用户名: 密码: 验证码:
高水头平面事故闸门动水关闭水动力特性及门槽水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泄水建筑物的事故平面闸门担负着紧急情况下动水下闸、防止事故扩大的重任,闸门动水关闭的可靠性直接影响工程的泄水安全。在事故平面闸门的动水关闭过程中,闸门水动力荷载受闸门体型、作用水头及流速、启闭速度及通气等诸多因素的影响而难以准确把握,设计荷载产生偏差时容易导致闸门启闭机容量不足或闸门不能正常关闭等问题。当闸门体型设计不良时闸底产生水流分离导致的压力波动,可能会带来闸门振动的不利影响。随着高水头平面闸门日益增多,闸门的水动力特性更加复杂,其运行可靠性问题更加突出。因此研究高水头闸门复杂的水动力特性,分析闸门体型及水力参数对闸门水动力荷载的影响,是高水头平面闸门工程设计和应用急需解决的问题。
     本文针对高水头平面闸门动水关闭的水动力特性问题,首先结合典型事故平面闸门的模型试验分析了闸门动水关闭水流及水动力荷载的变化特征;在物理模型试验及原型观测结果验证数值模拟方法的基础上,系统深入的研究了闸门水头、底缘体型及启闭速度等参数和闸门水动力荷载的影响关系,分析了高速水流对闸门水动力特性的影响和异形门槽的水力特性,提出了闸门体型和水力参数的设计建议。本文所取得的主要创新性成果概括如下:
     (1)首次结合物理模型试验及原型观测结果,研究了适合高水头平面闸门动水关闭水动力荷载的数值模拟方法。数值模拟结果的精度能够满足工程设计的需要,为高水头闸门动水关闭的水动力荷载的计算和研究提供了一个新途径。
     (2)首次系统深入研究了平面事故闸门上游底缘倾角、厚度、运行水头及启闭速度等参数对闸门上托力的影响。揭示了运行水头对闸门上托力的影响规律,给出了闸门最小上托力系数随上游底缘倾角线性增大的关系,提出了闸门底缘压力随底缘厚度减小而降低的影响关系,对闸门上游底缘倾角及厚度的取值给出了建议,为高水头闸门的工程设计和相关闸门规范的修订提供了参考依据。
     (3)首次系统研究了下游底缘倾角及上、下游水头参数对闸门下吸力的影响。研究表明闸门底缘的下吸负压随着上游水头的增加而增大,现行规范推荐的下吸力强度设计值仅适用于低水头的闸门,为高水头平面事故闸门下吸力强度取值的调整和修订提供了依据。给出了闸门下吸力系数和淹没水头系数的定量关系,为高水头闸门下游底缘及水力参数设计提供了科学依据。
     (4)首次深入研究了异形门槽及斜交门槽的水力特性,分析了异形布置对门槽水力空化特性的影响,研究了斜交门槽有效宽深比的增大效应,提出了异形门槽体型设计参数的建议。
The emergency plane gate takes an important task in the operation of discharge structures, since it has to be closed down in any emergent hydrodynamic conditions so as to prevent the accident expanding further. Therefore, the operation reliability of the emergency gate will directly affect the safety of the project. In the process of gate closure in hydrodynamic conditions, the characteristics of the hydrodynamic loads on the gate are often difficult to be estimated accurately, affected by many factors such as the gate profile, the water head, the flow velocity, the closing speed and the aeration. This will easily lead to the problems that the design capacity of the gate hoist is insufficient or that the gate can not be closed down satisfactorily. In addition, if the gate profile is poorly designed, the flow separation may occur on the gate bottom edge, and then the pressure fluctuations may bring negative influence such as gate vibrations. Since the number of high-water-head plane gates is increasing, the hydrodynamic characteristics of the gates are getting more complex and their operation reliability is becoming more important. Therefore, it is necessary to study the complex hydrodynamic characteristics of the high-water-head plane gate and to study the influence of gate profile and hydraulic parameters on hydrodynamic loads. It is a critical issue that needs to be solved in the design and application of current high-water-head plane gates.
     In this paper, the characteristics of the flow near the gate, as well as hydrodynamic loads on the gate, are studied in the process of gate closure based on the model tests of two typical emergency plane gates. With the numerical simulation method that has been verified by the results of model tests and prototype observations, the relations between hydrodynamic loads and some parameters, such as the profile, the water-head and the closing speed of the gate, are analyzed in various conditions. The influence of high-velocity flow on the hydrodynamic characteristics of the gate is analyzed, and the hydraulic characteristics of the anomalous gate slot are also studied. Some suggestions are proposed for the design of the gate profile and the hydraulic parameters. The main innovative results are summarized as follows:
     1. A numerical simulation method, which is suited for the study of unsteady air-water two-phase flow in the process of gate closure, is proposed firstly. The calculated results have been verified by experimental data and prototype observation data. It is demonstrated that the feasibility of the method and the precision of the results can meet the needs of project design. Therefore, a new way is provided for the calculation and research of hydrodynamic loads on high-water-head plane gate.
     2. The relations between hydrodynamic loads and various parameters, such as the angle and thickness of upstream gate bottom edge, the water head and the closing speed, are studied systematically for the first time. The change of the uplift force with various water heads on the gate is revealed. The results show that the minimum coefficient of the uplift force will increase linearly with the angle and decrease with the decline of the thickness of the upstream gate bottom edge. The appropriate parameters about the angle and thickness of the gate are recommended, which can provide scientific reference for the project design and the revision of current relevant specifications for high-water-head plane gates.
     3. The relations between downpull force and various parameters, such as the angle of downstream gate bottom edge, and the upstream/downstream water head, are studied firstly in details. It is shown that the maximum negative pressure on gate bottom edge will increase with the upstream water head and the intensity of downpull force recommended by the gate specifications (20kPa) can only be used for the gate under low water head. This provides a basis for the adjustment and revision of existing specifications about the intensity of downpull force in high-water-head plane gates. In view of downstream submerged water head on the gate, the quantitative relation between the coefficient of downpull force and that of the submerged water head is proposed. The results provide a scientific basis for the hydraulic design of high water-head plane gate with downstream gate bottom edge.
     4. The hydraulic characteristics of the anomalous and skew gate slots are studied detailed firstly. The influence on hydraulic and cavitation characteristics by the layout of anomalous slot is analyzed. The effect due to the increasing ratio of the width and depth of the skew slot is studied. Some suggestions are given about the design parameters of the anomalous gate slot.
引文
[1]金泰来.高坝闸门总体布置[M].北京:科学出版社,1994.
    [2](苏)博罗恩斯基.水工建筑物的深孔闸门[M].北京:电力工业出版社,1981.
    [3]潘家铮,何璟.中国大坝50年[M].北京:中国水利水电出版社,2004
    [4]陈椿庭.高坝大流量泄洪建筑物[M].北京:科学出版社,1994.
    [5]H.B.哈尔杜林娜.压力廊道中平板闸门下水流情况和闸门上的水流压力.水力译丛,1956.
    [6]肖兴斌,王业红。高水头平板闸门水力特性研究[J]。水利水电科技进展,2001(8):29-32.
    [7]吴一红,章晋雄,张东等.小湾水电站坝身底孔事故检修闸门动水启闭试验研究[R],中国水利水电科学研究院,2005。
    [8]ZHANG Jinxiong, WU Yihong. POWER INTAKE STRUCTURE MODEL TESTING in MICA DAM 5&6 PROJECT [R]. Beijing:IWHR,2011.
    [9]中华人民共和国水利部,SL 74-1995.水利水电工程钢闸门设计规范SL74-95[M].中国水利水电出版社,1995.
    [10]陈仰熙,水口水电站溢洪道事故检修闸门动水关闭试验,水电站机电技术,1998,(1):68-69.
    [11]曹以南,曾云军等,深孔链轮闸门在漫湾电站的应用.云南水力发电,1995(12):22-27
    [12]余俊阳,曹以南等,小湾拱坝放空底孔闸门设计研究.水电2006国际研讨会,2006:126-134.
    [13]龙朝晖.溪洛渡水电站深孔事故闸门和工作闸门的设计,水电站设计,2003,19(1):12-18.
    [14]水工钢闸门设计[M].水利出版社,1980.
    [15]金泰来,潘水波等.三峡巨型泄水闸门技术研究之(1)、(2)深孔事故闸门水力及启闭力特性研究[R],中国水利水电科学研究院,1992。
    [16]吴一红,谢省宗等,水工结构流固耦合动力特性分析,水利学报,1995年1月。
    [17]张文远,吴一红等.溪洛渡水电站泄洪洞事故闸门动水下门试验研究[J].水利水电技术,2007,38(1):86-88.
    [18]吴一红,高建标,李长河等。溪洛渡深孔事故闸门闭门力和工作闸门流激振动模型试验研究[R],中国水利水电科学研究院,2001.
    [19]哈焕文,郑大琼,快速闸门动水下降持住力的试验研究,水利水电科学研究院论文集,北京:水利电力出版社,1990:12-21.
    [20]王才欢,张晖等.三峡电站进水口平面快速事故闸门水力特性试验研究.水利水电技术,2005,36(10):17-26.
    [21]王业红,肖兴斌,高水头平板闸门水力特性研究[J].水电工程研究,1999,(3):27-36.
    [22]肖兴斌,王业红.高压闸门水力特性试验研究与应用[J].长江职工大学学报,2000,17(3):1-8.
    [23]周通,高压平板闸门水力特性及流激振动研究[D],天津;天津大学硕士学位论文,2006
    [24]Naudascher E,Kobus H E,and Rao R P R. Hydrodynamic analysis for high-head leaf gates. Journal of the hydraulics division,1964,90(3):155-192.
    [25]王韦,杨永全.孔板泄洪洞事故闸门动水下门实验研究[J].水利学报,2003,(1):39-44.
    [26]AISC-1999. Load and Resistance factor design specification for structural steel buildings[S].1999
    [27]黄金林.平面闸门底缘型式及选择.长春工程学院学报(自然科学版),2004,(2):44-45.
    [28]张黎明,夏毓常.闸门水力特性原型模型成果对比分析.水利水电工程设计,2000,19(1):41-43.
    [29]李国庆,杨纪伟等.天桥水电站泄洪洞工作闸门启闭力原型观测成果分析.水利水电技术,2005,36(10):41-43.
    [30]谢省宗.快速闸门动水F降某些水力学间题分析,科学论文集第13集,水利水电科学研究.北京:水利电力出版社,1982:79-94.
    [31]何小新等.平板闸门底缘上托力的数值计算[J].水利电力机械,1992(4):8-11.
    [32]B T Sagar. Downpull in high-head gate installations[J]. Water Power and Dam Construction,1977, (3):38-39.
    [33]夏毓常.高水头平面闸门垂直动水压力计算[J].人民长江,1979,(4):63-74.
    [34]沙海飞,周辉等.用动网格模拟闸门开启过程非恒定水流特性.中国水利学会第二届青年科技论坛论文集,2007:319-324.
    [35]张瑞凯。三峡船闸末级闸首超长泄水廊道中阀门水力学关键问题研究(2)—事故动水关闭过程的阀门水动力学特性[J].水利水运工程学报,2001(2):3-9.
    [36]朱仁庆,杨松林,王志东.闸门开启过程中水体流动的数值模拟[J].华东船舶工业学院学报,1998Sep,12(3):18-21.
    [37]刘维平.水电站进水口快速闸门水力学分析[J].水科学进展,1994,5(4):309-318.
    [38]刘洪波,韩平.闸门水力特性综述.南水北调和水利科技,2005:3(2):56-58.
    [39]陈怀先,孙才良等.水电站进水口平面快速闸门的水力试验研究.河海大学学报,1989:17(5):64-72.
    [40]杨忠超,杨斌等。高水头船闸阀门段体型优化三维数值模拟[J]。水利水电科技进展,2010(4):10-13.
    [41]李利荣。水力自动滚筒闸门水动力特性数值模拟[J]。水利学报,2010(1):30-36
    [42]潘振华。黄浦江旋转闸门的三维水动力分析[D]。上海:上海交通大学硕士学位论文,2007.
    [43]戴会超,王玲玲.三峡永久船闸阀门段廊道水力学数值模拟[J].水力发电学报,2005,24(3):89-92.
    [44]中国科学院水工研究室译。高速水流论文译丛(第一册)[C]。北京:科学出版社,1958年。
    [45]潘水波,金泰来,钱鸣声等,水工闸门门槽的水力设计。水利水电科学研究院,1990年4月。
    [46]金泰来,刘长庚等.门槽水流空化特征的研究,水利水电科学研究院科学研究论文集—第13集(水力学),水利电力出版社,1983年2月
    [47]支道枢等,矩形门槽水力特性研究。水利水电科学研究院水力学,1982年
    [48]陈霞,表孔门槽空化特性的研究[博士学位论文],大连:大连理工大学,1999.
    [49]陆望程等译。门槽附近的某些静压特征[J],水力机械和金属结构,1981(1):28-35。
    [50]何子干、倪汉根等.平面闸槽区紊流场计算.水动力学研究与进展,1988,(1):29-34.
    [51]李炜、谢文高等.二维闸槽区压强分布的数值预报.武汉水电学院院学报,1990,23:18-22.
    [52]童小娇.平面闸槽区湍流场的数值模拟。长沙水电师院学报,1988,3(3):1-9。
    [53]张云,杨永全。门槽紊流的数值模拟。水利学报,1994,(9):47-53。
    [54]张云、吴持恭等.平面闸槽区湍流场的数值模拟.水利学报,1994,(9):47-53.
    [55]张卓.门槽水流的数值模拟及其空化特性分析[硕士学位论文].南京:河海大学,2007.
    [56]吴健强.门槽空化特性及数值模拟研究[硕士学位论文].成都:四川大学,2005.
    [57]Y.Chen and S,D.Hester. A numerical treatment for attached cavitation[J]. J.Fluids Eng.1994, (116):613.
    [58]M.DeshPande,J.Feng and C.L.Merkle. Numerical modeling of the thermodynamic effects of cavitation[J]. J.Fluids Eng.1994, (119):420.
    [59]岳元璋.矩形方角门槽流谱和空化特性的研究.科学研究院论文集,北京:水利水电出版社,1986:277-484.
    [60]黄荣彬,杨纪元,刘长庚等.泄水孔斜交门槽的压力特性和空化特性.水力发电,1997(4):45-47。
    [61]梁宗祥.拉西瓦水电站中孔倾斜门槽试验研究.西北水资源和工程,1990(3):65-71。
    [62]陈怀先,胡明等.斜坡进水口段平面快速闸门底缘型式的水力试验研究[J].河海大学学报,1995,(6):49-55.
    [63]Deardorff J W.A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J] Journal of fluid Mechanics,1970(41):453-480
    [64]Qian Z D, Yang J D.Comparison of numerical simulation of pressure pulsation in Francis hydraulic turbine by different turbulence models [J].Shuili Fadian Xuebao/Journal of Hydroelectric Engineering,2007,26 (6):111-115
    [65]Speziale C G,Gatski T B,Fitzmaurice N.An analysis of RNG based turbulence models for homogeneous shear flow,Physics of Fluids A,1991,3(9):2278-2281.
    [66]Versteeg H K, Malalasekera W.An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].Wiley, New York,1995
    [67]Yakhot V,Orszag S A.Renormalization group Scientific Computing,1986,1 (1):1-11
    [68]李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟顿体绕流的湍流流动[J].水科学进展, 2005,11(4):357-361
    [69]Christakis N, Allsop N W H, Cooper A J, et al. A volume of fluid numerical model for wave impacts at coastalstructures [J]. Proceedings of the Institution of Civil Engineers:Water and Maritime Engineering,2002,154 (3):159-168.
    [70]Youngs D L. Time-dependent multi-material flow with large fluid distortion.In K.W.Morton and M.J.Baines,editors,Numerical Methods for Fluid Dynamics[M].Academic Press,1982.
    [71]李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用[J].水力发电学报,2007,26(2):83-87
    [72]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:116-126.
    [73]焦爱萍,高拱坝多层射流水垫塘流动特性和消能机理研究[D],北京:北京航空航天大学博士学位论文,2008.
    [74]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics offree boundaries [J]. J.Comput Phys.,1981,39:206-225
    [75]CHENG Xiangju, CHEN Yongcan, LUO Lin. Numerical simulation of air-water two-phase flow over stepped spillways [J]. Science in China Series E- Technological Sciences,2006,49 (6) 674-684
    [76]Fluent Inc. FLUENT User's Guide. Fluent Inc,2003
    [77]董曾南等.水力学[M].北京:高等教育出版社,1981.
    [78]章梓雄,董曾南.粘性流体力学[M].清华大学出版社,1998.
    [79]苑明顺.计算流体力学[Z].清华大学研究生教材,2007.
    [80]Robin R, Bernard P, Frank T. An application of the vorticity-vector potential method to laminar cube flow[J].International Journal for Numerical Methods in Fluids,1990,10(8):875-888.
    [81]Chorin A J.Numerical solution of the N-S equations[J].Mathematics of Computation.1968,22(4):745-762
    [82]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    [83]倪新贤,江春波等.闸门对水力过渡特性影响研究[J].水力发电,2010,36(10):59-61.
    [84]童亮,余罡等.基于VOF模型与动网格技术的两相流耦合模拟[J].武汉理工大学学报,2008,30(4):525-528..
    [85]王列.江口水电站斜门槽水力特性研究。长江科学院院报,2002(8):3-6。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700