用户名: 密码: 验证码:
鄂尔多斯盆地东北部中—新生代构造事件及其动热转换的油气成藏效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造(热)事件及其动-热转换与油气等多种矿产富集成矿(藏)的关系,是近年来盆地动力学及其资源效应研究备受关注的热点问题。鄂尔多斯盆地东北部中-新生代经历了多期次的构造作用和油气等多种矿产的共存富集,是盆地构造动-热转换与油气等多种矿产富集成矿(藏)关系研究的理想地区。本文在区域地质构造研究的基础上,重点采用构造热年代学和油气成藏年代学研究方法,系统建立了鄂尔多斯盆地东北部中-新生代构造演化和油气成藏的事件年代学序列及其对比关系,综合探讨分析了中-新生代构造热事件、抬升冷却事件及其动-热转换的油气成藏效应。主要取得如下成果认识:
     (1)根据野外地质构造和地球物理资料的综合分析,明确了鄂尔多斯盆地东北部的构造单元分区及其边缘断裂带构造特征,进一步结合沉积建造组合与地层不整合界面关系,将盆地东北部中-新生界沉积地层划分为印支旋回构造层序(TS1)、燕山旋回构造层寻(TS2)、喜山旋回构造层序(TS3)等三大构造旋回层序及其相应的8个构造亚层序。
     (2)运用构造热年代学定量分析方法,系统构建了鄂尔多斯盆地东北部中-新生代主要构造事件及其动-热转换的定量年代学序列,认为研究区主要经历了三叠纪(印支旋回中-晚期)240Ma±和200Ma±两期次的构造事件、白垩纪(燕山旋回中-晚期)135Ma±和65Ma±两期次的构造事件、新近纪(喜山旋回中-晚期)20Ma±的一期构造事件。
     (3)将矿物对-封闭温度法与单井沉降史模拟相结合,综合厘定了盆地东北部中-新生代构造动-热转换过程的差异抬升速率:印支期末抬升速率为3.7m/Ma,早中侏罗世延安期末抬升速率接近46.5m/Ma,晚侏罗世抬升速率为8.2m/Ma,早白垩世晚期-古近纪抬升速率为80m/Ma,新近纪以来的抬升速率为128m/Ma。
     (4)镜质体反射率(Ro)与AFTSolve热史模拟相结合,综合揭示了盆地东北部中-新生代的构造热演化历史及其古地温参数的动-热转换特征。研究区中-新生代沉积-构造演化过程的关键构造热事件主要发生在燕山中期的(135-100)Ma,峰值年龄接近120Ma±,造成下二叠统和上三叠统烃源岩层系经历的最大古地温分别可达180℃和130℃;后期的构造差异隆升过程造成研究区北段二叠系及其上覆地层较早地在晚白垩世75Ma±抬升冷却至低于110℃的古地温状态,而研究区中南部二叠系及其上覆地层直到新近纪20Ma±以来才抬升冷却到了低于110℃的古地温状态。
     (5)运用自生伊利测年与流体包裹体分析相结合的油气成藏年代学研究方法,系统揭示了盆地东北部上古生界二叠系和中生界三叠系油气成藏的峰值年龄序列。认为研究区中北部二叠系不同层段至少经历过两期次的原生油气充注-成藏事件,峰值年龄分别集中在(170-153)Ma和(143-130)Ma,研究区南部上三叠统主要经历了(128-112)Ma的一期原生油气充注-成藏事件;研究区的后期次生油气成藏事件主要发生在研究区北部的上二叠统储集层系,峰值年龄接近古近纪晚期的30Ma±。
     (6)依据上述研究成果,探讨分析了鄂尔多斯盆地东北部中-新生代构造事件与油气成藏事件的耦合关系及其构造动-热转换的油气成藏效应。早白垩世(135-120)Ma构造热事件为盆地沉积埋藏增温、区域构造岩浆活动的耦合增温作用,促成了盆地东北部古生界和中生界主力烃源岩层系的大规模成熟生烃和油气运聚成藏;晚白垩世以来的差异隆升降温过程,尤其是发生在65Ma和20Ma的两次主要构造差异隆升事件引发了上古生界原生气藏的调整-逸散及其相应上二叠统的天然气次生成藏。
     (7)将盆地东北部多种能源矿产统一置于盆地东北部不对称宽缓复式向斜的弧形构造体系框架下,初步探讨分析了油气等多种矿产耦合成藏(矿)的空间有序组合特点及其受控的构造临界状态。复向斜相对翘升的盆地东北边缘弧形构造隆起带,地层倾角一般>3-8°,构成盆内油气逃逸指向区、煤系地层掀斜抬升成矿区和砂岩型铀矿富集区;复向斜倾伏的缓坡区地层倾角一般>2-5°,构成已发现的上二叠统油气次生成藏区;复向斜倾伏沉降区的地层倾角趋于平缓(<1-2°),主体属于上古生界和中生界的原生油气藏富集保存区。
The relationship among tectono-thermal event, its dynamothermal transition, hydrocarbon and other multiple mineral is a hot issue recently in the frontier research field of sedimentary basin dynamics and its effects on resources. Northeastern Ordos basin (NOB) experienced multi-stages tectono-thermal events and the coexisting enrichment of multi-energy resources of Meso-Cenozoic, which is ideal area of researching relationship between dynamothermal transition effecting and the coexisting enrichment of multiple mineral. The paper, on the basis of regional geological structure research, mainly adopts the tectonic thermochronology and hydrocarbon accumulation chronology, systematically establishes chronology sequence of tectonic events and hydrocarbon accumulation events and their compared relationship, analyze the Meso-Cenozoic tectonic thermal events, uplift cooling events and hydrocarbon accumulations effects on dynamothermal transition. The main conclusions are as follows:
     (1) According to geological structure and geophysical data, the characteristics of structure units zoning and its marginal fault zone is clear. Further combine with sedimentary construction combination and layers unconformity contact, the Meso-Cenozoic sedimentary layers of NOB are divided into Indosinian cycle tectonic sequence (TS1), Yanshanian cycle tectonic sequence (TS2), Himalayan cycle tectonic sequence (TS3), and the corresponding eight tectonic sub-sequences.
     (2) By means of quantitative tectonic thermochronology analysis, the Meso-Cenozoic tectonic chronology sequence is established. What's more, the study area mainly experienced two stages tectonic events of roughly240Ma and200Ma in Triassic (the middle and late of Indosinian cycle); two stages tectonic events of roughly135Ma and65Ma in Cretaceous (the middle and late of Yanshanian cycle); one stage tectonic events of roughly20Ma in Neogene (the middle and late of Himalayan cycle).
     (3) Through different mineral closed temperature comparing and well subsidence history modeling, the Meso-Cenozoic differential uplift rates in dynamothermal transition is revealed: with3.7m/my at the end of the Indosinian; with46.5m/my at the end of the Yan'anian of Early-Middle Jurassic; with8.2m/my in Late Jurassic; with80m/my during late Early Cretaceous to Paleogene; with128m/my since the Neogene.
     (4) Based on vitrinite reflectance (Ro) and AFTSolve thermal history simulation, the Meso-Cenozoic tectonic thermal evolution history and paleogeothermal parameters of dynamothermal transition is indicated. The key tectono-thermal event occured mainly from135to100Ma of middle Yanshanian with the peak of120Ma, resulting in the maximum palaeogeothermal of hydrocarbon source rock of lower Permian and upper Triassic up to180~110℃, respectively. The late differential uplift caused Permian and its overlying layers of northern section of study area to cool with below110℃in the75Ma of Late Cretaceous. The central souther cooled with below110℃in the20Ma of Neogene.
     (5) By means of authigenic illite dating and fluid inclusion analysis, the hydrocarbon accumulation chronology sequence is established. The Permian reservoirs of north-central of the study area at least experienced two stages of primary hydrocarbon accumulations with the peak age from170to153Ma and from143to130Ma, respectively. The Triassic reservoirs of souther experienced one stage of primary hydrocarbon accumulations with the peak age from128to112Ma. However, Upper Permian reservoirs of norther of the study area happened secondary hydrocarbon accumulation with the peak age close to30Ma of Paleogene.
     (6) Based on the above research results, the Meso-Cenozoic tectonic events and hydrocarbon accumulations effects on dynamothermal transition is discussed. The tectono-thermal event of Early Cretaceous (135-120Ma), which is coupling warming events of sedimentary buried and magmatic activity, make the main hydrocarbon source rock of Paleozoic and Mesozoic to large-scale generate hydrocarbon and accumulate. Further more, the late differential uplift, especially two tectonic events of65Ma and20Ma, yield primary hydrocarbon accumulations of Paleozoic to adjust and dissipate, hydrocarbon of Upper Permian to second accumulate.
     (7) Through placing enrichment of multiple mineral in asymmetric synclinorium and arc tectonic belt located its margin, the spatial distribution of multiple mineral and controlled tectonic critical state is primary analyzed. The tilted arc tectonic belt of synclinorium margin, with dip of layer greater than3-8°, constitute hydrocarbon dissipation and escape area, mineralization area of coal and sandstone type uranium. The tilted arc tectonic belt, with dip of layer greater than2-5°, compose secondary hydrocarbon accumulation area of Upper Permian. The pitching of synclinorium, with dip of layer tending to be horizontal (<1~2°), mainly belong to saving enrichment area of primary hydrocarbon of upper Paleozoic and Mesozoic.
引文
[1]查明,张一伟,邱楠生.油气成藏条件及主要控制因素[M].北京:石油工业出版社,2003,96-113.
    [2]陈刚,李向平,周立发,等.鄂尔多斯盆地构造与多种矿产的耦合成矿特征[J].地学前缘,2005,12(4):535-541.
    [3]陈刚,王志维,白国娟,等.鄂尔多斯盆地中新生代峰值年龄事件及其沉积构造响应[J].中国地质,2007,34(3):375-382.
    [4]陈刚.中生代鄂尔多斯盆地陆源碎屑成分及其构造属性[J].沉积学报,1999,17(3):409-413.
    [5]陈刚,丁超,徐黎明,等.多期次油气成藏流体包裹体间接定年-以鄂尔多斯盆地东北部二叠系油气藏为例[J].石油学报,2012,33(6):1003-1011.
    [6]陈刚,徐黎明,丁超,等.用自生伊利石定年确定鄂尔多斯盆地东北部二叠系油气成藏期次[J].石油与天然气地质,2012,33(5):713-719.
    [7]陈红汉.油气成藏年代学研究进展[J].石油与天然气地质,2007,28(2):143-150.
    [8]陈章明,吴元燕,吕延防,等.油气藏保存与破坏研究[M].北京:石油工业出版社,2003,36-137
    [9]崔盛琴,李锦蓉,孙家树,等.华北陆块北缘构造运动序列及区域构造格局[M].北京:地质出版社,2000,308-318.
    [10]丁超,陈刚,李振华,等.鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J].现代地质,2011,25(3):581-588.
    [11]丁超,陈刚,张宏发,等.鄂尔多斯盆地东部紫金山岩体地球化学与构造环境分析[J].矿物岩石,2011,31(3):74-81.
    [12]丁超,陈刚,郭兰,等.鄂尔多斯盆地东北部上古生界油气成藏期次[J].地质科技情报,2011,30(5):69-73.
    [13]邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,1999,18(4):309-315.
    [14]邓晋福,魏文博,邱瑞照,等.中国华北地区岩石圈三维结构及其演化[M].北京:地质出版社,2000,192-275.
    [15]胡圣标,张容燕,周礼成.油气盆地热历史恢复方法[J].勘探家,1998,3(4):52-54.
    [16]黄锦江.山西临县紫金山碱性环状杂岩体岩石学特征与成因研究[J].现代地质,1991,5(1):24-40.
    [17]金之均,张一伟,王捷,等.油气成藏机理与分布规律[M].北京:石油工业出版社,2003,59-73.
    [18]康铁笙,王世成.地质热历史研究的裂变径迹方法[M].北京:科学出版社,1991,25-40.
    [19]李明诚,单秀琴,马成华,等.油气成藏期探讨[J].新疆石油地质,2005,26(5):587-591.
    [20]李明诚,马成华,胡国艺,等.油气藏的年龄[J].石油勘探与开发,2006,33(6):653-656.
    [21]李明诚.对油气运聚过程中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-16.
    [22]李明诚.石油与天然气运移[M].北京:石油工业出版社,2004,154-203.
    [23]李明诚.对油气运聚若干问题的再认识[J].新疆石油地质,2008,29(2):133-137.
    [24]刘池阳.盆地多种能源矿产共存富集成藏(矿)研究进展[M].北京:科学出版社,2005,1-266.
    [25]刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J].地质学报,2006,80(5):617-633.
    [26]刘德汉,肖贤明,田辉,等.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491-501.
    [27]刘正宏,徐仲元,杨振升.大青山逆冲推覆构造形成时代的40Ar-39Ar年龄证据[J].科学通报,2003,48(20):2192-2197.
    [28]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004,19-20.
    [29]梁宇.子长油田延长组油气藏特征与油气成藏规律研究[D].西安:西北大学,2011.
    [30]戚国伟,张进江,王新社,等.内蒙古大青山中生代逆冲-伸展构造格局及空间关系[J].自然科学进展,2007,17(3):329-338.
    [31]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2006,80(5):674-682.
    [32]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].1996,石油学报,17(1): 339-349.
    [33]任战利.中国北方沉积盆地构造热演化史研究[J].北京:石油工业出版社,1999,16-103.
    [34]山西地质矿产局.山西区域地质志[M].北京:地质出版社,1989,110-260.
    [35]邵济安,牟保磊,张履桥.华北东部中生代构造格局转换过程中的深部作用及浅部响应[J].地质论评,2000,46(1):32-39.
    [36]孙少华,李小明,龚革联,等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):306-309.
    [37]万天丰,朱鸿.中国大陆及邻区中生代-新生代大地构造与环境变迁[J].现代地质,16(2):2002,107-120.
    [38]王瑜.构造热年代学-发展与思考[J].地学前缘,2004,11(40):435-443.
    [39]王飞宇,何萍,张水昌,等.自生伊利石K-Ar定年分析烃类进入储集层的时间[J].地质论评,1997,43(5):540-547.
    [40]王飞宇,金之钧,吕修祥,等.含油气盆地成藏期分析理论和新方法[J].地球科学进展,2002,17(5):754-762.
    [41]王国灿.沉积物源区剥露历史分析的一种新途径:碎屑锆石和磷灰石裂变径迹热年代学[J].地质科技情报,2002,21(4):35-40.
    [42]吴柏林,王建强,刘池阳,等.东胜砂岩型铀矿形成中的天然气作用地球化学及其成因矿床学意义[J].石油与天然气地质,2006,27(2):225-232.
    [43]吴利仁,张兆初,张学玉,等.论山西台背斜碱性岩浆的成因及演化[J].地质科学,1964,(2):125-142.
    [44]吴仁贵,陈安平,金达淦,等.沉积体系分析与河道砂岩型铀矿成矿条件讨论[J].铀矿地质,2003,19(2):94-99.
    [45]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [46]吴珍汉,江万,吴中海,等.青藏高原腹地典型盆-山构造形成时代[J].地球学报,2002,23(4):289-294.
    [47]吴中海,吴珍汉.裂变径迹法在研究造山带隆升过程中的应用介绍[J].地质科技情报,1999,18(4):27-32.
    [48]夏毓亮,林锦荣,刘汉彬,等.中国北方主要产铀盆地砂岩型铀矿成矿年代学研究 [J].铀矿地质,2003,19(3):129-136.
    [49]肖贤明,刘祖法,刘德汉,等.应用储层流体包裹体信息研究天然气藏的成藏时间[J].科学通报,2002,47(12):957-960.
    [50]肖媛媛,任战利,秦江峰,等.山西临县紫金山碱性杂岩LA-ICP MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质论评.2007,53(5):656-663
    [51]许文良,王冬艳,王清海,等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40AAr/39Ar定年[J].地球化学,2004,33(3):221-230
    [52]闫义,林舸,李自安.利用锆石形态、成分组成及年龄分析进行物源区示踪的综合研究[J].大地构造与成矿学,2003,27(2):184-188.
    [53]阎国翰,牟保磊,曾贻善.山西临县紫金山碱性岩-碳酸岩杂岩体的稀土元素和氧锶同位素特征[J].岩石学报,1988,8(3):29-36.
    [54]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002,23-162
    [55]杨兴科,杨永恒,季丽丹,等.鄂尔多斯盆地东部热力作用的期次和特点[J].地质学报,2006,80(5):705-711.
    [56]杨兴科,晁会霞,张哲峰,等.鄂尔多斯盆地东部紫金山岩体特征与形成的动力学环境[J].大地构造与成矿学,2010,34(2):269-281.
    [57]杨兴科,晁会霞,郑孟林,等.鄂尔多斯盆地东部紫金山岩体SHRMP测年地质意义[J].矿物岩石,2008,28(1):54-63.
    [58]翟明国,樊祺诚.华北克拉通下地壳置换:非造山过程的壳幔交换[J].岩石学报,2002,18(1):1-9.
    [59]翟明国,孟庆任,刘建明,等.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,11(3):285-294.
    [60]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转换的关键时限[J].中国科学(D辑),2003,33(10):913-920.
    [61]翟裕生,吕古贤.构造动力体制转换与成矿作用[J].地球学报,2002,23(2):97-102.
    [62]翟裕生.地球系统科学与成矿学研究[J].地学前缘,2004,11(1):1-10.
    [63]张泓,何宗莲,晋香兰,等.鄂尔多斯盆地构造演化与成煤作用[M].北京:地质出版社,2005,36-49.
    [64]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报,2001,17:236-244.
    [65]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,421-726.
    [66]张宏法,陈刚,鲍洪平,等.山西临县紫金山碱性火山机构岩体岩浆演化[J].西北大学学报(自然科学版),2008,40(1):111-120.
    [67]张进江,戚国伟,郭磊,等.内蒙古大青山逆冲推覆体系中生代逆冲构造活动的40Ar-39Ar定年[J].岩石学报,2009,25(3):609-616.
    [68]张有瑜,董爱正,罗修泉,等.油气储层自生伊利石分离提纯及其K-Ar同位素测年技术研究[J].现代地质,2001,15(3):315-320.
    [69]张有瑜,罗修泉,宋健,等.油气储层中自生伊利石K-Ar同位素年代学研究若干问题的初步探讨[J].现代地质,2002,16(4):403-407.
    [70]张有瑜,罗修泉.油气储层自生伊利石K-Ar同位素年代学研究现状与展望[J].石油与天然气地质,2004,25(2):231-236.
    [71]张岳桥,廖昌珍.晚中生代-新生代构造体制转换与鄂尔多斯盆地改造[J].中国地质,2006,33(1):28-36.
    [72]赵越,徐刚,张拴宏.燕山运动与东亚构造体制的转变[J].地学前缘,2004,11(3):319-328.
    [73]赵国春.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J].岩石学报,2009,25(8):1772-1792.
    [74]赵靖舟.油气成藏年代学研究进展及发展趋势[J].地球科学进展,2002,17(3):378-383.
    [75]赵靖舟.油气成藏年代学研究进展及发展趋势[J].地球科学进展,2002,17(3):378-383
    [76]赵靖舟,李秀荣.成藏年代学研究现状[J].新疆石油地质,2002,23(3):257-261
    [77]赵靖舟.油气包裹体在成藏年代学研究中的实用实例分析[J].地质地球化学,2002,30(2):83-89
    [78]赵孟为.K-Ar测年法在确定沉积岩成岩时代中的应用-以鄂尔多斯盆地为例[J].沉积学报,1996,14(3):11-21.
    [79]赵重远,刘池洋.华北克拉通沉积盆地形成与演化及油气赋存[M].西安:西北大学出版社,1990.
    [80]郑德文,张培震,万景林,等.碎屑颗粒热年代学[J].地震地质,2000,22:25-34.
    [81]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].北京:中国地质大学出版社,1999,1-126.
    [82]郑亚东,Davis G A,王琮,等.内蒙古大青山大型逆冲推覆构造[J].中国科学,1998,28(4):289-295.
    [83]周中毅,潘长春.沉积盆地古地温测定方法及其应用[J].广州:广东科技出版社.1992,1-103.
    [84]周祖翼,毛风鸣,廖宗廷,等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用[J].沉积学报,2001,19(3):456-458.
    [85]周祖翼,Donelick R.基于磷灰石裂变径迹分析数据的时间-温度历史的多元动力学模拟[J].石油实验地质,2001,23(1):97-102
    [86]周祖翼.裂变径迹分析及其在沉积盆地研究中的应用[J].石油实验地质,2001,23(3):332-337.
    [87]张艳萍.鄂尔多斯盆地东部地区上古生界天然气成藏年代研究[D].西安:西安石油大学,2008
    [88]张盛.鄂尔多斯盆地古地温演化与多种能源矿产关系的研究[D].西安:西北大学,2006.
    [89]Belousova E A, Griffin W L, O'Reilly S Y et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type [J].Contrib. Mineral. Petrol.,2002, 143:602~622
    [90]Brandon M T. Decomposition of fission track grain age distributions [J]. American Journal Science,1992,292:535~564.
    [91]Brandon M T. Probability density Plot for fission track grain age samples [J]. Radiation Measurement,1996,26(5):663~676.
    [92]Braun J, Van der Beek P, Batt G. Quantitative thermochronology [M]. New York: Cambridge University Press,2006,33~59.
    [93]Chang Z S, Jeffery D V, William C M et al. U-Pb dating of zircon by LA-ICP-MS [J]. Geochem Geophys Geosyst,2006,7(5):1~14.
    [94]Chen B, Jahn B M, Arakawa Y et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton:elemental ana Sr-Nd-Pb isotopoic constraints[J]. Contrib. Mineral. Petrol.2004,148:489~501.
    [95]CHEN G, DING C, XU L M, et al. Analysis on the thermal history and uplift process of Zijinshan intrusive complex in the eastern Ordos basin[J]. Chinese J. Geophys., (in Chinese),2012,55 (11):3731-3741.
    [96]Cherniak D J, Watson E B. Pb diffusion in zircon [J]. Chemical Geology,2000,172: 5-24
    [97]Darby B J, Davis G A, Zheng Y. Structural evolution of the southern Daqing Shan, Yinshan belt, Inner Mongolia, China [A]. In:Hendrix M S, Davis G A, eds., Paleozoic and Mesozoic Tectonic Evolution of Central Asia:from Continental Assembly to Intracontinental Deformation [C]. Geol Soc Am Mem,2001,194:199-214
    [98]Davis G A, Wang C Zheng Y et al. The enigmatic Yinshan fold-and-thrust belt of northern China:new views on its intraplate continental styles[J]. Geology,1998,26: 43-46.
    [99]Donelick R A, O'Sullivan P B, Ketcham R A. Apatite Fission-Track Analysis[J]. Reviews in Mineralogy & Geochemistry,2005,58:49-94
    [100]Dowty E. Crystal growth and nucleiation theory and the numerical simulation of igneous crystallization [A]. In:Hargraves R B. eds. Physics of Magmatic Processes [C]. New Jersey:Priston University Press,1980,419-485.
    [101]Fitzgerald, P. G, Sorkhabi, R. B., Redfield, T. F., Stump, E. Uplift and denudation of the central Alaska Range:a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters [J]. J. Geophys. Res.,1995,100:20175-20191.
    [102]Galbraith R F, Laslett G M. Statistical models for mixed fission track grain ages [J]. Nuclear Tracks Radiation Measurement,1993,21:459-470.
    [103]Galbraith R F. The Radial Plot:graphical assessment of spread in ages [J]. Nuclear Tracks Radiation Measurement,1990,17:207-214.
    [104]Gallagher, K., Brown, R. W, Johnson, C. Fission track analysis and its applications to geological problems [J]. Annual Reviews of Earth Planetary Sciences,1998,26: 519-572
    [105]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton [J]. Nature,2004,432:892-897
    [106]Gleadow A J W, Dubby I R, Lovering J F. Fission track analysis:a new tool for the evaluation of thermal histories and hydrocarbon potential [J]. Australian Petroleum Exploration Association Journal,1983,23:93~102.
    [107]Gleadow A J W, Duddy I R, Green P F et al. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages [J]. Earth and Planetary Science Letter,1986,78:245~254.
    [108]Green P F, Duddy I R, Laslett G M et al. Thermal annealing of fission tracks in apatite 4. Qualitative modeling techniques and extensions to geological timescales [J]. Chemical Geology,1989,79:155~182.
    [109]Hamilton P J, Kelley S, Fallick A E. K-Ar dating of illite in hydrocarbon reservoirs [J]. Clay Minerals,1989,24:215~231.
    [110]Hurford A J, Green P F.. A users, guide to fission-track dating calibration [J]. Earth and Planetary Science Letter,1982,59:343~354.
    [111]Ketcham R A, Donelick R A, Donelick M B. AFT Solve:a program for multi-kinetic modeling of apatite fission-track data [J]. Geological Materials Research,2000,2(1): 1~32.
    [112]Lee M, Aronson J L, Savin SM. K-Ar dating of time of gas emplacement in Rotliegendes Sandatone, Netherlands [J]. AAPG Bull,1985,69(9):1381~1385.
    [113]Ludwig K R. Isoplot:A plotting and regression program for radiogenic-isotope data [J]. U.S Geol Survey Open-File Report,1991,39:91~445.
    [114]Mao J W, Wang Y T, Zhang Z H et al. Geodynamic setting of Mesozoic large-scale mineralization in North China and adjacent areas [J]. SCIENCE CHINA Earth Science, 2003,46(8):838~851.
    [115]Massimo T. In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry [J]. Chem Geol,2003,199:159~177.
    [116]McDougall I, Harrison T M. Geochronology and thermochronology by the 40Ar-39Ar Method [M]. New York:Oxford University Press,1999,1~269.
    [117]Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract [J]? Tectonophysics,2003,369:155~174.
    [118]Menzies M A, Xu Y G, Zhang, H F et al. Integration of geology, geophysics and geochemistry:A key to understanding the North China Craton [J]. Lithos,2000,96: 1-21.
    [119]Naeser C W. Thermal history of sedimentary basins:fission-track dating of subsurface rocks. In:P A Scholle, R P Schluger, eds. Aspect of diagenesis [J]. SEPM special Publication,1979,26:109~112.
    [120]Ren Zhanli, Zhang Sheng, Gao Shengli et al. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos basin [J]. SCIENCE CHINA Earth Sciences,50(Supp. Ⅱ):2007,27~38.
    [121]Reynolds P H. Low temperature thermochronology by 40Ar-39Ar method [A]. In:Zentili M, Reynolds P H, eds. MAC Short course handbook on low temperature thermoehronolog [C]. Nepean Ontario:Mineralogical Association of Canada,1992,20: 3~19.
    [122]Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:Some examples from the western Alps [A]. In:Pagel M, Barbin V, Blanc P, Ohnenstetter D. eds. Cathodoluminescence in Geoscience [C]. Berlin Heidelberg: Springer-Verlag,2000,373~400.
    [123]Simon E J, Norman J P, William L G et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology [J]. Chem Geol, 2004,211:47~69.
    [124]Wagner G A, Van den Haute P. Fission-track-dating [M]. Dordrecht:Enke Verlag-Kluwer Academic Publisher,1992,180~285.
    [125]Wang Y J, Fan W M, Zhang H F, et al. Early Cretaceous gabbroic rocks from the Taihang Mountains:implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton [J]. Lithos,2006,86:281~302.
    [126]Ying J F, Zhang H F, Sun M et al. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton:Implication for magma mixing of different sources in an extensional regime [J]. Lithos,2007,98:45~66.
    [127]Yuan H L, Gao S, Liu X M et al. Accurate U-Pb age and trace element determinations of zircons by laser ablation inductively coupled plasma mass spectrometry [J]. Geoanalytical and Geostandard Research,2004,28(3),353~370.
    [128]Zhang H F, Sun M, Zhou X H, Ying J F.2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications [J]. Lithos 2005,81,297~317.
    [129]Zhao M W, Behr H J, Ahrendt H et al. Thermal and Tectonic History of the Ordos Basin, China:Evidence from Apatite Fission Track Analysis, Vitrinite Reflectance, and K-Ar Dating [J]. AAPG Bulletin,80(7):1996,1110~1134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700