this thesis can be concluded as follows:
     1) The research progress of the driving mechanism of drought and assessment method at home and abroad is summarized.
     The research progress of drought driving mechanism, assessment method and the analysis of driving mechanism are summarized and the issue in urgent need to be addressed is proposed. Then, the main research contents and technical route are outlined.
     2) The driving mechanism of meteorological drought, hydrological drought and agricultural drought is discussed.
     Based on the understanding of the definition of drought, the concepts of the three kinds of drought are defined and the process of evolution, buffering, beginning, developing and relieving of drought is analyzed. The driving mechanism and factors of meteorological drought, hydrological drought and agricultural drought are discussed. The changes of atmospheric circulation anomaly and underlying surface are the main driving factors of meteorological drought. The climatic variation, land use change and water resources development are the principal factors of hydrological drought and agricultural drought.
     3) The evaluation indexes of hydrological drought based on full-aperture water resource were proposed, the indexes of meteorological drought and agricultural drought were optimized and the assessment method of drought was improved.
     The theoretical framework of drought is put forward according to data preparation, index calculation of drought and statistic analysis. The evaluation indexes of hydrological drought based on full-aperture water resource were proposed, the indexes of meteorological drought and agricultural drought were optimized and the calculation methods of drought duration, area, intensity, frequency and other characteristic indexes. Then, the characteristic analysis of drought was systematically summarized from the aspects of single variable, bivariate and multivariable. Finally, the assessment method of drought can be achieved programmatically.
     4) The drought driving analysis framework based on driving force-pressure-status-response model was established and the method of quantitative drought driving analysis was put forward.
     A drought driving analysis framework based on driving force-pressure-status-response model was established from the perspective of systematic idea. The principal driving factors were quantified through combining the result of drought driving mechanism. What's more, the analysis methods of drought driving factors variation were summarized. The drying force and pressure of drought formation and evolution system were determined. Subsequently, the drought driving scheme was established. The drought evaluation indexes of comprehensive response were established through the combination of drought characteristic indexes and related relationships. The analysis method of climatic drought driving was proposed based on statistics. The simulation platform was established based on the water cycle model WACM and assessment methods of drought. The quantitative analysis method considering the influence of change of climate, land use and the exploitation and utilization of water resources on hydrological drought and agricultural drought was put forward.
     5) The temporal-spatial distribution discipline of the northern Haihe River basin is assessed.
     The northern Haihe River was divided into4619hydrological response unit for water cycle simulating. WACM model is calibrated and verified based on the observed data from1951to2009, and the water cycle process from1956to2009was simulated. The meteorological drought, hydrological drought and agricultural drought were evaluated by drought evaluation methods using the measured weather data and simulated data. The temporal-spatial distribution discipline and the relationship among three kinds of drought in the northern Haihe River basin is assessed.
     (1) There were159meteorological drought events from1951to2009, with average drought duration of2.5months, average drought area of54%and average drought intensity of0.85. The meteorological drought events focused on the area of drought duration from1to3months, drought area from30%to70%and drought intensity from0to1.
     (2) There were34hydrological drought events from1951to2009, with average drought duration of16months, average drought area of24%and average drought intensity of3.25. The hydrological drought events focused on the area of drought duration from1to20months, drought area from5%to25%and drought intensity from0to6.
     (3) There were102agricultural drought events from1951to2009, with average drought duration of4.8months, average drought area of40%and average drought intensity of1.13. The agricultural drought events focused on the area of drought duration from1to8months, drought area from30%to50%and drought intensity from0to3.
     (4) The marginal probability distribution of drought duration, area and intensity was fitting by exponential distribution, normal distribution and Γ distribution. Copula formula which was optimized by SED is used to analysis the simultaneous distribution of drought duration-area, drought duration-intensity. The probability distribution is obtained and the contingent probability and recurrence interval are calculated.
     (5) The drought duration among meteorological, hydrological and agricultural drought presented obvious linear correlation relationship. The intensity of meteorological drought and hydrological drought shows significant correlation, but the intensity of meteorological and agricultural drought had no significant correlation, because irrigation weakens the correlation between meteorological and agricultural drought intensity. The drought area of meteorological, hydrological and agricultural drought had no significant correlation. The agricultural drought is more serious in non-irrigated area than that in irrigated area.
     6) The drought driving results and the coping strategies of the northern Haihe River basin are studied.
     Based on the data from1951to2009and the change rule of drought driving factors, the reference period and influence period are defined and the driving effect of meteorological drought, and agricultural drought, hydrological drought are analyzed. And some coping strategies are proposed to deal with the drought.
     (1) The results of climate factor variation analysis show that the precipitation, sunshine time, wind speed, relative humidity has a decrease tendency but temperature has an increase tendency, and the abrupt change points of all factors concentrated in the1980s. The human activities interference increases quickly after1970. Considering the comprehensive role of climate change and human activities, the reference period was from1951to1970, the transitional period was from1971to1989and the influence period was from1990to2009.
     (2)Precipitation was the most sensitive factor for meteorological drought, and then followed by sunshine duration, relative humidity, atmospheric temperature and wind speed. Drought can be more serious with the decreasing of precipitation, sunshine duration, relative humidity, and wind speed and the increasing atmospheric temperature. The aggregative indicator of drought duration, area and intensity increased10%,7%,21%and18%with the decreasing10percent of precipitation.
     (3)The influence of climatic variation, land use change and water resources development and utilization to meteorological drought are57%,33%and10%respectively.
     (4)The influence of climatic variation, land use change and water resources development and utilization to agricultural drought are40%,4%and-56%respectively. The results show that water resources development and utilization can lessen the effects of drought.
     (5)Some coping strategies are proposed to abate the drought, such as building the monitor system scientifically, reinforcing the construction of water infrastructure and strengthening ecological environmental protection, and so on.
引文
[1]中国干旱气象网.干旱对全球的危害[EB/OL]http://www.chinaam.com.cn/detail.asp?ID=360
    [2]Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology,2010,391:202-216.
    [3]Mishra A K, Singh V P. Drought modeling-A review[J].Journal of Hydrology,2011,403:157-175.
    [4]王雪梅,译.气候变暖导致全球干旱[J].科学新闻,201 1(6):56-59.
    [5]Dai A G. Drought under global warming:a review[J].Wiley Interdisciplinary Reviews:Climate Change,2011,2(1):45-65.
    [6]Intergovernmental Panel on Climate Change (IPCC). Managing the risks of extreme events and disasters to advance climate change adaptation[M]. Cambridge University Press, Cambridge, UK, and New York, NY, USA,2012.
    [7]秦大河.气候变化与干旱[J].科技导报,2009(11):7.
    [8]国家防汛抗旱总指挥部办公室.防汛抗旱专业干部培训教材[M].北京:中国水利水电出版社,2010.
    [9]国家气候中心.近50年我国大部分呈增温趋势北方最明显专家解读趋势[EB/OL]http://ncc.cma. gov.cn/Website/index.php?NewsID=7194,2011-09-14.
    [10]宫德吉,郝慕玲,侯琼.旱灾成灾综合指数的研究[J].气象,1996,22(10):3-7.
    [11]张庆云,陶诗言,卫捷.华北干旱的年际和年代际变化特征及成因[A].中国科协2002年减轻自然灾害研讨会论文汇编之一[C],2002.
    [12]李维京,赵振国,李想,等.中国北方干旱的气候特征及其成因的初步研究[J].干旱气象,2003,21(4):1-5.
    [13]卫捷,张庆云,陶诗言.1999及2000年夏季华北严重干旱的物理成因分析[J].大气科学,2004,28(1):125-137.
    [14]吴泽新,郑光辉,张荣霞.2008-2009年度德州市小麦越冬期旱灾加重的成因分析[J].中国农业气象,2009,30(增2):320-323.
    [15]王素萍,段海霞,冯建英.2009-2010年冬季全国干旱状况及其影响与成因[J].干旱气象,2010,28(1):107-112.
    [16]陈权亮,华维,熊光明,等.2008-2009年冬季我国北方特大干旱成因分析[J].干旱区研究,2010,27(2):182-187.
    [17]卢海新,陈并.同安干旱成因分析及其对农业生产的影响[J].中国农业气象,2010,31(增1):144-146.
    [18]王莉萍.西南干旱的成因与对策[J].中国农村水利水电,2010,(8):68-69.
    [19]朱业玉,潘攀,匡晓燕.河南省干旱灾害的变换特征和成因分析[J].中国农业气象,2011,32(2):311-316.
    [20]刘秀红,李智才,刘秀春,等.山西春季干旱的特征及成因分析[J].干旱区资源与环境,2011,25(9):156-160.
    [21]符淙斌,温刚.中国北方干旱化的几个问题[J].气候与环境研究,2002,7(1):22-29.
    [22]姜逢清,朱诚.当代新疆洪旱灾害扩大化:人类活动的影响分析[J].地理学报,2002,57(1):57-66.
    [23]游珍,徐刚.农业旱灾中人为因素的定量分析—以秀山县为例[J].自然灾害学报,2003,12(3):19-24.
    [24]高升荣.清代淮河流域旱涝灾害的人为因素分析[J].中国历史地理论丛,2005,20(3):80-86.
    [25]程国栋,王根绪.中国西北地区的干旱与旱灾—变化趋势与对策[J].地学前缘,2006,13(1):3-14.
    [26]Deo R C. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia [J]. Geophysical Research Letters,2009.
    [27]Zhang H Q, Li Y H. Potential impacts of land-use on climate variability and extremes[J]. Advances in Atmospheric Sciences,2009,26(5):840-854.
    [28]穆兴民,王飞.西南地区严重旱灾的人为因素初探[J].水土保持通报,2010,30(2):1-4.
    [29]冯定原,邱新法.农业干旱的成因、指标、时空分布和防旱抗旱对策[J].中国减灾,1995,5(1):22-27.
    [30]林文鹏,陈霖婷.福建省干旱灾害的演变及其成因研究[J].灾害学,2000,15(3):56-60.
    [31]李茂稳,李秀华.承德旱灾成因分析及防灾减灾思考[J].河北水利水电技术,2002,(4):37.
    [32]黄建武.湖北省旱涝灾害的基本特征与成因分析[J].长江流域资源与环境,2002,11(5):482-487.
    [33]王娟,汤洁,杜崇,等.吉林西部农业旱灾变化趋势及其成因分析[J].灾害学,2003,16(2):27-31.
    [34]王建华,郭跃.2006年重庆市特大旱灾的特征及其驱动因子分析[J].安徽农业科学,2007,35(5):1290-1292,1294.
    [35]李景保,王克林,杨燕,等.洞庭湖区2000-2007年农业干旱灾害特点及成因分析[J].水资源与水工程学报,2008,19(6):1-5.
    [36]张家团,屈艳萍.近30年来中国干旱灾害演变规律及抗旱减灾对策探讨[J].中国防汛抗旱,2008(5):48-52.
    [37]龚志强,封国林.中国近1000年旱涝的持续性特征研究[J].物理学报,2008,57(6):3920-3931.
    [38]郭瑞,查小春.泾河流域1470-1979年旱涝灾害变化规律分析[J].陕西师范大学学报(自然科学版),2009,37(3):90-95.
    [39]侯光良,于长水,许长军.青海东部历史时期的自然灾害与LUCC和气候变化[J].干旱区资源与环境,2009,23(1):86-92.
    [40]史东超.河北省唐山市干旱状况与旱灾成因分析[J].安徽农业科学,2011,39(8):4684-4686
    [41]王树鹏,张云峰,方迪.云南省旱灾成因及抗旱对策探析[J].中国农村水利水电,2011,(9):139-141.
    [42]何马峰,张俊栋.唐山市干旱特点及成因研究[J].河北水利,2011,3,38-39.
    [43]Munger T T. Graphic method of representing and comparing drought intensities [J]. Monthly Weather Review,1916,44:642-643.
    [44]Kincer J B. The seasonal distribution of precipitation and its frequency and intensity in the United States[J]. Monthly Weather Review,1919,47:624-631.
    [45]Marcovitch S. The measure of droughtiness[J]. Monthly Weather Review,1930,58-113.
    [46]Blumenstock G J. Drought in the United States analyzed by means of the theory of probability[R]. USDA Tech. Bull.819,1942:63.
    [47]Penman H L. Natural evaporation from open water, bare soil and glass[M]. Proc.Roy. Soc. London 193A,1948,120-146.
    [48]Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographic Review, 1948,38:55-94.
    [49]Palmer W C. Meteorologic drought[M], U.S. Weather Bureau, Research Paper No.45.,1965
    [50]Van M P. A rainfall anomaly index independent of time and space. Notos 14,43.1965.
    [51]Gibbs W J, Maher J V. Rainfall Deciles as Drought Indicators[M]. Bureau of Meteorology Bull.48. Commonwealth of Australia, Melbourne, Australia,1967.
    [52]Keeth J J, Byram G M. A drought index for forest fire control:USDA Forest Service Research Paper SE-38[R]. Asheville, NC:Southeastern Forest Experment Station,1968,33.
    [53]Palmer W C. Keeping track of crop moisture conditions, nationwide:the new crop moisture index[J]. Weatherwise,1968,21:156-161.
    [54]Bhalme H N, Mooley D A. Large-scale droughts/floods and monsoon circulation. Monthly Weather Review,1980,108,1197-1211
    [55]Shafer B A, Dezman L E. Development of a surface water supply index (S WSI) to assess the severity of drought conditions in snowpack runoff areas[C] Proceedings of the (50th)1982 Annual Western Snow Conference, Fort Collins, CO:Colorado State University.1982,164-75.
    [56]McKee T B, Doesken N J, Kleist J. The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology. American Meteorological Society, Anaheim, CA,1993.
    [57]McKee T B, Doesken N J, Kleist J. Drought Monitoring with Multiple Time Scales, Paper Presented at 9th Conference on Applied Climatology. American Meteorological Society, Dallas, Texas,1995.
    [58]Weghorst K M. The Reclamation Drought Index:Guidelines and Practical Applications. Bureau of Reclamation, Denver, CO, p.6 1996,6.
    [59]Hollinger S E, Isard S A, Welford, M R. A New Soil Moisture Drought Index for Predicting Crop Yields[M]. In:Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc, 1993,187-190
    [60]Meyer S J, Hubbard K G. Extending the Crop-specific Drought Index to Soybean[M]. In:Preprints, Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc.,1995,258-259.
    [61]Meyer J L, Pulliam W.M. Modification of terrestrial-aquatic interactions by a changing climate[M]. In: Firth, P., Fisher, S.G. (Eds.), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York,1992,177-191.
    [62]Liu W T, Kogan F N. Monitoring regional drought using the vegetation condition index[J]. Journal of Remote Sensing.17,1996,2761-2782.
    [63]Byun H R, Wilhite D A. Objective quantification of drought severity and duration[J]. International Journal of Climatic,1999,2747-2756.
    [64]Narasimhan B, Srinivasan R. Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring[J]. Agricutural and Forest Meteorology.2005,133:69-88.
    [65]Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters,2008,35, L02405. doi:10.1029/2007GL032487.
    [66]Nalbantis I, Tsakiris G. Assessment of Hydrological Drought Revisited. Water Resources Management, 2009,23(5):881-897.
    [67]Hunt E D, Hubbard K G, Wilhite D A, et al. The development and evaluation of a soil moisture index[J]. International Journal of Climatic,2009,29 (5):747-759.
    [68]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.气象干旱等级标准(GB/T20481-2006)[S].北京:气象出版社,2006.
    [69]刘薇.山东省抗旱预案研究—地表水干旱指标、综合旱涝指标评价及抗旱对策研究[D].济南:山东大学硕士学位论文,2005
    [70]王劲松,郭江勇,倾继祖.一种K干旱指数在西北地区春旱分析中的应用[J].自然资源学报,2007,22(5):709-717.
    [71]闫桂霞,陆桂华.基于PDSI和SPI的综合气象干旱指数研究[J].水利水电技术,2009,40(4):10-13.
    [72]Mishra A K, Desai V R, Singh V P. Drought forecasting using a hybrid stochastic and neural network model[J]. Journal of Hydrologic Engineering.2007,12(6):626-638.
    [73]Mishra A K, Singh V P, Desai V R. Drought characterization:a probabilistic approach[J]. Stochastic Environmental Research and Risk Assessment.2009,23(1):41-55.
    [74]Mishra A K, Desai V R. Spatial and temporal drought analysis in the Kansabati River Basin, India[J]. International Journal of River Basin Management.2005b,3 (1):31-41.
    [75]Desalegn C E,Mukand S B, Ashim D G. Drought Analysis in the Awash River Basin, Ethiopia[J]. Water Resources Management,2010,24:1441-1460
    [76]Mishra A K, Singh V P..Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty[J]. Journal of Geophysical Research,2009,114, D06120. doi:10.1029/2008JD010986
    [77]Szalai S, Szinell C, Zoboki J. Drought monitoring in Hungary. In:Early Warning Systems for Drought Preparedness and Drought Management, WMO.Geneva,2000,161-176
    [78]Eleanor J B, Simon J B. Regional drought over the UK and changes in the future [J].Journal of Hydrology,2010,394:471-485
    [79]Keyantash J, Dracup J A. The quantification of drought:an evaluation of drought indices. The drought monitor[J]. Bulletin of the American Meteorological Society,2002,83 (8):1167-1180.
    [80]冯平,李绍飞,王仲珏.干旱识别与分析指标综述[J].中国农村水利水电,2002(7):13-15.
    [81]Tsakiris G, Vangelis H. Establishing a drought index incorporating evapotranspiration. Europe Water, 2005,3-11.
    [82]张天峰,王劲松,郭江勇.西北地区秋季干旱指数的变化特征[J].干旱区研究,2007,24(1):87-92.
    [83]庄晓翠,杨森,赵正波,等.干旱指标及其在新疆阿勒泰地区干旱监测分析中的应用[J].灾害学,2010.25(3):81-84
    [84]Soule P T. Spatial patterns of drought frequency and duration in the contiguous USA based on multiple drought event definitions[J]. International Journal of Climatology,1993,12:11-24.
    [85]Jones P D, Hulme M, Brifta K R, et al. Summer moisture accumulation over Europe in the Hadley center general circulation model based on the Palmer drought severity index[J]. International Journal of Climatology,1996,16(2):155-172.
    [86]Rao A R, Padmanabhan G. Analysis and modeling of Palmer's drought index series[J]. Journal of Hydrology,1984,68:211-229.
    [87]Johnson W K, Kohne R W. Susceptibility of reservoirs to drought using Palmer index[J]. Journal of Water Resources Planning and Management.1993,119 (3):367-387.
    [88]Heddinghaus T B, Sahol P. A Review of the Palmer Drought Severity Index and Where Do We Go From Here? In:Proc.7th Conf. on Applied Climatology, American Meteorological Society, Boston, Massachusetts,1991,242-246.
    [89]Kim T, Valdes J B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks[J]. Journal of Hydrologic Engineering,2003,8(6):319-328.
    [90]ozger M, Mishra A K, Singh V P. Low frequency variability in drought events associated with climate indices[J]. Journal of Hydrology.2009,364:152-162.
    [91]余晓珍.美国帕尔默旱度模式的修正和应用[J].水文,1996,(6):30-36.
    [92]杨扬,安顺清,刘巍巍,等.帕尔默旱度指数方法在全国实时旱情监测中的应用[J].水科学进展,2007,18(1):52-57.
    [93]Dracup J A, Lee K S, Paulson E G.On the statistical characteristics of drought events[J]. Water Resources Research,1980,16 (2):289-296.
    [94]Hisdal H, Tallaksen L M. Estimation of regional meteorological and hydrological drought characteristics:a case study for Denmark[J]. Journal of Hydrology,2003,281:230-247.
    [95]Konstantinos M A, Elizabeth A C, Andrew W, et al. Twentieth-Century Drought in the Conterminous United States[J]. Journal of Hydrometeor,2005,6 (6):985-1001.
    [96]Texas A & M Research Foundation.Drought Monitoring Index for Texas[R].American:the Texas Water Development Board,2007.
    [97]Karl T R. The sensitivity of the Palmer drought severity index and Palmer's Z index to their calibration coefficients including potential evapotranspiration[J]. Journal of Climatic Applied Meteorology,1986,25:77-86.
    [98]Keyantash J, Dracup J A. The quantification of drought:an evaluation of drought indices. The drought monitor[J]. Bulletin of the American Meteorological Society,2002,83 (8):1167-1180.
    [99]Bergman K H, Sabol P, Miskus D.Experimental indices for monitoring global drought conditions[A].Proc.13th Annual Climate Diagnostics Workshop,Cambridge, MA, U.S. Dept. of Commerce,1988,190-197.
    [100]中华人民共和国水利部.旱情等级标准(SL424-2008)[S].2008.
    [101]张尚印,姚佩珍,吴虹,等.我国北方旱涝指标的确定及旱涝分布状况[J].自然灾害学报,1998,7(2):22-28.
    [102]袁文平,周广胜.标准化降水指标与z指数在我国应用的对比分析[J].植物生态学报,2004,28(4):523-529.
    [103]王俊,刘亚玲,邰文河,等.干旱指标SPI在通辽地区干旱监测评估中的应用[J].现代农业科技,2011(15):262-263.
    [104]尹盟毅,赵西社,刘新生,等.几种干旱评估指标在黄土高原的应用对比分析[J].安徽农业科学,2012,40(7):4190-4193.
    [105]王素艳,郑广芬,杨洁,等.几种干旱评估指标在宁夏的应用对比分析[J].中国沙漠,2012,32(2):517-524.
    [106]Lemuel A M, Asha S K. Predictions of drought length extreme order statistics using theory[J].Journal of Hydrology,1995,169:95-110.
    [107]Shiau J T. Fitting drought duration and severity with two-dimensional copulas[J].Water Resources Management,2006,20(5):795-815.
    [108]翟劭燚,张晓雪,刘九夫,等.重庆地区干旱频率分析[J].人民长江,2009,40(9):62-64.
    [109]马明卫,宋松柏.椭圆型Copulas函数在西安站干旱特征分析中的应用[J].水文,2010,30(4):36-42.
    [110]周玉良,袁潇晨,金菊良,等.基于Copula的区域水文干旱频率分析[J].地理科学,2011,31(11):1383-1388.
    [111]Henricksen B L. Reflections on drought:Ethiopia 1983-1984[J]. International Journal of Remote Sensing,1986,7(11):1447-1451.
    [112]盛绍学,马晓群,荀尚培,等.基于GIS的安徽省干旱遥感监测与评估研究[J].自然灾害学报,2003,12(1):151-157.
    [113]王春林,董永春,李春梅,等.基于GIS的广东干旱逐日动态模拟与评估[J].华南农业大学学报:自然科学版,2006,27(2):20-25.
    [114]冯锐,张玉书,纪瑞鹏,等.基于GIS的干旱遥感监测及定量评估系统[J].安徽农业科学,2009,37(26):12626-12628.
    [115]Tallaksen L M, Hisdal H, Henny A J, et al. Space-time modelling of catchment scale drought characteristics[J]. Journal of Hydrology,2009,375:363-372.
    [116]周婷,李传哲,于福亮,等.澜沧江-湄公河流域气象干旱时空分布特征分析[J].水电能源科学,2011,29(6):4-8.
    [117]茅海祥,王文.中国南方地区近50年夏季干旱时空分布特征[J].干旱气象,2011,29(3):283-288.
    [118]谢五三,田红.安徽省近50年干旱时空特征分析[J].灾害学,2011,26(1):94-98.
    [119]包云轩,孟翠丽,申双和,等.基于CI指数的江苏省近50年干旱的时空分布规律[J].地理学报,2011,66(5):599-608.
    [120]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学B辑,1995,25(9):968-977.
    [121]Milly P C D, Dumme K A, Vecchia A V. Global pattern of trends in stream flow and water availability in a changing climate change[J], Nature,2005,438:347-350.
    [122]张建云,章四龙,王金星,等.近50a来我国六大流域年际径流变化趋势研究[J].水科学进展,2007,18(2):230-234.
    [123]王国庆,张建云,刘九夫,等.气候变化和人类活动对河川径流影响的定量分析[J].中国水利,2008(2):55-58.
    [124]江善虎,任立良,雍斌,等.气候变化和人类活动对老哈河流域径流的影响[J].水资源保护,2010,26(6):1-4.
    [125]董雯.人类活动和气候变化对水文水资源的影响研究-以新疆精河流域为例[D].乌鲁木齐:新疆大学博士学位论文,2010.
    [126]崔炳玉.气候变化和人类活动对滹沱河区水资源变化的影响[D].南京:河海大学硕士学位论文,2004.
    [127]Koster R D, Suarez M J. A simple framework for examing the inter-annual variability of land surface moisture fluxes [J].Journal of Climate,1999,12:1911-1917.
    [128]]Milly P C D, Dunne K A. Macroscale water fluxes 2:Water and energy supply control of their inter-annual variability[J].Water Resources Research,2002,38(10):1206-1214.
    [129]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [130]王纲胜,夏军,万东晖,等.气候变化及人类活动影响下的潮白河月水量平衡模拟[J].自然资源学报,2006,21(1):86-71.
    [131]张晓明,曹文洪,余新晓,等.黄土丘陵沟壑区典型流域土地利用/覆被变化的径流调节效应[J].水利学报,2009,40(6):641-650.
    [132]李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):211-224.
    [133]国家防汛抗旱总指挥部办公室,水利部南京水文水资源研究所.中国水旱灾害[M].北京:中国水利水电出版社,1997,281-358.
    [134]Zavareh K. The duration and severity of drought over eastern Australia simulated by a coupled ocean-atmosphere GCM with a transient[J]. Environmental Modelling & Software,1999,14:243-252.
    [135]Wang G L. Agricultural drought in a future climate:results from 15 global climate models participating in the IPCC 4th assessment[J]. Climate Dynamics,2005,25:739-753.
    [136]Blenkinsop S, Fowler H J. Changes in drought frequency, severity and durationfor the British Isles projected by the PRUDENCE regional climate models[J] Journal of Hydrology,2007,342:50-71.
    [137]尹正杰,黄薇,陈进.水库径流调节对水文干旱的影响分析[J].水文,2009,29(2):41-44.
    [138]Xiong W, Holman I, Erda L. Climate change, water availability and future cereal production in China [J]. Agriculture, Ecosystems and Environment,2010,135:58-69.
    [139]王小军,贺瑞敏,尚熳廷.气候变化对区域农业灌溉用水影响分析[J].中国农村水利水电,2011(1):29-32.
    [140]Kirono D G C, Kent D M, Hennessy K J, et al. Characteristics of Australian droughts under enhanced greenhouse conditions:Results from 14 global climate models[J]. Journal of Arid Environments,2011,75:566-575.
    [141]周婷.变化环境下水文干旱评估方法与应用研究[D].北京:中国水利水电科学研究院硕士学位论文,2012.
    [142]Wilhite D A. Drought as a natural hazard-concepts and definitions,Chapter 1[M]//Wilhite D A. Drought:a global assessment,natural hazards and disasters series. London & New York:Routledge,2000,3-18.
    [143]孙荣强.干旱定义及其指标述评[J].灾害学,1994,9(1):17-21.
    [144]冯德光.干旱和旱灾研究中应更新的几个概念[J].海河水利,1998,(6):35-36.
    [145]张景书.干旱的定义及其逻辑分析[J].干旱地区农业研究,1993,11(3):97-100.
    [146]耿鸿江.干旱定义述评[J].灾害学,1993,8(1):19-22.
    [147]张强,潘学标,马柱国,等.干旱[M].北京:气象出版社,2009.
    [148]Wilhite D A, Glantz M H. Understanding the drought phenomenon:the role of definitions [J]. Water International,1985,10:111-120.张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [150]肖金香,穆彪,胡飞.农业气象学(第二版)[M].北京:高等教育出版社,2009.
    [151]蒋高明.植物生理生态学[M].北京:高等教育出版社,2007.
    [152]彭思岭.气象要素时空插值方法研究[D].长沙:中南大学硕士学位论文,2010.
    [153]邬伦,刘瑜,张晶,等.地理信息系统—原理、方法和应用[M].北京:科学出版社,2001.
    [154]Tsakiris G, Vangelis H. Establishing a drought index incorporating evapotranspiration[J]. Europe Water,2005,3-11.
    [155]Smakhtin V U. Low flow hydrology:a review[J].Journal of Hydrology,2001,147-186.
    [156]Yevjevich V. Methods for determing statistical properties of droughts[M].Colorado. Water Resources Publications.1983,22-43.
    [157]谢华,黄介生.两变量水文频率分布模型研究述评[J].水科学进展,2008,19(3):443-452.
    [158]戴昌军,粱忠民.多维联合分布计算方法及其在水文中的应用[J].水利学报,2006,37(2):160-165.
    [159]Kim T, Valds J B, Yoo C. Nonparamet ric approach for est imating return periods of droughts in arid regions[J]. Journal of Hydrologic Engineering,2003,8(5):237-246.
    [160]马明卫,宋松柏.非参数方法在干旱频率分析中的应用[J].水文,2011,31(3):5-12.
    [161]宋松柏,蔡焕杰,金菊良,等.Copula函数及其在水文中的应用[M].北京:科学出版社,2012.
    [162]Nelson R B. An introduction to Copulas[M].NewYork:Springer,1999.
    [163]闫宝伟,郭生练,肖义,等.基于两变量联合分布的干旱特征分析[J].干旱区研究,2007,24(4):537-542.
    [164]陆桂华,闫桂霞,吴志勇,等.基于copula函数的区域干旱分析方法[J].水科学进展,2010,21(2):188-193.
    [165]许月萍,张庆庆,楼章华,等.基于Copula方法的干旱历时和烈度的联合概率分析[J].天津大学学报,2010,43(10):928-932.
    [166]宋松柏,聂荣.基于非对称阿基米德Copula的多变量水文干旱联合概率研究[J].水力发电学报,2011,30(4):20-29.
    [167]Song S B, Singh V P.Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data[J]. Stochastic Environmental Research and Risk Assessment,2010,425-444.
    [168]佘敦先,夏军,杜鸿,等.黄河流域极端干旱的时空演变特征及其多变量统计模型研究[J].应用基础与工程科学学报,2012,20(9):15-29.
    [169]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
    [170]曹洁萍,迟道才,武立强,等.Mann-Kendall检验方法在降水趋势分析中的应用研究[J].农业科技与装备,2008(5):35-38.
    [171]李保敏,张俊芝,吴旭,等.基于Mann-Kendall法和有序聚类法的径流变化特征研究[J].海河水利,2012(2):32-35.
    [172]刘昌明,郑红星,王中根,等.流域水循环分布式模拟[M].郑州:黄河水利出版社,2006.
    [173]任立良.流域数字水文模型研究[J].河海大学学报,2000,28(4):1-7.
    [174]王刚胜,夏军,朱一中.基于非线性系统理论的分布式水文模拟[J].水科学进展,2004,15(4):521-525.
    [175]郭生练,熊立华.基于DEM的分布式物理模型的应用和检验[J].武汉水利电力大学学报,2000,33(6):1-5.
    [176]贾仰文.WEP模型的开发和应用[J].水科学进展,2003,14(增刊):50-56.
    [177]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实际[M].北京:中国水利水电出版社,2005.
    [178]贾仰文,王浩,王建华.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-308.
    [179]裴源生,赵勇,张金萍,等.广义水资源高效利用理论与核算[M].郑州:黄河水利出版社,2008.
    [180]裴源生,赵勇,陆垂裕,等.经济生态系统广义水资源合理配置[M].郑州:黄河水利出版社,2006.
    [181]赵勇.广义水资源合理配置研究[D].北京:中国水利水电科学研究院博士学位论文,2006.
    [182]冯焱,姚勤农,张治怡,等.海河流域水旱灾害(1949-1990)[M].天津:天津科学技术出版社,2009.
    [183]李立新,严登华,秦天玲,等.海河流域1961-2010年干旱化特征及其变化趋势分析[J].干旱区资源与环境,2012,26(11):61-67.
    [184]王舒,严登华,秦天玲,等.基于PER-Kriging插值方法的降水空间展布[J].水科学进展,2011,22(6):756-763.
    [185]卢燕宇,吴必文,田红,等.基于Kriging插值的1961~2005年淮河流域降水时空演变特征分析[J].长江流域资源与环境,2010,20(5):567-573.
    [186]邵晓梅,严昌荣,魏红兵.基于Kriging插值的黄河流域降水时空分布格局[J].中国农业气象,2006,27(2):65-69.
    [187]张世法,苏逸深,宋德敦,等.中国历史干旱(1949-2000)[M].南京:河海大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700