用户名: 密码: 验证码:
响应曲面法用于救必应等三种药材高效提取及其提取物的药理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,响应曲面法(Response surface methodology,RSM)作为一种重要的统计学试验设计广泛应用于生物过程。通过RSM可以建立连续变量三维曲面模型,对影响生物过程变量及其交互作用进行有效评价,从而确定最佳变量范围。RSM优化生物过程所需试验组数相对较少,省时省力,实验简单,预测性好,因此该方法已经成功应用到多种生物过程的优化。此外,RSM亦在中药有效成分提取研究领域应用广泛。本论文主要应用响应曲面法深入探讨其在中药五味子,救必应,大黄等三种药用植物有效成分提取中的应用,确定最佳提取变量,优化提取条件。此外,本文对传统“清热解毒”中药——救必应的的抗肿瘤和肝损伤保护作用进行初步研究。论文共分六章。
     第1章主要是介绍响应曲面法的理论方法及其在中药有效成分提取中的应用研究。对深入药理活性研究的药用植物救必应的化学成分及药理活性报道做一综述。查阅文献总结概括了药用植物五味子中木脂素类成分提取工艺研究、救必应中有效成分的提取工艺研究、大黄中蒽醌类成分的提取工艺研究。
     第2章运用响应曲面法(RSM)优化加速溶剂萃取(ASE)五味子中四种木脂素类成分(五味子素,五味子醇乙,五味子甲素和五味子乙素)。通过RSM建立数学模型,利用Behnken设计,获得提取条件的优化组合。从数学模型的三维响应曲面图和等高线图,以确定五味子中四种木脂素最佳提取条件如下:提取溶剂为87%的乙醇,提取温度为160℃,静态萃取时间为10分钟,提取压力为1500psi,一个提取周期的冲水量为60%。结果表明:五味子中四种木脂素的实验值14.72mg/g,结果与模型预测值较为一致。
     第3章本章中利用建立超声波辅助提取(UAE)结合响应曲面法(RSM)提取救必应中紫丁香苷。通过高效液相色谱法(HPLC-UV)对紫丁香苷进行分析和定量。利用Box-Behnken design(BBD)设计对提取溶剂、提取温度和提取时间等三个主要变量进行了优化以获得最高的提取效率。结果表明:救必应中紫丁香苷的最佳条件为超声处理频率40Hz,65%乙醇作为提取溶剂,提取时间30分钟,提取温度40℃。在最优提取条件下,预测值与实验值一致。方差分析结果表明:模型的拟合度高,RSM方法可以用于优化救必应中紫丁香苷的提取纯化。
     第4章在本章中,采用响应曲面法优化结合超声波辅助提取(UEA)大黄中的五种蒽醌类成分(芦荟大黄素,大黄酸,大黄素,大黄酚和大黄素甲醚)。采用高效液相色谱(HPLC-UV)对五种蒽醌类成分进行分析和定量。利用RSM对影响UEA的三个主要因素参数(提取溶剂,提取温度和提取时间)进行了优化,以期获得最高的提取效率。结果表明:最佳提取条件为84%甲醇作为溶剂,提取时间为33分钟,提取温度67℃。这些最佳条件下,实验值与预测值较为接近。结果可靠,RSM适用于超声波提取大黄中的蒽醌类成分。
     第5章利用先前获得就必应提取物进行C57小鼠体内抗肿瘤作用的研究,对其抑瘤率,免疫器官指数及血清学指标进行探讨,给药14天后观察发现:各给药组对小鼠体重基本无影响,救必应高中剂量组可以显著抑制肿瘤增长,具有显著的抑瘤率;免疫学指标结果表明:救必应可以显著升高胸腺指数,降低肝指数,对免疫器官具有一定的保护作用。通过检测肝脏中ALT和AST含量,进一步明确,救必应提取物可以改善荷瘤小鼠的肝功能,与免疫组织指数结果相一致,验证中药抗肿瘤主要通过增强免疫力而发挥作用。
     第6章本章利用CCl4和单次大剂量酒精诱导小鼠肝脏损伤模型,探讨救必应提取物对肝损伤小鼠的影响,比较了各给药组对肝损伤小鼠血清中ALT,AST,肝脏中SOD和MDA活性的影响。本实验结果显示,与模型组比较,救必应提取物均能降低血清中增加的ALT和AST活性及TG浓度,结果说明,救必应提取物对细胞膜有一定的保护作用。SOD是细胞内天然存在的氧自由基清除剂,可以平衡细胞内氧化和抗氧化作用,阻止氧化应激作用的发生,SOD活性的高低反映了机体清除自由基的能力。MDA是脂质过氧化反应的产物,MDA浓度的高低可以反映机体细胞膜受自由基破坏的程度。本实验结果显示,救必应给药组对SOD和MDA均有一定的作用,但对肝脏的保护作用机制有待进一步研究。
Response Surface Methodology (RSM) is a statistical experimental design used tooptimize biological process. A continuous variable surface model can be establishedwith RSM to evaluate biological process affecting factors and their interactions andthus to determine the optimum levels. The number of experimental groups required isrelative small, and considerable manpower and material resources can be saved. Thismethodology has been successfully applied to optimization of various biologicalprocesses, and has been used well in extraction of effective ingredients of traditionalChinese medicine (TCM) by virtue of its good predictability, simple experiment andhigh efficiency. This paper mainly includes an in-depth study on the application ofRSM in extraction of effective ingredients of three medicinal plants in TCM, that isChinese magnoliavine fruit, Ovateleaf Holly Bark and Rheum palmatum L., and astudy on the protection functions of Ovateleaf Holly Bark against tumor and liverinjury. This paper consists of six chapters.
     Chapter one: Studies on extraction processes of lignin in Chinese magnoliavine fruit,effective ingredients in Ovateleaf Holly Bark, and anthraquinone in rheum officinatewere summarized based on literature consultation. Meanwhile, in consideration of theadvantages of RSM, studies on application of RSM for TCM effective ingredientextraction were also summarized. Besides, an overview was provided for the reportson chemical ingredients and pharmacological activity of Ovateleaf Holly Bark, forwhich in-depth pharmacological activity study was given.
     Chapter two: A new method based on accelerated solvent extraction (ASE)combined with response surface methodology (RSM) modeling and optimization hasbeen developed for the extraction of four lignans in Fructus Schisandrae (the fruits ofSchisandra chinensis Baill). The RSM method, based on a three level and threevariable Box-Behnken design (BBD), was employed to obtain the optimalcombination of extraction condition. In brief, the lignans schizandrin, schisandrol B, deoxyschizandrin and schisandrin B were optimally extracted with87%ethanol asextraction solvent, extraction temperature of160°C, static extraction time of10min,extraction pressure of1,500psi, flush volume of60%and one extraction cycle. The3D response surface plot and the contour plot derived from the mathematical modelswere applied to determine the optimal conditions. Under the above conditions, theexperimental value of four lignans was14.72mg/g, which is in close agreement withthe value predicted by the model.
     Chapter three: In this work, a rapid extraction method based on ultrasound-assistedextraction (UAE) of syringin from the bark of Ilex rotunda Thumb using responsesurface methodology (RSM) is described. The syringin was analyzed and quantifiedby high performance liquid chromatography coupled with UV detection (HPLC-UV).The extraction solvent, extraction temperature and extraction time, the three mainfactors for UAE, were optimized with Box-Behnken design (BBD) to obtain thehighest extraction efficiency. The optimal conditions were the use of a sonicationfrequency of40kHz,65%methanol as the solvent, an extraction time of30min andan extraction temperature of40°C. Using these optimal conditions, the experimentalvalues agreed closely with the predicted values. The analysis of variance (ANOVA)indicated a high goodness of model fit and the success of the RSM method foroptimizing syringin extraction from the bark of I. rotunda.
     Chapter four: In this paper, ultrasound-assisted extraction (UAE) was applied to theextraction of anthraquinones (aloe-emodin, rhein, emodin, chrysophanol andphyscion) from Rheumpalmatum L. The five anthraquinones were quantified andanalyzed by high performance liquid chromatography coupled with UV detection(HPLC-UV). The extraction solvent,extraction temperature and extraction timeparameters, the three main factors for UAE,were optimized with response surfacemethodology (RSM) to obtain the highest extraction efficiency. The optimalconditions were the use of84%methanol as solvent, an extraction time of33min andan extraction temperature of67°C. Under these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance indicated ahigh goodness of model fit and the success of RSM method for optimizinganthraquinones extraction in Rheum palmatum L.
     Chapter five: As a traditional folk medicine, Ovateleaf Holly Bark can remarkablyclear away heat and toxic material. Modern medicine has proved that TCM with thefunction of―clearing away heat and toxic material‖can effective treat tumor, inhibitproliferation of tumor cells, and prolong life of patients. In this chapter, the authorstudies the in-vivo antitumor function of Ovateleaf Holly Bark in C57mice using theextractions of Ovateleaf Holly Bark prepared before, and explores the tumorinhibition rate, the immune organ index and the serological indexes. It was observed14days after the administration that: the administration had by and large no impact onthe weights of the mice in all experimental groups, and the tumor growth wassignificantly inhibited in the groups administered with high and middle dose ofOvateleaf Holly Bark, showing a significant tumor inhibition rate. Theimmunological indexes showed that Ovateleaf Holly Bark can significantly increasethymus index and reduce liver index, indicating considerable protection for immuneorgans. It was further verified by measurement of the ALT and AST contents in liverthat Ovateleaf Holly Bark extractions can improve liver function of tumor bearingmice, which was consistent with the results of the immune organ index. This alsoverified that antitumor TCM mainly functions through enhancement of immunity.
     Chapter six: In this chapter, a model of mouse liver injury induced by CCl4andsingle administration of large dose of alcohol was used to study the impact ofOvateleaf Holly Bark extraction on mice with liver injury. The impacts of theextraction administered on the activity of ALT and ASR in serum and SOD and MDAin liver, as indicated by the experimental groups, were compared. The experimentalresults showed that, compared with the model, the increase in ALT and AST activityand TG concentration in serum was reduced by the Ovateleaf Holly Bark extraction inall experimental groups, indicating considerable protection function of Ovateleaf Holly Bark extraction for cell membranes. SOD, a scavenger of oxygen free radicalsnaturally existing in cell, can help to balance the intracellular oxidation andantioxidation and prevent oxidative stress. Level of SOD activity reflects the ability ofbody to clean out free radicals. MDA is a product of lipid peroxidation, andconcentration of MDA reflects the degree of cell membrane damage caused by freeradicals. The results of this experiment showed considerable enhancement function ofOvateleaf Holly Bark extraction for SOD and MDA. However, the mechanism of itsprotection for liver has yet to be further studied.
引文
[1]汪仁官.试验设计与分析[M].北京:中国统计出版社,1998.
    [2]AYMONDHMYERS.ResponseSurfaceMethodology2CurrentStatusandFutureDirections[J].JournalofQualityTechnology,1999,31(1).
    [3]HILLWJ,HUNTERWG.AReviewofResponseSurfaceMethodology:ALiteratureReview[J].Technometrics,1966,8:571-590.
    [4]RMead,DJPike.AReviewofResponseSurfaceMethodologyfromABiometricsViewpoint[J].Biometrics,1975,31(12):803-851.
    [5]RAYMONDHMYERS,ANDREIKHUTI,WALTERHCARTER.ResponseSurfaceMethodology:1966-1988[J].Technometrics,1989,31(2).
    [6]张润楚,郑海涛,兰燕.试验设计与分析及参数优化[M].北京:中国统计出版社.2003.
    [7]赵红,杨家新,汪阳.正交实验在中药中的应用概况[J].新疆中医药,2003,21(3):64-66.
    [8]中国科学院植物研究所主编.中国高等植物图鉴[M].北京:科学出版社,1983.
    [9]江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,1986.
    [10]王明雷.番荔枝科植物囊瓣木和中国特有植物水松化学成分及生物活性研究[D].北京:中国协和医科大学,2000.
    [11]向瑛,郑庆安.水松叶黄酮化合物的研究[J].中草药,2001,32(7):588—589.
    [12]牟新利,吴汉夔,祁俊生,程聪,张丽,朱文彬.响应曲面法提取水松总黄酮的工艺研究.光谱实验室.2010,27(1):165-168.
    [13]王薇,余陈欢,沈洁.响应面分析法优化白苏中总黄酮的超声提取工艺[J].中药材,2007,30(12):1586-1589.
    [14]李晓军,潘宏利,陈花.响应曲面法优化超声辅助提取金银花总黄酮[J].陕西师范大学学报,2009,37(2):81-90.
    [15]刘志祥,韩磊,曾超珍.响应面法优化微波提取苦丁茶总黄酮的工艺研究[J].时珍国医国药,2009,20(5):1122-1124.
    [16]任凤莲,谷芳芳,吴梅林.利用响应面分析法优化山楂中总黄酮提取条件[J].天然产物研究与开发,2006,18:126-129.
    [17]贾昌平,田宝成,李彦冰.中心组合-效应面法优化万寿菊花总黄酮提取工艺的研究[J].中药材,2009,32(3):430-432.
    [18]高义霞,景红艳,姜祖君,等.响应面分析法优化乳苣总黄酮提取工艺的研究[J].中药材,2010,33(4):621-624.
    [19]国家药典委员会.中华人民共和国药典[S].2010年版.一部.北京:中国医药科技出版社,2010:231-232.
    [20]刘瑛,古天明,周红.西红花苷类成分药理作用研究概况[J].成都大学学报(自然科学版),2008,27(1):16-19.
    [21] SATO S,KITAMURA H,CHINO M,et al.A13-week oral dosesubchronic toxicity studyof gardenia yellow containing geniposide in rats[J].Food Chem Toxicol,2007,45(8):1537-1544.
    [22]张珊,毕志明,张雪,范琪,赵芳.响应曲面法优化中药栀子中西红花苷类成分的提取工艺.中国新药杂志.2012,21(8):917-920.
    [23]张亮,李友广.响应面法优化超声提取苜蓿皂苷工艺条件[J].生物技术,2008,18(6):65-68.
    [24]林亮,李稳定,乔静.响应面法优化广西桔梗总皂苷提取工艺[J].西北大学学报,2008,38(5):759-762.
    [25]刘良坡,李爱峰,孙爱玲.响应面分析方法优化超声提取栀子苷工艺研究[J].四川中医,2009,27(3):46-48.
    [26]王琦秋.中药成分分析[M].贵阳:贵州科学出版社,1991:505.
    [27]丁玉玲.大黄蒽醌类的研究概况[J].时珍国医国药,2005,16(11):1160-1162.
    [28]何苗,陈钧.响应面法优化大黄游离蒽醌水解工艺[J].时珍国医国药,2009,20(4):988-990.
    [29] KASHIWADA Y, AOSHIMA A, IKESHIRO Y, et al. Anti-HIV benzylisoquinolinealkaloids and flavonoids from the leaves of Nelumbonucifera, and structure-activity correlationswith related alkaloids[J].Bioorganic Medicinal Chemistry,2005,13(2):443-448.
    [30]蒋益虹.荷叶生物碱的提取工艺优化[J].浙江大学学报:农业与生命科学版,2004,30(5):519-523.
    [31]肖娟,孙智达,谢笔钧,杨尔宁.荷叶生物碱提取工艺响应曲面优化研究.食品科学.2009,30(22):157-161.
    [32]王君伟,李小定,吴媛瑾,等.吴茱萸中吴茱萸次碱提取工艺及响应面分析法的优化[J].湖北农业科学,2009,48(1):175-178.
    [33]赵卫星,孙治强,高玉红等.响应面法优化百部总生物碱提取工艺的研究[J].西北农林科技大学学报,2008,36(7):185-190.
    [34]蒋勤.茶多酚的药理作用[J].中国药师,2006,9(1):63-64.
    [35]郭树琴,吴胜举,李岱.响应面法优化超声提取绿茶茶多酚工艺[J].生物加工过程,2009,7(1):39-43.
    [36]辛国,王恩鹏,张辉.三萜类化合物的提取分离及测定方法研究[J].长春中医药大学学报,2008,24(4):378-379.
    [37]刘红兵,崔承彬,蔡兵.东京枫杨中三萜类化合物的分离鉴定与抗肿瘤活性[J].中国药物化学杂志,2004,14(3):165-168.
    [38]刘健,郭淑英.响应曲面法提取苦白蹄中总三萜成分.吉林医药学院学报.2011,32(5):278-282.
    [39]广东省食品药品监督管理局.广东省中药材标准[M].第一册.广州:广东科技出版社,2004:172-173.
    [40]国家中医药管理局5中华本草6编委会.中华本草[M].第5卷.上海:上海科学技术出版社,1998:163-164.
    [41]长谷纲男等.日本化学会志[M].1973.
    [42]中药辞海[M].第三卷.北京:中国医药科技出版社,1997.
    [43]中国民族药志[M].第一卷.北京:人民卫生出版社,1984:440-443.
    [44]文东旭,陈仲良.救必应化学成分的研究[J].中草药,1991,22(6):246.
    [45]孙辉,张晓琦,蔡艳,韩伟立,王英,叶文才.救必应的化学成分研究.林产化学与工业.2009.29(1):111-114.
    [46]董艳芬,梁燕玲,罗集鹏.救必应不同提取物对血压影响的实验研究.中药材.2006.29(2):172-174.
    [47]梁燕玲,董艳芬,罗集鹏等,救必应乙醇提取物对应激性高血压大鼠降压作用的实验研究[J].中药材,2005,28(7):582-584
    [48]陈小夏,何冰,徐苑芬,李娟好,罗集鹏.救必应正丁醇提取物抗心律失常和抗心肌缺血作用研究.中药药理与临床1998;14(4):22-24.
    [49]何冰,陈小夏,李娟好等.救必应提取物心血管药理作用[J].中药材,1997,20(6):303-305.
    [50]张榕文,黄兆胜,范庆亚,张景佳,王宗伟,张伦博.救必应抑菌抗炎有效部位筛选中华中医药学刊.2008.26(8):1820-1822.
    [51]周宁,梁晓枫,李海峰等,救必应干品及新鲜品体外抗菌作用的研究[J],中国中医药杂志,2004,2(12):534.
    [52]傅宁晨,傅宁静,救必应制剂治疗鸡中暑临床观察[J],中兽医学杂志,2002(2):26.
    [53]广西中草药新医疗法成就展览办公室,中草药新医疗法处方集[M],1970.
    [54]武鸣县人民医院外科,验方介绍[J],广西医学,1977(2):36
    [55]肖建春,陈帅,罗森.正交实验法优选五味子中木脂素的提取工艺[J].华西药学杂志,2012,27(6):692~693.
    [56]杨放,袁军,付平.五味子的研究概况[J].华西药学杂志,2003,18(6):438.
    [57]王茹,张琰,程建峰,等.五味子活性成分提取工艺的优选[J].华南国防医学杂志,2005,19(6):4.
    [58]李奉勤,史冬霞,张瑞红,等.五味子中五味子乙素提取工艺研究[J].中国医药.2006,15(7):46.
    [59]袁海龙,谭锐,李仙逸,等.均匀设计法优选五味子的提取工艺[J].中国中药杂志,2002,27(5):355.
    [60] Shouqin Z, Junjie Z, Changzhen W. Novel high pressure extraction technology[J]. Int JPharm,2004,278(2):471-474.
    [61]刘长姣,张守勤,吴华,等.超高压技术在五味子饮料加工中的应用[J].农业工程学报,2006,22(6):227-230.
    [62]刘华英.北五味子木脂素提取工艺及提取物抑菌作用的研究[D].吉林农业大学学位论文.2006,4
    [63]吴艳玲,朴惠善.北五味子活性成分提取工艺的研究[J].时珍国医国药,2007,18(5):1176-1177.
    [64]程康华,刘幸平,朱凯.CO2超临界液体萃取五味子中五味子醇甲的研究[J].南京中医药大学学报:自然科学版,2001,17(6):363-364.
    [65]聂江力,裴毅,祖元刚.北五味子果实超临界CO2萃取工艺的研究[J].植物研究,2005,25(2):213-216.
    [66]刘本, John R Dean.超临界CO2流体提取五味子中的五味子甲素[J].中国医药工业杂志,2000,31(3):101-103.
    [67]裴毅等.正交试验法优选五味子甲素和五味子乙素的超声提取工艺[J].国外医药:植物学分册,2007,22(3):111-113.
    [68]杨磊,马春慧,祖元刚.北五味子木脂素超声提取工艺[J].农业工程学报.200925(1):185
    [69] HuangT, Shen P, ShenY. Preparative separation and purification of deoxyschisandrin andgamma-schisandrin from Schisandra chinensis (Turcz.)Baill by high-speed countercurrentchromatography[J]. J Chromatogr A,2005,1066(1-2):239-242.
    [70] Peng J, Fan G, Qu L,et al. Application of preparative high-speed counter-current chromat-ography for isolation and separation of schizandrin and gomisin A from Schisandra chinensis[J].J Chromatogr A,2005,1082(2):203-207.
    [71]徐仲航,金向群.植物油提取五味子木脂素工艺的研究s[J].特产研究.2011,3:42
    [72]蒋涛滔,张榕文,范庆亚.救必应研究进展[J].中医药导报.2007,13(2):82-83
    [73]周宁,郭鸿宜.救必应干品及新鲜品体外抗菌作用的研究[J].中国中医药杂志,2004,2(12):534
    [74]金波,李薇,蔡伟.大黄总蒽醌提取与纯化工艺的研究[J].时珍国医国药,2005,16(8):756-758.
    [75]柏桂英,柏小强,宋豫军,等.银杏叶总黄酮的提取及保健饮料研究[J].郑州轻工业学院学报(自然科学版),2000,15:12-16.
    [76]戴军,徐佐旗,赵婷,等.超临界CO2提取五味子木脂素的工艺研究[J].食品与药品.2010,12(9):312
    [77]杨磊,马春慧,祖元刚.北五味子木脂素超声提取工艺[J].农业工程学报.200925(1):185
    [78]金汝城,谢伟雪,吴卓,等.微波技术提取大黄蒽醌类物质的最佳工艺研究[J].中国中医药信息杂志,2009,16(5):54-56.
    [79]付起凤,康毅华,林万里,等.正交法优化山楂总黄酮的提取工艺研究[J].中医药信息,2010;27(3):65-67
    [80] Box G.Some new three lever designs for the study of quantitative variables[J]Technometrics,1996;38(2):455
    [81] REDDY L V A,WEE Y J,RYU H M,et al.Optimization of alkaline protease production bybatch culture of Bacillus sp.RKY3through Plackett-Burman and response surfacemethodological approaches[J]Bioresource Technology,2008;99:2242-2249
    [82]张淑兰,吴燕子,王艳梅,等.响应面法优化核桃隔膜总黄酮提取工艺[J].中国药房,2010;21(27):2519-2521
    [83]杨安平,王宗伟.正交设计法筛选救必应总黄酮的精制工艺[J].中医药学刊.2006,24(6):1136
    [84]杨安平,林琼,王宗伟.正交设计法筛选救必应总黄酮的提取工艺[J].安徽中医学院学报,2005,24(5):48
    [85]何洋,黄敬聪,宋凤兰正交试验法优选救必应中总黄酮的超声提取工艺[J].广东化工,200936(190):73-74
    [86]许锦涛,钟鸣,雷心心.富集纯化救必应总皂苷的大孔吸附树脂筛选[J].中国医药现代远程教育,2007,5(4):27-29
    [87]刘国樵,救必应药材的综合利用.中国专利CN102210724A2012-02-08
    [88]郭志伟,刘琳娜.大黄及其有效成分的药理研究概况[J].中国药房,2006,17(22):1741.
    [89]杨士友,黄世福,田军,等.不同提取方法对大黄泻下成分的影响[J].安徽医药,2004,9(2):90-93.
    [90]金波,李薇,蔡伟.大黄总蒽醌提取与纯化工艺的研究[J].时珍国医国药,2005,16(8):756-758.
    [91]张明,侯连兵,杨洁.超微粉碎技术与普通粉碎技术对大黄蒽醌提取率的比较性研究[J].中药材,2006,29(7):728-729.
    [92]朱庆玲,李瑞和,石文宏.大黄中大黄素的提取工艺研究[J].时珍国医国药,2006,17(3):388-389.
    [93]张文金,林建昌.正交试验提取大黄蒽醌类的工艺研究[J].中国社区医师,2008,10(2):11.
    [94]陈艳英.大黄注射液渗滤提取的工艺研究[J].成都中医药大学学报,2006,29(1):57-58.
    [95]蒋孟良,郭建生,杨平华.提取方法对大黄中总蒽醌含量的影响.现代应用药学,1993,10(1):33
    [96]张海晖,裘爱泳,刘军海,等.超声技术提取大黄蒽醌类成分[J].中成药,2005,27(9):1075-1078.
    [97]李霞,张黎明,铁瑛,等.超声波强化大黄蒽醌的双相水解工艺研究[J].天津科技大学学报,2006,21(2):8-11.
    [98]王佩琪,郭伟英,王轶晶,等.超声提取大黄游离蒽醌的研究[J].中成药,2004,26(7):592-593.
    [99]金汝城,谢伟雪,吴卓,等.微波技术提取大黄蒽醌类物质的最佳工艺研究[J].中国中医药信息杂志,2009,16(5):54-56.
    [100]沈岚,冯年平,韩朝阳,等.大黄微波萃取法与常用提取方法的比较研究[J].中成药,2003,25(8):615.
    [101]郝守祝,张虹,刘丽,等.微波技术在大黄游离蒽醌浸提中的应用[J].中草药,2002,33(1):23.
    [102]刘建华,韩立强,苑丽,等.提取方法对大黄蒽醌类成分及抗氧化活性的影响[J].安徽农业科学,2008,36(22):9484-9486,9509.
    [103]刘玉敏,陈闽军,洪筱坤.正交实验法优化大黄蒽醌超临界流体萃取的研究[J].中药,2005,27(4):386-389.
    [104]陈卫林,郭玫,赵磊,等.均匀设计优化超临界CO2流体萃取大黄蒽醌的研究[J].中医药导报,2007,13(2):72.
    [105]黄健光,李总成.利用高速逆流色谱分离大黄活性成分[J].顺德职业技术学院学报,2006,4(1):31-33.
    [106]金波,李薇,蔡伟.大黄总蒽醌提取与纯化工艺的研究[J].时珍国医国药,2005,16(8):756-758.
    [107]刘峰群,易毛,刘丽萍,等.大孔吸附树脂法纯化大黄中结合型蒽醌总提取物的研究[J].中国现代医药杂志,2006,8(4):104-105.
    [108]许汉林,陈军,张赤志.不同型号大孔树脂对大黄总蒽醌吸附的研究[J].湖北中医学院学报,2005,7(4):20-22.
    [109]黄园,徐雄良,张志荣,等.大黄总蒽醌纯化工艺的研究[J].中成药,2003,25(10):783-785.
    [110]邵晶,郭玫,余晓晖.大黄中蒽醌的提取纯化工艺研究进展[J].安徽农业科学,2010,38(11):5864-5866
    [111] Khayet, M.; Cojocaru, C.; Essalhi, M. Artifcial neural network modeling and responsesurface methodology of desalination by reverse osmosis. J. Memb. Sci.2011,368,202–214.
    [112] Liu, F.F.; Ang, C.Y.; Springer, D. Optimization of extraction conditions for activecomponents in Hypericum perforatum using response surface methodology. J. Agric. FoodChem.2000,48,3364–3371.
    [113] Kwon, J.H.; Belanger, J.M.; Pare, J.R. Optimization of microwave-assisted extraction(MAP) for ginseng components by response surface methodology. J. Agric. Food Chem.2003,51,1807–1810.
    [114] Li, W.; Wang, Z.; Sun, Y.S.; Chen, L.; Han, L.K.; Zheng, Y.N. Application of responsesurface methodology to optimise ultrasonic-assisted extraction of four chromones in RadixSaposhnikoviae. Phytochem. Anal.2011,22,313–321.
    [115] Zhao, L.C.; Liang, J.; Li, W.; Cheng, K.M.; Xia, X.; Deng, X.; Yang, G.L. The use ofresponse surface methodology to optimize the ultrasound-assisted extraction of fiveanthraquinones from Rheum palmatum L. Molecules2011,16,5928–5937.
    [116] Yang, L.; Jiang, J.G.; Li, W.F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extractionprocess of polyphenols from the bark of Phyllanthus emblica L. based on the response surfacemethodology. J. Sep. Sci.2009,32,1437–1444.
    [117] Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O'Keefe, S.F. Optimizing the extraction ofphenolic antioxidants from peanut skins using response surface methodology. J. Agric. FoodChem.2009,57,3064–3072.
    [118] Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimisation of the extraction ofolive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and responsesurface methodology. Anal. Bioanal. Chem.2008,392,977–985.
    [119] Xie, J.H.; Xie, M.Y.; Shen, M.Y.; Nie, S.P.; Li, C.; Wang, Y.X. Optimisation ofmicrowave-assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskajausing response surface methodology. J. Sci. Food Agric.2010,90,1353–1360.
    [120] Hou, J.G.; He, S.Y.; Ling, M.S.; Li, W.; Dong, R.; Pan, Y.; Zheng, Y.N. A method ofextracting ginsenosides from Panax ginseng by pulsed electric field. J. Sep. Sci.2010,33,2707–2713.
    [121] Li, W.; Liu, Z.B.; Wang, Z.; Chen, L.; Sun, Y.S.; Hou, J.G.; Zheng, Y.N. Application ofaccelerated solvent extraction to the investigation of saikosaponins from the roots of Bupleurumfalcatum. J. Sep. Sci.2010,33,1870–1876.
    [122] Gao, X.; Yang, X.W.; Marriott, P.J. Simultaneous analysis of seven alkaloids inCoptis-Evodia herb couple and Zuojin Pill by UPLC with accelerated solvent extraction. J. Sep.Sci.2010,33,2714–2722.
    [123] Barri, T.; Bergstrom, S.; Hussen, A.; Norberg, J.; Jonsson, J.A. Extracting syringe fordetermination of organochlorine pesticides in leachate water and soil-water slurry: A noveltechnology for environmental analysis. J. Chromatogr. A2006,1111,11–20.
    [124] Zhang, Y.; Liu, C.; Yu, M.; Zhang, Z.; Qi, Y.; Wang, J.; Wu, G.; Li, S.; Yu, J.; Hu, Y.Application of accelerated solvent extraction coupled with high-performance counter-currentchromatography to extraction and online isolation of chemical constituents from Hypericumperforatum L. J. Chromatogr. A2011,1218,2827–2834.
    [125] Bergeron, C.; Gafner, S.; Clausen, E.; Carrier, D.J. Comparison of the chemicalcomposition of extracts from Scutellaria lateriflora using accelerated solvent extraction andsupercritical fluid extraction versus standard hot water or70%ethanol extraction. J. Agric. FoodChem.2005,53,3076–3080.
    [126] Ullah, S.M.; Murphy, B.; Dorich, B.; Richter, B.; Srinivasan, K. Fat extraction fromacid-and base-hydrolyzed food samples using accelerated solvent extraction. J. Agric. FoodChem.2011,59,2169–2174.
    [127] Gentili, A.; Perret, D.; Marchese, S.; Sergi, M.; Olmi, C.; Curini, R. Acceleratedsolvent extraction and confirmatory analysis of sulfonamide residues in raw meat and infantfoods by liquid chromatography electrospray tandem mass spectrometry. J. Agric. Food Chem.2004,52,4614–4624.
    [128] Wang, G.; Lee, A.S.; Lewis, M.; Kamath, B.; Archer, R.K. Accelerated solventextraction and gas chromatography/mass spectrometry for determination of polycyclic aromatichydrocarbons in smoked food samples. J. Agric. Food Chem.1999,47,1062–1066.
    [129] Zhu, M.; Lin, K.F.; Yeung, R.Y.; Li, R.C. Evaluation of the protective effects ofSchisandra chinensis on Phase I drug metabolism using a CCl4intoxication model. J.Ethnopharmacol.1999,67,61–68.
    [130] Chien, C.F.; Wu, Y.T.; Tsai, T.H. Biological analysis of herbal medicines used for thetreatment of liver diseases. Biomed. Chromatogr.2011,25,21–38.
    [131] Song, J.X.; Lin, X.; Wong, R.N.; Sze, S.C.; Tong, Y.; Shaw, P.C.; Zhang, Y.B.Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis againstbeta-amyloid and homocysteine neurotoxicity in PC12cells. Phytother. Res.2011,25,435–443.
    [132] Guo, L.Y.; Hung, T.M.; Bae, K.H.; Shin, E.M.; Zhou, H.Y.; Hong, Y.N.; Kang, S.S.;Kim, H.P.; Kim, Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit ofSchisandra chinensis Baill. Eur. J. Pharmacol.2008,591,293–299.
    [133] Hancke, J.L.; Burgos, R.A.; Ahumada, F. Schisandra chinensis (Turcz.) Baill.Fitoterapia2011,70,451–471.
    [134] Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O'Donnell, C.P.; Martin-Diana,A.B.; Barry-Ryan, C. Optimization of ultrasound assisted extraction of antioxidant compoundsfrom marjoram (Origanum majorana L.) using response surface methodology. Ultrason.Sonochem.2012,19,582–590.
    [135] Kim, H.K.; Do, J.R.; Lim, T.S.; Akram, K.; Yoon, S.R.; Kwon, J.H. Optimisation ofmicrowave-assisted extraction for functional properties of Vitis coignetiae extract by responsesurface methodology. J. Sci. Food Agric.2012, doi10.1002/jsfa.5546.
    [136] Rodrigues, R.C.; Kenealy, W.R.; Dietrich, D.; Jeffries, T.W. Response surfacemethodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEOhydrolysis. Bioresour. Technol.2012,108,134–139.
    [137] Li, W.; Wang, Z.; Chen, L.; Zhang, J.; Han, L.K; Hou, J.G; Zheng, Y.N. Pressurizedliquid extraction followed by LC-ESI/MS for analysis of four chromones in RadixSaposhnikoviae. J. Sep. Sci.2010,33,2881–2887.
    [138] Yang, B.; Chen, T.; Li, X.L.; Xu, P.; He, S.P.; Yu, H.S.; Jin, F.X. Determination oflignans in Fructus schisandrae sphenantherae and Fructus schisandrae shinensis by highperformance liquid chromatography. J. Dalian Polytechnic Univ.2009,28,102–106.
    [139] Jiang, T.T.; Zhang, R.W.; Fan, Q.Y. Progress on study of Ilex Rotunda thumb. Guid. J.TCM.2007,13,111–114.
    [140] Kayoko; A.; Kazuko, Y.; Shigenobu, A. Triterpenes and triterpene glycosides from theleaves of Ilex rotunda. Phytochemistry1993,33,1475–1480.
    [141] Sun, H.; Zhang, X.Q.; Cai, Y.; Han, W.L.; Wang, Y.; Ye, W.C. Study on chemicalconstituents of Ilex rotunda thunb. Chem. Ind. For. Prod.2009,29,111–114.
    [142] Wang, J.X.; Zhang, Y.Y.; Jian, X.N.; Yang, Y.Z. HPLC determination of syringin inIlex rotunda thunb. Chin. J. Pharm. Anal.2008,28,788–789.
    [143] Choi, J.; Shin, K.M.; Park, H.J.; Jung, H.J.; Kim, H.J.; Lee, Y.S.; Rew, J.H.; Lee, K.T.Anti-Inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin.Planta Med.2004,70,1027–1032.
    [144] Cho, J.Y.; Nam, K.H.; Kim, A.R.; Park, J.; Yoo, E.S.; Baik, K.U.; Yu, Y.H.; Park, M.H.In-vitro and in-vivo immunomodulatory effects of syringin. J. Pharm. Pharmacol.2001,53,1287–1294.
    [145] Yang, E.J.; Kim, S.I.; Ku, H.Y.; Lee, D.S.; Lee, J.W.; Kim, Y.S.; Seong, Y.H.; Song,K.S. Syringin from stem bark of Fraxinus rhynchophylla protects abeta(25–35)-induced toxicityin neuronal cells. Arch. Pharm. Res.2010,33,531–538.
    [146] Niu, H.S.; Liu, I.M.; Cheng, J.T.; Lin, C.L.; Hsu, F.L. Hypoglycemic effect of syringinfrom Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med.2008,74,109–113.
    [147] Liu, K.Y.; Wu, Y.C.; Liu, I.M.; Yu, W.C.; Cheng, J.T. Release of acetylcholine bysyringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in wistarrats. Neurosci. Lett.2008,434,195–199.
    [148] Niu, H.S.; Hsu, F.L.; Liu, I.M.; Cheng, J.T. Increase of beta-endorphin secretion bysyringin, an active principle of Eleutherococcus senticosus, to produce antihyperglycemic actionin type1-like diabetic rats. Horm. Metab. Res.2007,39,894–898.
    [149] Fakhari, A.R.; Nojavan, S.; Ebrahimi, S.N.; Evenhuis, C.J. Optimizedultrasound-assisted extraction procedure for the analysis of opium alkaloids in papaver plants bycyclodextrin-modified capillary electrophoresis. J. Sep. Sci.2010,33,2153–2159.[144]
    [150] Wang, X.; Zhao, X.E.; Yang, B.; Dong, H.; Liu, D.; Huang, L. A combination ofultrasonic-assisted extraction with RRLC-QQQ method for the determination of artemisinin inthe Chinese herb Artemisia annua L. Phytochem. Anal.2011,22,280–284.
    [151] Zhao, L.C.; Liang, J.; Li, W.; Cheng, K.M.; Xia, X.; Deng, X.; Yang, G.L. The use ofresponse surface methodology to optimize the ultrasound-assisted extraction of fiveanthraquinones from Rheum palmatum L. Molecules2011,16,5928–5937.
    [152] Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat,F. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratoryand pilot plant scale. Ultrason. Sonochem.2012,19,777–786.
    [153] Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology:Processing, preservation and extraction. Ultrason. Sonochem.2011,18,813–835.
    [154] Barbero, G.F.; Liazid, A.; Palma, M.; Barroso, C.G. Ultrasound-Assisted extraction ofcapsaicinoids from peppers. Talanta2008,75,1332–1337.
    [155] Zou, T.B.; Wang, M.; Gan, R.Y.; Ling, W.H. Optimization of ultrasound-assistedextraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci.2011,12,3006–3017.
    [156] Ma, Y.; Ye, X.; Hao, Y.; Xu, G.; Xu, G.; Liu, D. Ultrasound-assisted extraction ofhesperidin from penggan (Citrus reticulata) peel. Ultrason. Sonochem.2008,15,227–232.
    [157] Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A.Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules2010,15,8813–8826.
    [158] Liu, Q.; Zhang, X.; Zhou, Y.; Zhao, A.; Chen, S.; Qian, G.; Xu, Z.P. Optimization offermentative biohydrogen production by response surface methodology using fresh leachate asnutrient supplement. Bioresour. Technol.2011,102,8661–8668.
    [159] Zong, H.; He, Y.; Zhan, Y.; Du, J.; Feng, F.; Li, D. Optimization of mediumconstituents for varepsilon-poly-L-lysine fermentation with response surface methodology. J.Food Sci.2010,75, M552–M556.
    [160] He, Y.; Huang, J.C.; Song, F.L. Optimization of ultrasonic extraction technique of thetotal flavonoids from Cortex llicis rotundae by orthogonal experiment. Guangdong Chem. Ind.2012,29,73–75.
    [161] Zhao, L.C.; He, Y.; Deng, X.; Yang, G.L.; Li, W.; Liang, J.; Tang, Q.L. Responsesurface modeling and optimization of accelerated solvent extraction of four lignans from Fructusschisandrae. Molecules2012,17,3618–3629.
    [162] Li, W.; Wang, Z.; Sun, Y.S.; Chen, L.; Han, L.K.; Zheng, Y.N. Application of responsesurface methodology to optimise ultrasonic-assisted extraction of four chromones in Radixsaposhnikoviae. Phytochem. Anal.2011,22,313–321.
    [163] Chemat, F.; Grondin, I.; Costes, P.; Moutoussamy, L.; Sing, A.S.; Smadja, J. Highpower ultrasound effects on lipid oxidation of refined sunflower oil. Ultrason. Sonochem.2004,11,281–285.
    [164] Chemat, F.; Grondin, I.; Shum, S.A.; Smadja, J. Deterioration of edible oils duringfood processing by ultrasound. Ultrason. Sonochem.2004,11,13–14
    [165] Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction ofisoflavones from soy beverages blended with fruit juices. Anal. Chim. Acta2007,597,265–272.
    [166] Pharmacopoeia Commission of People’s Republic of China. Pharmacopoeia of thePeople'sRepublic of China; The Chemical Industry Press: Beijing, China,2010.
    [167] Chen, D.C.; Wang, L. Mechanisms of therapeutic effects of rhubarb on gut originsepsis. Chin. J.Traumatol.2009,12,365-369.
    [168] Feng, S. Mechanism of Rhubarb in preventing the occurrence of gastrointestinalfunction failure.Zhongguo Zhong Xi Yi Jie He Za Zhi2000,20,795-797.
    [169] Barceloux, D.G. Rhubarb and oxalosis (Rheum species). Dis. Mon.2009,55,403-411.
    [170] Chai; Y.F.; Ji, S.G.; Wu, Y.T.; Liang, D.S.; Xu, Z.M. The separation of anthraquinonederivatives of rhubarb by miceller electrokinetic capillary chromatography. Biomed. Chromatogr.1998,12,193-195.
    [171] Zhou, X.; Song, B.; Jin, L.; Hu, D.; Diao, C.; Xu, G.; Zou, Z.; Yang, S. Isolation andinhibitory activity against ERK phosphorylation of hydroxyanthraquinones from rhubarb.Bioorg. Med.Chem. Lett.2006,16,563-568.
    [172] Ji, S.G.; Chai, Y.F.; Wu, Y.T.; Yin, X.P.; Xiang, Z.B.; Liang, D.S.; Xu, Z.M.; Li, X.Separation and determination of anthraquinone derivatives in rhubarb and its preparations bymicellar electrokinetic capillary chromatography. Biomed. Chromatogr.1998,12,335-337.
    [173] Djozan, D.; Assadi, Y. Determination of anthraquinones in rhubarb roots; dock flowersand senna leaves by normal-phase high performance liquid chromatography. Talanta1995,42,861-865.
    [174] Zhang, H.X.; Liu, M.C. Separation procedures for the pharmacologically activecomponents of rhubarb. J. Chromatogr. B2004,812,175-181.
    [175] Shang, X.; Yuan, Z. Determination of active components in rhubarb and study of theirhydrophobicity by micellar electrokinetic chromatography. Bioorg. Med. Chem. Lett.2003,13,617-622.
    [176] Zhou, X.; Song, B.; Jin, L.; Hu, D.; Diao, C.; Xu, G.; Zou, Z.; Yang, S. Isolation andinhibitory activity against ERK phosphorylation of hydroxyanthraquinones from rhubarb.Bioorg. Med.Chem. Lett.2006,16,563-568.
    [177] Wang, L.; Li, D.; Bao, C.; You, J.; Wang, Z.; Shi, Y.; Zhang, H. Ultrasonic extractionand separation of anthraquinones from Rheum palmatum L. Ultrason. Sonochem.2008,15,738-746.
    [178] Fakhari, A.R.; Nojavan, S.; Ebrahimi, S.N.; Evenhuis, C.J. Optimizedultrasound-assisted extraction procedure for the analysis of opium alkaloids in papaver plants bycyclodextrin-modified capillary electrophoresis. J. Sep. Sci.2010,33,2153-2159.[174]
    [179] Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernandez-Gutierrez,A.Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules2010,15,8813-8826.
    [180] Ma, Y.; Ye, X.; Hao, Y.; Xu, G.; Xu, G.; Liu, D. Ultrasound-assisted extraction ofhesperidin from Penggan (Citrus reticulata) peel. Ultrason. Sonochem.2008,15,27-232.
    [181] Wang, X.; Zhao, X.E.; Yang, B.; Dong, H.; Liu, D.; Huang, L. A combination ofultrasonic-assisted extraction with RRLC-QQQ method for the determination of artemisinin inthe Chinese herb Artemisia annua L. Phytochem. Anal.2011,22,280-284.
    [182] Liu, Q.; Zhang, X.; Zhou, Y.; Zhao, A.; Chen, S.; Qian, G.; Xu, Z.P. Optimization offermentative biohydrogen production by response surface methodology using fresh leachate asnutrient supplement. Bioresour. Technol.2011, doi:10.1016/j.biortech.2011.03.002.
    [183] Zong, H.; He, Y.; Zhan, Y.; Du, J.; Feng, F.; Li, D. Optimization of mediumconstituents for varepsilon-poly-L-lysine fermentation with response surface methodology. J.Food Sci.2010,75,M552-M556.
    [184] Vaithanomsat, P.; Songpim, M.; Malapant, T.; Kosugi, A.; Thanapase, W.; Mori, Y.Production of β-glucosidase from a newly isolated aspergillus species using response surfacemethodology. Int.J. Microbiol.2011, doi:10.1155/2011/949252.
    [185] Wu, J.; Wang, J.L.; Li, M.H.; Lin, J.P.; Wei, D.Z. Optimization of immobilization forselective oxidation of benzyl alcohol by Gluconobacter oxydans using response surfacemethodology.Bioresour. Technol.2010,101,8936-8941.
    [186] Li, W.; Wang, Z.; Sun, Y.S.; Chen, L.; Han, L.K.; Zheng, Y.N. Application of responsesurface methodology to optimise ultrasonic-assisted extraction of four chromones in RadixSaposhnikoviae. Phytochem. Anal.2011,22,313-321.
    [187] Borges, G.S.; Vieiraa, F.G.; Copettia, C.; Gonzagaa, L.V.; Fetta, R. Optimization of theextraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the responsesurface methodology. Food Res. Int.2011,44,708-715.
    [188] Wu, J.; Lin, L.; Chau, F.T. Ultrasound-assisted extraction of ginseng saponins fromginseng roots and cultured ginseng cells. Ultrason. Sonochem.2001,8,347-352.
    [189] Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction ofisoflavones from soybeverages blended with fruit juices. Anal. Chim. Acta2007,597,265-272.
    [190]黄闻健.救必应的民间应用[J].江西中医药,1996(2):147
    [191]文东旭,陈仲良.救必应化学成分的研究[J].中草药,1991,22(6):246
    [192]江苏新医学院.中药大辞典下册[M].上海:上海科学技术出版社,1977:2096第6章救必应提取物对肝损伤的保护作用
    [193]黄闻健.救必应的民间应用[J].江西中医药,1996(2):147
    [194]广西中草药新医疗法成就展览办公室,中草药新医疗法处方集[M],1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700