用户名: 密码: 验证码:
电化学固定二氧化碳与醇反应合成有机碳酸酯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2是主要的温室气体之一,同时也是一种无毒、廉价、丰富、可再生的C1资源,将其固定利用,不但可以解决温室效应带来的环境问题,而且还可以缓解日益严重的能源枯竭问题。但CO2热力学高度稳定,如何将其活化成为了CO2利用的关键问题。电化学方法是CO2活化的有效方式之一,通常在常温常压下即可实现CO2的固定利用。
     在CO2资源化利用中,将CO2转化为有机碳酸酯是利用CO2的有效途径之一。有机碳酸酯是一类重要的化工原料,在化学化工、医药等领域具有重要的用途。高温高压下,使用催化剂如金属烷氧基化物、有机/无机碱、乙酸盐及金属氧化物等可催化CO2与醇反应合成有机碳酸酯,但这些过程普遍存在着催化剂催化活性不高、目标产物产率低、反应条件苛刻等问题。因而需要研发更为绿色的合成路线。
     近年来鉴于离子液体优异的物理化学性质和独特的电化学特性,其被广泛应用于电化学研究中。由于离子液体对CO2有较好的溶解性,使得离子液体成为电化学固定CO2的良好反应介质。离子液体阴极还原可以生成N-杂环卡宾(NHCs)。NHCs可作为小分子催化剂催化各种有机反应,且具有无金属参与、反应条件温和、对环境友好等优点。最近研究发现NHCs可以与C02反应形成NHC-CO2加合物,该加合物可用于活化利用CO2。
     在温和条件下,采用电化学方法对温室气体C02进行固定利用,并合成有用的有机碳酸酯具有重要的意义。而离子液体,作为绿色反应介质或绿色反应介质兼NHCs的前驱体,应用于有机碳酸酯的合成,具有一定的创新意义和实用价值。
     本论文主要研究内容如下:
     (1)有机溶剂中直接电还原CO2合成有机碳酸酯
     常温常压下,一室型电解池中,研究了饱和CO2的DMF/CH3CN-TBAI(0.1mol L-1)溶液中直接电还原CO2与醇的反应,合成了相应的碳酸酯。以甲醇为模板原料,考察了溶剂、电极材料、电流密度、电解电量、温度以及甲醇的浓度等实验因素对目标产物碳酸二甲酯产率的影响。在优化条件下,研究了一系列一元醇、邻二醇和苯酚的反应。由实验可知,一元伯醇、仲醇在实验条件下可转化为相应的线性碳酸酯,邻二醇可转化为环状碳酸酯,但一元叔醇和苯酚在实验条件下不能发生羧化反应。根据实验结果及文献,探讨了反应历程,该工作对有机溶剂中直接电还原CO2合成有机碳酸酯反应做了较深入的研究,具有一定的参考价值。
     (2)电致乙腈负离子(-CH2CN)活化邻二醇与CO2反应合成环状碳酸酯
     常温常压下,在两室型电解池中,以CO2和邻二醇为原料,通过电致乙腈负离子(-CH2CN)的方法合成相应的环状碳酸酯。该反应过程中避免了传统有机碱及催化剂的使用。实验中以乙二醇(EG)为模板原料,考察了支持电解质、阴极材料、电流密度、电解电量、底物浓度、反应温度以及搅拌时间等实验因素对目标产物碳酸乙烯酯(EC)产率的影响。优化后EC的产率为36%,并在优化条件下考察了该反应的普遍适用性。
     (3)离子液体中直接电还原CO2与邻二醇反应合成环状碳酸酯
     首次以离子液体为溶剂-电解质体系,研究直接电还原CO2与邻二醇的反应合成环状碳酸酯。整个反应过程在一室型电解池中常压温和条件下进行,且避免了催化剂、支持电解质及有机溶剂的使用。实验过程中考察了电极材料、电解电位、温度、电解电量、邻二醇浓度、离子液体的组成、超声等对反应的影响,并利用循环伏安法研究了CO2及反应底物在离子液体中的电化学行为。此外还对离子液体的循环使用性进行了考察。该工作为环状碳酸酯提供了一条绿色的合成途径。
     (4)电致N-杂环卡宾活化CO2与邻二醇反应合成环状碳酸酯
     温和条件下,两室型电解池中电解咪唑离子液体可生成NHCs,向电解后的咪唑离子液体中通入CO2可形成NHC-CO2加合物。首次利用电化学方法分析NHC-CO2的形成,并以NHC-CO2为C02的活化载体,研究了C02与邻二醇反应合成相应的环状碳酸酯。反应中以苯乙二醇为模板原料,考察了电极材料、离子液体种类、电解电量、电流密度、反应温度、搅拌时间等实验因素对反应的影响。优化条件下碳酸苯乙烯酯的产率可达到60%。在优化条件下考察了反应的普适性,并对反应的历程进行了推测。该工作为环状碳酸酯提供了一种新的合成途径,同时也拓展了NHCs在C02固定上的应用。
     (5)电致N-杂环卡宾活化C02与一元醇反应合成线性碳酸酯
     咪唑离子液体1e-阴极还原可生成相应的NHCs,亲核的NHCs可以活化二氧化碳形成NHC-CO2加合物(咪唑-2-羧酸盐),该加合物可作CO2的活化载体。该工作在电致NHCs活化C02合成环状碳酸酯反应的基础上,研究NHC-CO2作为C02的活化载体与一元醇反应合成线性碳酸酯。反应中以苯甲醇为模板原料,考察不同实验因素对反应的影响,优化条件下苯甲醇的转化率为90%,碳酸甲苄酯的选择性为96%。咪唑离子液体在反应过程中起着绿色溶剂及NHCs前驱体的双重作用,避免了有毒易挥发有机溶剂及支持电解质的使用。该工作为线性碳酸酯提供了一种新的合成途径,同时也进一步拓展了NHCs在CO2固定上的应用。
CO2is one of the main greenhouse gases. Also, CO2is well believed to be a nontoxic, cheap, abundant, renewable C1source. Utilization of CO2not only can solve the environmental problems caused by greenhouse effect, but also could alleviate the increasingly serious problem of energy depletion. But CO2is highly thermodynamic stable and kinetically inert. How to activate CO2effectively has become a key problem. Electrochemical fixation of CO2is one of the effective routes of CO2chemical fixation which could be achieved under room temperature and normal pressure.
     One of the effective routes that utilize CO2is the synthesis of organic carbonates. Organic carbonates are a very important class of compounds whose versatility allows their applications in several fields of the chemical and pharmaceutical industry. Many catalysts such as metal alkoxylate, organic/inorganic alkali, acid salt and metal oxide can catalyze CO2reaction with alcohols to synthesize of organic carbonates, under high temperature and high pressure. But these processes generally have several drawbacks, such as poor catalytic activity, low target product yield, harsh reaction conditions and so on. Therefore, more green synthesis route is highly desirable.
     Recently, room temperature ionic liquids (RTILs) are widely used in electrochemical research for their special physical and chemical properties. It has also been reported that CO2is remarkably soluble in room temperature ionic liquids, which, therefore, makes RTILs become good reaction medium for electrochemical fixation of CO2. N-heterocyclic carbenes (NHCs), which can be use as molecules catalyst for a variety of organic reactions without metal participation and be friendly to environmental, could be generated by cathode reduction of RTILs. Recent studies have found that NHCs could effectively activate CO2to form stable NHC-CO2adducts which can be used to activate CO2transformation.
     Under mild conditions, electrochemical fixation of greenhouse gas CO2to synthesis of useful organic carbonates has important significance. Especially, using ionic liquids as green reaction medium and precursors of NHCs for synthesis organic carbonates have certain innovation significance and practical value.
     The details are given as follows:
     (1) Direct electrosynthesis of organic carbonates from CO2with alcohols under mild conditions
     Electrosynthesis of organic carbonates from CO2with alcohols has been carried out directly under galvanostatic condition at room temperature and normal pressure in DMF/CH3CN-TBAI (0.1mol L-1) without any additional catalyst. For the model compound methanol, the effects of solvents, electrode materials, current densities, charge amount, CH3OH concentration and temperature have been investigated. Under the optimized conditions, the effectiveness and generality of the proposed methodology has been examined. Primary and second alcohols are converted into corresponding linear organic carbonates with moderate and low yields, whereas tertiary alcohol and phenol are unreactive. Moreover, cyclic carbonates could be synthesized from CO2and diols. According to our experiment results and literature, the reaction process has been discussed. This work studies direct electrosynthesis of organic carbonates from CO2in organic solvent completely, which has a certain reference value.
     (2) Synthesis of cyclic carbonates from CO2and diols via electrogenerated cyanomethyl anion
     Electrosynthesis of cyclic carbonates from CO2and diols has been carried out under galvanostatic condition at room temperature and normal pressure in a divided cell via electrogenerated cyanomethyl anion. The reported methodology has been carried out under mild conditions, avoiding any addition of classical bases, catalysts. The effects of reaction conditions, such supporting electrolyte, cathode material, current densities, charge amount, diol concentration, have been investigated to optimize the carbonates yield. Moreover, the effectiveness and generality of the proposed methodology has been examined.
     (3) Electrosynthsis of cyclic carbonates from CO2and diols in ionic liquids under mild conditions
     Anew electrochemical process for synthesis of cyclic carbonates from CO2and diols has been tested in CO2-saturated room temperature ionic liquids (RTILs) for the first time. The synthesis has been carried out under mild and safe condition in an undivided cell without any additional catalysts. The influence of reaction conditions, such as electrode materials, electrolysis potential, temperature, diol concentration, composition of RTILs and ultrasound, have been investigated. The recyclability of RTILs also has been confirmed. Moreover, the electrochemical reduction behavior has been studied by cyclic voltammetry. This work provides a green synthesis approach for cyclic carbonate.
     (4) Synthesis of cyclic carbonates from CO2and diols via electrogenerated N-heterocyclic carbenes
     N-heterocyclic carbenes, which could react with CO2to form NHC-CO2adducts, could be generated by cathodic reduction of ionic liquid in a divided cell. The formation of NHC-CO2has been supported by electrochemical analysis. This work mainly describes the utilization of NHC-CO2which transfers of CO2to diols for the synthesis of cyclic carbonates under mild conditions. For the model compound styrene glycol, various conditions such as cathode materials, charge amounts, current densities, temperature, stirring times were studied to optimize conditions. Under optimized conditions,60%yield of styrene carbonate was obtained. The effectiveness and generality of the proposed electrochemical methodology has been examined under optimized conditions. Moreover, the reaction mechanism has been discussed. This study provides a new method for the synthesis of cyclic carbonates of chemical and pharmaceutical interest, as well as expands on the applications of NHCs in CO2fixation.
     (5) Synthesis of dialkyl carbonates from CO2and alcohols via electrogenerated N-heterocyclic carbenes
     The monoelectronic cathodic reduction of an imidazolium cation leads to the formation of N-heterocyclic carbenes (NHCs). Stable NHC-CO2adducts formed from CO2and NHCs was used in transcarboxylation reactions. Based on the previous work about synthesis of cyclic carbonates from CO2and diols via electrogenerated N-heterocyclic carbenes, here, we studied the synthesis of linear carbonates via electrogenerated N-heterocyclic carbenes from CO2and alcohols. For the model compound benzyl alcohol, various conditions were studied to optimize conditions. Under optimized conditions,90%conversion and96%selectivity were obtained. Ionic liquid plays a dual role of green solvent and NHCs precursor in the reaction process, avoiding the use of toxic volatile organic solvent and supporting electrolyte. This work provides a new synthetic route for linear carbonate, but also further expands the application of NHCs in CO2fixation.
引文
[1]A. A. G Shaikh, S. Sivaram, Chem. Rev.1996,96,951.
    [2]S. Fukuoka, M. Kawamura, K. Komiya, M. Tojo, H. Hachiya, K. Hasegawa, M. Aminaka, H. Okamoto, I. Fukawa, S. Konno, Green Chem.2003,5,497.
    [3]M. A. Pacheco, C. L. Marshall, Energy Fuels 1997,11,2.
    [4]P. Tundo, M. Selva, Acc. Chem. Res.2002,35,706.
    [5]P. Tundo, M. Selva, S. Memoli, ACS Symp. Ser.2000,767,87.
    [6]P. Cesti, A. Bosetti, F. Mizia, et al. (ENICHEM). WO-A101/56977.
    [7]M. Aresta, A. Dibenedetto, I. Tommasi, Energy Fuels 2001,15,269.
    [8]M. Aresta, M. Galatola, J. Clean Prod.1999,7,181.
    [9]J. Kizlink, I. Pastucha, Collect. Czech. Chem. Commun.1994,59,2116.
    [10]J.-C. Choi, L. N. He, H. Yasuda, T. Sakakura, Green Chem.2002,4,230.
    [11]J. Kizlink, I. Pastucha, Collect. Czech. Chem. Commun.1995,60,687.
    [12]J. Kadokawa, H. Habu, S. Fukamachi,et al. J. Chem. Soc., Perkin Trans.11999, 2205.
    [13]T. Sakakura, Y. Saito, M. Okano, J. C. Choi and T. Sako, J. Org. Chem.,1998, 63,7095.
    [14]T. S. Zhao, Y. Z. Han, Y. H.Sun, Fuel process Technol,2000,62,187.
    [15]K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fujimoto, Catal. Lett.1999,58 225.
    [16]S. Fujita, B. M. Bhanage, Y. Ikushima, M. Arai, Green Chemistry,2001,3,87.
    [17]K. Tomishige, Y. Ikeda, T. Sakaihori, K. Fujimoto, J. Catal.2000,192,355.
    [18]K.T. Jung, A. T. Bell, J. Catal.2001,204,339.
    [19]K.T. Jung, A. T. Bell, Top. Catal.2002,20,97.
    [20]K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah, K. Fujimoto, Catal. Lett. 2001,76,71.
    [21]X. L. Wu, Y. Z. Meng, M. Xiao, Y. X. Lu, J. Mol. Catal. A:Chem.2006,249 93.
    [22]X. L.Wu, M. Xiao, Y. Z. Meng, Y. X. Lu, J. Mol. Catal. A:Chem.2005,238 158.
    [23]B. B. Fan, J. L. Zhang, R. F. Li, W. B. Fan, Catal. Lett.2008,121,297.
    [24]X. J. Wang, M. Xiao, S. J. Wang, Y. X. Lu, Y. Z. Meng, J. Mol. Catal. A:Chem. 2007,278,92.
    [25]B. M. Bhanage, S. Fujita, Y. Ikushima, M. Arai, Appl. Catal., A 2001,219,259.
    [26]H. Y. Cui, T. Wang, F. J. Wang, C. R. Gu, P. L. Wang, Y. Y. Dai, Ind. Eng. Chem. Res.2003,42,3865.
    [27]B. M. Bhanage, S. Fujita, Y. Ikushima, K. Torii, M. Arai, Green Chem.2003,5, 71.
    [28]Y. Kishimoto, I. Ogawa, Ind. Eng. Chem. Res.2004,43,8155.
    [29]Q. Jiang, Y. Yang, Catal. Lett.2004,95,127.
    [30]Y. H. Chang, T. Jiang, B. X. Han, Z. M. Liu, W. Z. Wu, L. Gao, J. C. Li, H. X. Gao, G Y. Zhao, J. Huang, Appl. Catal., A 2004,263,179.
    [31]Y. Li, X. Q. Zhao, Y. J. Wang, Appl. Catal., A 2005,279,205.
    [32]J. S. Tian, J. Q. Wang, J. Y. Chen, J. G Fan, F. Cai, L. N. He, Appl. Catal., A 2006,301,215.
    [33]R. Srivastava, D. Srinivas, P. Ratnasamy, J. Catal.2006,241,34.
    [34]B. A. Frontana-Uribe, R. D. Little, J. G Ibanez, A. Palma, R. Vasquez-Medranoc, Green Chem.,2010,12,2099.
    [35]L. Zhang, D. F. Niu, K. Zhang, G. R. Zhang, Y. W. Luo, J. X. Lu, Green Chem., 2008,10,202.
    [36]Y. W. Luo, L. Zhang, D. F. Niu, J. X. Lu, Chin. J. Appl. Chem.,2007,24,1071.
    [37]M. A. Casadei, S. Cesa, M. Feroci, A. Inesi, New J. Chem.1999,23,433.
    [38]M. A. Casadei, S. Cesa, M. Feroci, A. Inesi, L. Rossi, F. M. Moracci, Tetrahedron 1997,53,167.
    [39]M. A. Casadei, S. Cesa, L. Rossi, Eur. J. Org. Chem.,2000,2445.
    [40]D.-F. Niu, Y.-W. Luo, L. Zhang, L.-P. Xiao, J.-X. Lu, Chin. J. Org. Chem.,2008, 5,832.
    [41]D. J. Darensbourg, M. W. Holtcamp, Coord. Chem. Rev.1996,153,155.
    [42]Y. Du, F. Cai, D.L. Kong, L.N. He, Green Chem.2005,7,518.
    [43]R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc.2001,123,11498.
    [44]Y. M. Shen, W. L. Duan, M. Shi, J. Org. Chem.2003,68,1559.
    [45]X. B. Lu, B. Liang, Y. J. Zhang, Y. Z. Tian, Y. M. Wang, C. X. Bai, H. Wang, R. Zhang, J. Am. Chem. Soc.2004,126,3732.
    [46]X. B. Lu, Y. J. Zhang, B. Liang, X. Li, H. Wang, J. Mol. Catal. A:Chem.2004, 210,31.
    [47]X. B. Lu, Y.J. Zhang, K. Jin, L.M. Luo, H. Wang, J. Catal.227 (2004) 537-541.
    [48]D. J. Darensbourg, C. C. Fang, J. L. Rodgers, Organometallics 2004,23,924.
    [49]H. W. Jing, T. Chang, L. L. Jin, M. Wu, W. Y. Qiu, Catal. Commun.2007,8, 1630.
    [50]S. W. Chen, R. B. Kawthekar, G J. Kim, Tetrahedron Lett.2007,48,297.
    [51]F. Jutz, J. D. Grunwaldt, A. Baiker, J. Mol. Catal. A:Chem.2008,279,94.
    [52]R. L. Paddock, Y. Hiyama, J. M. Mckay, S. T. Nguyen, Tetrahedron Lett.2004, 45,2023.
    [53]R. Srivastava, T. H. Bennur, D. Srinivas, J. Mol. Catal. A:Chem.2005,226199.
    [54]L. L. Jin, H. W. Jing, T. Chang, X. L. Bu, L. Wang, Z. L. Liu, J. Mol. Catal. A: Chem.2007,261,262.
    [55]F. W. Li, C. G Xia, L. W. Xu, W. Sun, G X. Chen, Chem. Commun.2003,2042.
    [56]J. L. Jiang, F. X. Gao, R. M. Hua, X. Q. Qiu, J. Org. Chem.2005,70,381.
    [57]Z. W. Bu, G Qin, S. K. Cao, J. Mol. Catal. A:Chem.2007,277,35.
    [58]J. W. Huang, M. Shi, J. Org. Chem.2003,68,6705.
    [59]H. S. Kim, J. Y. Bae, J. S. Lee, O. S. Kwon, P. Jelliarko, S. D. Lee, S. H. Lee, J. Catal.2005,232,80.
    [60]J. Sun, L. Wang, S. J. Zhang, Z. X. Li, X. P. Zhang, W. B. Dai, R. Mori, J. Mol. Catal. A:Chem.2006,256,295.
    [61]H. Kawanami, Y. Ikushima, Chem. Commun.2000,2089.
    [62]A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, R. Sartorio, Tetrahedron Lett.2003,44,2931.
    [63]J. L. Jiang, R. M. Hua, Synth. Commun.2006,36,3141.
    [64]J. M. Sun, S. I. Fujita, M. Arai, J. Organomet. Chem.2005,690,3490.
    [65]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi, Org. Lett.2002,4,2561.
    [66]K. Koseva, N. Koseva, K. Troev, J. Mol. Catal. A:Chem.2003,194,29.
    [67]J. J. Peng, Y. Q. Deng, New. J. Chem.2001,25,639.
    [68]L. N. He, H. Yasuda, T. Sakakura, Green Chem.2003,5,92.
    [69]H. S. Kim, J. J. Kim, H. Kim, H. G. Jang, J. Catal.2003,220,44.
    [70]H. Kawanami, A. Sasaki, K. Matsui, Y. Ikushima, Chem. Commun. (2003) 896.
    [71]J. Sun, S. I. Fujita, F. Y. Zhao, M. Arai, Green Chem.2004,6,613.
    [72]F. W. Li, L. F. Xiao, C. G Xia, B. Hu, Tetrahedron Lett.2004,45,8307.
    [73]J. Sun, S. J. Zhang, W. G Cheng, J. Y. Ren, Tetrahedron Lett.2008,49,3588.
    [74]Y. X. Zhou, S. Q. Hu, X. M. Ma, S. G Liang, T. Jiang, B. X. Han, J. Mol. Catal. A:Chem.2008,284,52.
    [75]J. Sun, J. Y. Ren, S. J. Zhang, W. G Cheng, Tetrahedron Lett.2009,50,423.
    [76]J. Gao, C. Miao, J. Wang, L. He, Shiyou Huagong,2010,39,465.
    [77]R. Srivastava, D. Srinivas, P. Ratnasamy, Catal. Lett.2003,91,133.
    [78]J. Sun, S. I. Fujita, B. M. Bhanage, M. Arai, Catal. Commun.2004,5,83.
    [79]J. Sun, S. I. Fujita, B. M. Bhanage, M. Arai, Catal. Today 2004,93-95,383.
    [80]J. Sun, S. I. Fujita, F. Y. Zhao, M. Hasegawa, M. Arai, J. Catal.2005,230,398.
    [81]M. Aresta, A. Dibenedetto, J. Mol. Catal. A:Chem.2002,182-183,399.
    [82]K. Tomishige, H. Yasuda, Y. Yoshida, M. Nurunnabi, B.T. Li, K. Kunimori, Green Chem.2004,6,206.
    [83]K. Tomishige, H. Yasuda, Y. Yoshida, M. Nurunnabi, B.T. Li, K. Kunimori, Catal. Lett.2004,95,45-49.
    [84]S. Huang, S. Liu, J. Li, N. Zhao, W. Wei, Y. Sun, Catal. Lett.2006,112,187.
    [85]H. Chen, X. Q. Zhao, Y. J. Wang, Chem. Eng. Chin. Univ.2006,20,734.
    [86]S. Y. Huang, S. G Liu, J. P. Li, N. Zhao,W. Wei, Y. H. Sun, Catal. Lett.2007, 118,290.
    [87]Y. Du, L. N. He, D. L. Kong, Catal. Commun.2008,9,1754.
    [88]Y. Du, D. L. Kong, H. Y. Wang, F. Cai, J. S. Tian, J. Q. Wang, L. N. He, J. Mol. Catal. A:Chem.2005,241,233.
    [89]S. Y. Huang, J. Ma, J. P. Li, N. Zhao, W. Wei, Y. H. Sun, Catal. Commun.2008, 9,276.
    [90]X. Q. Zhao, N. Sun, S. F.Wang, F. Li, Y. J.Wang, Ind. Eng. Chem. Res.2008,47, 1365.
    [91]D. R. Macfarlane, J. Huang, M. Forsyth, Nature,1999,402,792.
    [92]Y. Katayama, R. Fukui, T. Miura, J. Electrochem. Soc.,2007,154, D534.
    [93]R. Fukui, Y. Katayama, T. Miura, J. Electrochem. Soc.,2011,158, D567.
    [94]A. P. Abbott, G. Capper, K. J. McKenzie, A. Glidle, K. S. Ryder, Phys. Chem. Chem. Phys.,2006,8,4214.
    [95]A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, Electrochimica Acta 2005,50,2233.
    [96]M. C. Buzzeo, C. Hardacre, R. G Compton, Anal. Chem.,2004,76,4583.
    [97]X. Li, J. Simonsen, K. Li, Holzforschung,2004,58,280.
    [98]C. Villagron, C. E. Banks, W. R. Pitner, C. Hardacre, R. G. Compton, Ultrasonics Sonochemistry,2005,12,423.
    [99]M. Feroci, M. Elinson, L. Rossi, A. Inesi, Electrochem. Commun.,2009,11, 1523.
    [100]D. S. Silvester, A. J. Wain, L. Aldous, C. Hardacre, R. G. Compton, J. Electroanal. Chem.,2006,596,131.
    [101]J. X. Lu, Q. Sun, M. Y. He, Chin. J. Chem.,2003,21,1229.
    [102]C. Villagron, L. Aldous, M. C. Lagunas, R. G. Compton, C. Hardacre, J. Electroanal. Chem.,2006,588,27.
    [103]G. Y. Zhao, T. Jiang, W. Z. Wu, B. X. Han, Z. M. Liu, H. X. Gao, J. Phys. Chem. B,2004,108,13052.
    [104]A. Safavi, N. Maleki, F. Farjami, E. Farjami, J. Electroanal. Chem.,2009, 626,75.
    [105]K. P. Ho, K. Y. Wong, T. H. Chan, Tetrahedron,2006,62,6650.
    [106]M. C. Y. Tang, K. Y. Wong, T. H. Chan, Chem. Commun.,2005,1345.
    [107]J. H. H. Meurs, W. Eilenberg, Tetrahedron,1991,47,705.
    [108]N. Hayaraja, S. Radhakrishnan, N. G Renganathan, Ionics,2010,16,137.
    [109]R. Barhdadi, C. Courtinard, J. Y. Nedelec, M. Troupel, Chem. Commun., 2003,1434.
    [110]S. Markus, S. Bernd, Electrochim. Acta,2009,54,3735.
    [111]D. F. Niu, A. J. Zhang, T. Xue, J. B. Zhang, S. F. Zhao, J. X.Lu, Electrochem. Commun.,2008,10,1498.
    [112]S. Z. Elabedin, N. Borissenko, F. Endres, Electrochem. Commun.,2004,6, 422.
    [113]A. J. Zhang, J. Chen, D. F. Niu, G G Wallace, J. X. Lu, Synthetic Metals, 2009,159,1542.
    [114]M. Wagner, C. Kvarnstrom, A. Ivaska, Electrochim. Acta,2010,55,2527.
    [115]M. Hasegawa, T. Fuchigami, Electrochim. Acta,2004,49,3367.
    [116]G Zhao, T. Jiang, B. Han, Z. Li, J. Zhang, Z. Liu, J. He, W. Wu, J. Supercritical Fluids,2004,32,287.
    [117]D. Chu, G Qin, X. Yuan, M. Xu, P. Zheng, J. Lu, ChemSusChem,2008,1, 205.
    [118]B. C. M. Martindale, R. G. Compton, Chem. Commun.,2012,48,6487.
    [119]H. Wang, G R. Zhang, Y. Z. Liu, Y. W. Luo, J. X. Lu, Electrochem. Commun.,2007,9,2235.
    [120]G Silvestri, S. Gambino, G Filardo, Tetrahedron Lett.,1986,27,3429.
    [121]O. Scialdone, C. Amatore, A. Galia, G. Filardo, J. Electroanal. Chem.,2006, 592,163.
    [122]O. Scialdone, M. A. Sabatino, C. Belfiore, A. Galia, M. P. Paternostro, G Filardo, Electrochim. Acta,2006,51,3500.
    [123]O. Scialdone, A. Galia, A. A. Isse, A. Gennaro, M. A. Sabatino, R. Leone, G Filardo, J. Electroanal. Chem.,2007,609,8.
    [124]O. Scialdone, A. Galia, C. L. Rocca, G Filardo, Electrochim. Acta,2005,50, 3231.
    [125]A. A. Isse, A. Gennaro, Collect. Czech. Chem. Commun.,2003,68,1379.
    [126]K. Zhang, H. Wang, L.X. Wu, J. B. Zhang, J. X. Lu, Chin. J. Chem.,2010,28, 509.
    [127]K. Zhang, H. Wang, S.F. Zhao, D.F. Niu, J.X. Lu, J. Electroanal. Chem., 2009,630,35.
    [128]K. Zhang, L.X. Wu, L. L. Hu, X.Y. Ding, H. Wang, J. X. Lu, Gaodeng Xuexiao Huaxue Xuebao,2010,31,1410.
    [129]L. Zhang, L. P. Xiao, D.F. Niu, Y.W. Luo, J.X. Lu, Chin. J. Chem.,2008,26, 35.
    [130]S.-F. Zhao, H. Wang, Y. C. Lan, X. Liu, J. X. Lu, J. Zhang, J. Electroanal. Chem.,2012,664,105.
    [131]S.-F. Zhao, M.-X. Zhu, K. Zhang, H. Wang, J.-X. Lu, Tetrahedron Lett.,2011, 52,2702.
    [132]Q.-J. Feng, K.-L. Huang, S.-Q. Liu, J.-A. Yu, F.-F. Liu, Electrochimica Acta, 2011,56,5137.
    [133]D. F. Niu, J. B. Zhang, K. Zhang, T. Xue, J. X. Lu, Chin. J. Chem.2009,27, 1041.
    [134]M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon, J. F. Brennecke, J. Phys. Chem. B,2007,111,9001.
    [135]Z. Liu, W. Wu, B. Han, Z. Dong, G Zhao, J. Wang, T. Jiang, G Yang, Chem.-Eur. J.,2003,9,3897.
    [136]J. Zhang, C. Yang, Z. Hou, B. Han, T. Jiang, X. Li, G Zhao, Y. Li, Z. Liu, D. Zhao, Y. Kou, New J. Chem.,2003,27,333.
    [137]M. Kanakubo, T. Umecky, T. Aizawa, Y. Ikushima, Electrochemistry,2004, 72,703.
    [138]Y. Hiejima, M. Hayashi, A. Uda, S. Oya, H. Kondo, H. Senbokub, K. Takahashi,Phys.Chem.Chem.Phys.,2010,12,1953.
    [139]A. A. Isse, A. Gennaro, Chem. Commun.2002,4,2798.
    [140]H. Kamekawa, H. Senboku, M. Tokuda, Electrochim. Acta 1997,42,13.
    [141]J. Damodar, S. R. K. Mohan, S. R. J. Reddy, S. Reddy, Electrochem. Commun.2001,3,762.
    [142]V. G Koshechko, V. E. Titov, V. A. Lopushanskaya, Electrochem. Commun. 2002,4,655.
    [143]D. F. Niu, L. P. Xiao, A. J. Zhang, G R. Zhang, Q. Y. Tan, J. X. Lu, Tetrahedron,2008,64,10517.
    [144]Q. J. Feng, K. L. Huang, S. Q. Liu, X. Y. Wang, Electrochimica Acta,2010, 55,5741.
    [145]M. Feroci, M. A. Casadei, M. Orsini, L. Palombi, A. Inesi, J. Org. Chem. 2003,68,1548.
    [146]D. Chaturvedi, A. Kumar, S. Ray, Synth. Commun.2002,32,2651.
    [147]P. Adams, F. A. Baron, Chem. Rev.1965,65,567.
    [148]M. Feroci, M. Orsini, L. Rossi, G Sotgiu, A. Inesi, J. Org. Chem.2007,72, 200.
    [149]M. Feroci, I. Chiarotto, M. Orsini, G Sotgiub, A. Inesi, Electrochimica Acta 2011,56,5823.
    [150]H. Z. Yang, Y. L. Gu, Y. Q. Deng, F. Shi, Chem. Commun.,2002,274.
    [151]L. P. Xiao, G R. Zhang, L. Zhang, D. F. Niu, J. X. Lu, Chin. J. Catal.,2009, 30,43.
    [152]D. Yuan, C. Yan, B. Lin, H. Wang, C. Zhong, Q. Cai, Electrochimica Acta, 2009,54,2912.
    [153]C. Yan, B. Lu, X. Wang, J. Zhao, Q. Cai, J. Chem. Technol. Biotechnol.,2011, 86,1413.
    [154]G Bertrand, Carbene Chemistry, Marcel Dekker Inc., New York,2002.
    [155]C. D. Abernethy, G M. Codd, M. D. Spicer and M. K. Taylor, J. Am. Chem. Soc.,2003,125,1128.
    [156]E. A. B. Kantchev, J. OBrien, M. G Organ, Angew. Chem., Int. Ed.2007,46, 2768.
    [157]T. M. Trnka, R. H.Grubbs, Acc. Chem. Res.2001,34,18.
    [158]M. T. Powell, D. Hou, M. C. Perry, X. Cui, K. Burgess, J. Am. Chem. Soc. 2001,123,8878.
    [159]L. D. Field, B. A. Messerle, K. Q. Vuong, P. Turner, Organometallics 2005, 24,4241.
    [160]D. Ender, O. Niemeier, A. Henseler, Chem. Rev.2007,107,5606.
    [161]V. Nair, S. Bindu, V. Sreekumar, Angew. Chem. Int. Ed.2004,43,5130.
    [162]A. M. Voutchkova, L. N. Appelhans, A. R. Chianese, et al. J. Am. Chem. 2005,127,17624.
    [163]M. Smiglak, J. D. Holbrey, S. T. Griffin, et al., Green Chem.,2007,9,90.
    [164]S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. Int. Ed.2009,48,3322.
    [165]N. S. Lewis, D. G Nocera, Proc. Natl. Acad. Sci. U.S.A.2006,103,15729.
    [166]G A. Olah, A. Goeppert, G K. S. Prakash, J. Org. Chem.,2009,74,487.
    [167]E. L. Hegg, Acc. Chem. Res.2004,37,775.
    [168]W. Lin, H. Frei, J. Am. Chem. Soc.2005,127,1610.
    [169]E. Simo'n-Manso, C. P. Kubiak, Organometallics 2005,24,96.
    [170]X. L. Yin, J. R. Moss, Coord. Chem. Rev.1999,181,27.
    [171]L. Gu, Y. Zhang, J. Am. Chem. Soc.,2010,132,914.
    [172]V. Nair, V. Varghese, R. R. Paul, A. Jose, C. R. Sinu, R. S. Menon, Org. Lett., 2010,12,2653.
    [173]I. Tommasi, F. Sorrentino, Tetrehedron Lett.,2005,46,2141.
    [174]I. Tommasi, F. Sorrentino, Tetrehedron Lett.,2009,50,104.
    [175]M. Kunert, M. Brauer, O. Klobes, H. Gorls, E. Dinjus, E. Anders, Eur. J. Inorg. Chem.2000,1803.
    [176]H. Abe, S. Inoue, J. Chem. Soc., Chem. Commun.1994,1197.
    [177]Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed.2009,48,4194.
    [178]Y. Kayaki, M. Yamamoto, T. Ikariya, J. Org. Chem.2007,72,647.
    [179]M. Feroci, J. Lessard, M. Orsini, A. Inesi, Tetrahedron Lett.2005,46,8517.
    [180]M. Feroci, I. Chiarotto, M. Orsini, G Sotgiu, Adv. Synth. Catal.2008,350, 1355.
    [181]I. Chiarotto, M. M. M. Feeney, M. Feroci, A. Inesi, Electrochimica Acta, 2009,54,1638
    [182]I. Chiarotto, M. Feroci, M. Orsini, G Sotgiu, A. Inesi, Tetrahedron,2009,65, 3704.
    [183]M. Feroci, M. N. Elinson, L. Rossi, A. Inesi, Electrochem. Commun.,2009, 11,1523.
    [184]M. Orsini, I. Chiarotto, M. N. Elinson, G Sotgiu, A. Inesi, Electrochem. Commun.,2009,11,1013.
    [185]M. Orsini, I. Chiarotto, G. Sotgiu, A. Inesi, Electrochimica Acta 2010,55, 3511.
    [186]D. Seebach, Angew. Chem., Int. Ed.1979,18,239.
    [187]C. Burstein, F. Glorius, Angew. Chem. Int. Ed.,2004,43,6205.
    [188]M. Orsini, I. Chiarotto, M. M. M. Feeney, M. Feroci, G Sotgiu, A. Inesi, Electrochem. Commun.,2011,13,738.
    [189]M. Feroci, I. Chiarotto, M. Orsini, R. Pelagalli, A. Inesi, Chem. Commun., 2012,48,5361.
    [190]A. Chan and K. A. Scheidt, Org. Lett.,2005,7,905.
    [191]S. S. Sohn and J. W. Bode, Org. Lett.,2005,7,3873.
    [192]M. Feroci, I. Chiarotto, A. Inesi,2013,89,692.
    [193]H. Staudinger, Justus Liebigs Ann. Chem.,1907,356,51.
    [194]Y.-R. Zhang, L. He, X. Wu, P.-L. Shao and S. Ye, Org. Lett.,2008,10,277.
    [195]R. Chen, B. Yang and W. Su, Synth. Commun.,2006,36,3167.
    [196]M. Feroci, I. Chiarotto, M. Orsini, A. Inesi, Chem. Commun.,2010,46, 4121.
    [197]I. Chiarotto, M. Feroci, G Sotgiu, A. Inesi, Eur. J. Org. Chem.,2013,2,326.
    [1]P. Tundo, M. Selva, Acc. Chem. Res.,2002,35,706.
    [2]A.-A. G. Shaikh, S. Sivaram, Chem. Rev.,1996,96,951.
    [3]M. North, R. Pasquale, Angew. Chem. Int. Ed.,2009,48,2946.
    [4]D. Aymes, D. Ballivet-Tkatchenko, K. Jeyalakshmi, L. Saviot, S. Vasireddy, Catal. Today,2009,147,62.
    [5]D. Delledonne, F. Rivetti, U. Romano, Applied Catalysis A:General 2001,221, 241.
    [6]J. Kizlink, I. Pastucha, Collect. Czech. Chem. Commun.1994,59,2116.
    [7]J. Kizlink, I. Pastucha, Collect. Czech. Chem. Commun.1995,60,687.
    [8]T. S. Zhao, Y. Z. Han, Y. H.Sun, Fuel process Technol,2000,62,187.
    [9]K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fujimoto, Catal. Lett.1999,58 225.
    [10]M. A. Casadei, S. Cesa, M. Feroci, A. Inesi, New J. Chem.1999,23,433.
    [11]M. A. Casadei, S. Cesa, M. Feroci, A. Inesi, L. Rossi, F. M. Moracci, Tetrahedron 1997,53,167.
    [12]M. A. Casadei, S. Cesa, L. Rossi, Eur. J. Org. Chem.,2000,2445.
    [13]L. Zhang, D. F. Niu, K. Zhang, G. R. Zhang, Y. W. Luo, J. X. Lu, Green Chem., 2008,10,202.
    [14]L. P. Xiao, G. R. Zhang, L. Zhang, D. F. Niu, J. X. Lu, Chin. J. Catal.,2009,30, 43.
    [15]Y. W. Luo, L. Zhang, D. F. Niu, J. X. Lu, Chin. J. Appl. Chem.,2007,24,1071.
    [16]K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH, Weinhein, 2002.
    [17]A. Gennaro, A. A. Isse, E. Vianello, J. Electroanal. Chem.,1990,289,203.
    [18]M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma, L. Oniciu, J. Appl. Electrochem. 1997,27,875.
    [19]D. D. Yuan, C. H. Yan, B. Lu, H. X. Wang, C. M. Zhong, Q. H. Cai, Electrochim. Acta,2009,54,2912.
    [20]C. E. Dahm, D. G. Peters, J. Electroanal. Chem.1996,402,91.
    [21]O. Scialdone, M. A. Sabatino, A. Galia, G. Filardo, G. Silvestri, J. Electroanal. Chem.,2008,614,5919.
    [22]S. Fang, K. Fujimoto, Applied Catalysis A:General,1996,142, L1-L3.
    [23]曾昭琼,有机化学(第三版),高等教育出版社,1993,263.
    [24]M. Hammouche, D. Lexa, M. Momenteau, J. M. Saveant, J. Am. Chem. Soc., 1991,113,8455.
    [1]S. Arseniyadis, K. S. Kyler, D. S. Watt, In Organic Reactions; John Wiley and Sons, inc.:New York,1984,31,3-65.
    [2]M. K. Pound, D. L. Davies, M. Pilkington, J. D. Wallis, Tetrahedron Lett.,2002, 43,1915.
    [3]T. Satoh, M. Toshida, H. Ota, Tetrahedron Lett.,2001,42,9241.
    [4]F. F.Fleming, B. C. Shook, J. Org. Chem.,2002,67,3668.
    [5]V. Dimitrov, G Dobrikov, M. Genov, Tetrahedron:Asymmetry,2001,12,1323.
    [6]S. Panev, A. Linden, V. Dimitrov, Tetrahedron:Asymmetry,2001,12,1313.
    [7]R. P. Singh, D. S. Matteson, J. Org. Chem.,2000,65,6650.
    [8]S. Carballares, D. Craig, J. Organomet. Chem.,2001,624,380.
    [9]N. Kojima, N. Minakawa, A. Matsuda, Tetrahedron,2000,56,7909.
    [10]T. Satoh, H. Ota, Tetrahedron Lett.,1999,40,2977.
    [11]D. Matteson, J. Lu, Tetrahedron:Asymmetry,1998,9,2423.
    [12]A. Wada, S. Hiraishi, N. Takamura, T. Date, K. Aoe,; M. Ito, J. Org. Chem., 1997,62,4343.
    [13]A. R. Haight, T. L. Stuk, J. A. Menzia, T. A. Robbins, Tetrahedron Lett.,1997, 38,4191.
    [14]L. Rossi, M. Feroci, A. Inesi, Mini-Reviews in Organic Chemistry,2005,2,79.
    [15]M. M. Baizer, In Organic Electrochemistry; H. Lund, M. M. Baizer, Eds.; Marcel Dekker Inc., NewYork,1991, p.1265-1282.
    [16]D. F. Niu, Y. W. Luo, L. Zhang, L. P. Xiao, J. X. Lu, Chin. J. Org. Chem.,2008, 28,832.
    [17]M. Feroci, M. A. Casadei, M. Orsini, L. Palombi, A. Inesi, J. Org. Chem.,2003, 68,1548.
    [18]M. Feroci, A. Gennaro, A. Inesi, M. Orsini, L. Palombi, Tetrahedron Lett.,2002, 43,5863.
    [19]M. Feroci, J. Lessard, M. Orsini, A. Inesi, Tetrahedron Lett.,2005,46,8517.
    [20]M. Feroci, Adv. Synth. Catal.,2007,349,2177.
    [21]M. Feroci, M. Orsini, L. Palombi, L. Rossi, A. Inesi, Electrochim. Acta,2005, 50,2029.
    [22]C. E. Dahm, D. G Peters, J. Electroanal. Chem.1996,402,91.
    [23]O. Scialdone, M. A. Sabatino, A. Galia, G Filardo, G Silvestri, J. Electroanal. Chem.2008,614,175.
    [1]S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Catal. Today,2006,115,61.
    [2]J. D. Holbrey, K. R. Seddon, Clean Prod. Process,1999,1,223,
    [3]T. Welton, Chem. Rev.,1999,99,2071.
    [4]C. M. Gordon, Appl. Catal. A:Gen.,2001,222,101.
    [5]D. B. Zhao, M. Wu, Y. Kou, E. Z. Min, Catal. Today,2002,74,157.
    [6]A. C. Cole, J. L. Jensen, I. Ntai, K. L. Tran, K. J. Weaver, D. C. Forbes, J. Am. Chem. Soc.,2002,124,5962.
    [7]N. Jiang, A. J. Ragauskas, Tetrahedron Lett.2007,48,273.
    [8]T. Jiang, H. X. Gao, B. X. Han, G Y. Zhao, Y. H. Chang, W. Z. Wu, L. Gao, G Y. Yang, Tetrahedron Lett.,2004,45,2699.
    [9]G Zhao, T. Jiang, B. Han, Z. Li, J. Zhang, Z. Liu, J. He, W. Wu, J. Supercritical Fluids,2004,32,287.
    [10]B. C. M. Martindale, R. G Compton, Chem. Commun.,2012,48,6487.
    [11]M. Feroci, M. Orsini, L. Rossi, G Sotgiu, A. Inesi, J. Org. Chem.2007,72,200.
    [12]M. Feroci, I. Chiarotto, M. Orsini, G Sotgiub, A. Inesi, Electrochimica Acta 2011,56,5823.
    [13]L. Zhang, D. F. Niu, K. Zhang, G R. Zhang, Y. W. Luo, J. X. Lu, Green Chem., 2008,10,202.
    [14]H. Z. Yang, Y. L. Gu, Y. Q. Deng, F. Shi, Chem. Commun.,2002,274.
    [15]D. Yuan, C. Yan, B. Lin, H. Wang, C. Zhong, Q. Cai, Electrochimica Acta,2009, 54,2912.
    [16]C. Yan, B. Lu, X. Wang, J. Zhao, Q. Cai, J. Chem. Technol. Biotechnol.,2011, 86,1413.
    [17]H. Wang, G R. Zhang, Y. Z. Liu, Y. W. Luo, J. X. Lu, Electrochem. Commun., 2007,9,2235.
    [18]Q.-J. Feng, K.-L. Huang, S.-Q. Liu, J.-A. Yu, F.-F. Liu, Electrochimica Acta, 2011,56,5137.
    [19]D. F. Niu, J. B. Zhang, K. Zhang, T. Xue, J. X. Lu, Chin. J. Chem.2009,27, 1041.
    [20]Y. Hiejima, M. Hayashi, A. Uda, S. Oya, H. Kondo, H. Senbokub, K. Takahashi, Phys.Chem.Chem.Phys.,2010,12,1953.
    [21]Q. J. Feng, K. L. Huang, S. Q. Liu, X. Y. Wang, Electrochimica Acta,2010,55, 5741.
    [22]T. Nishida, Y. Tashiro, M. Yamamoto, J. Fluorine Chem.2003,120,135.
    [23]C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc.2004,126,5300.
    [24]Y. H. Yu, A. N. Soriano, M. H. Li, Thermochim. Acta,2009,482,42.
    [25]H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, K. Hayamizu, M. Watanabe, J. Phy. Chem.,B 2006,110,19593.
    [26]Y. Mastai, R. Polsky, Kolty pin Yu, et al. J. Am. Chem. Soc.,1999,121,10047.
    [27]程敬泉,姚素薇,电镀与精饰,2005,27,16.
    [28]郝红伟,吴敏生,陈以方,王海,尹应武,张众笑,清华大学学报,2003,43,590.
    [29]何晓辉,禹耕之,杨超,化学反应工程与工艺,2008,24,216.
    [30]M. A. Casadei, S. Cesa, M. Feroci, A. Inesi, New, J. Chem.,1999,23,433.
    [1]T. Welton, Chem. Rev.,1999,99,2071.
    [2]P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed.,2000,39,3772.
    [3]J. Sun, S. Fujita, M. Arai, J. Organoment. Chem.2005,690,3490.
    [4]V. Nair, S. Bindu, V. Sreekumar, Angew. Chem., Int. Ed.,2004,43,5130.
    [5]M. He, J. W. Bode, Org. Lett.,2005,7,3131.
    [6]M. He, J. W. Bode, J. Am. Chem. Soc.,2008,130,418.
    [7]L. He, T. Y. Jian, S. J. Ye, J. Org. Chem.,2007,72,7466.
    [8]D. Enders, T. Balensiefer, Acc. Chem. Res.,2004,37,534 and references therein.
    [9]J. Pesch, K. Harms, T. Bach, Eur. J. Org. Chem.,2004,9,2025.
    [10]Y. Kawanaka, E. M. Phillips, K. A. Scheidt, J. Am. Chem. Soc.,2009,131, 18028.
    [11]Y. R. Zhang, L. He, X. Wu, P.-L. Shao, S. Ye, Org. Lett.,2008,10,277.
    [12]N. Duguet, C. G Campbell, A.M. Z. Slawin, A. D. Smith, Org. Biomol. Chem., 2008,6,1108.
    [13]L. Xiao, K. E. Johnson, J. Electrochem. Soc.,2003,150, E307.
    [14]B. Gorodetsky, Ramnial T., Branda N. R., Clyburne J. A.C., Chem. Commun., 2004,1972.
    [15]J. P. Canal, T. Ramnial, D. A. Dickie, J. A. C. Clyburne, Chem. Commun.,2006, 1809.
    [16]M. Feroci, I. Chiarotto, M. Orsini, G. Sotgiu, A. Inesi, Adv. Synth. Catal.,2008, 350,1355.
    [17]N. J. Turner, Curr. Opin. Biotechnol.,2000,11,527.
    [18]D. Enders, U. Kallfass, Angew. Chem. Int. Ed.,2002,41,1743.
    [19]J. Marti, J. Castells, F. Lopezcalahorra, Tetrahedron Lett.,1993,34,521.
    [20]G A. Grasa, R. M. Kissling, S. P. Nolan, Org. Lett.,2002,4,3583.
    [21]H. A. Duong, M. J. Cross, J. Louie, Org. Lett.,2004,6,4679.
    [22]C. A. Dvorak, V. H. Rawal, Tetrahedron Lett.,1998,39,2925.
    [23]Y. Tachibana, N. Kihara, T. Takaka, J. Am. Chem. Soc.,2004,126,3438.
    [24]J. Pesch, K. Harms, T. Bach, Eur. J. Org. Chem.,2004,2025.
    [25]S. Raghavan, K. Anuradha, Tetrahedron Lett.,2002,43,5181.
    [26]M. S. Kerr, J. Alaniz, T. Rovis, J. Am. Chem. Soc.,2002,124,10298.
    [27]J. R. Alaniz, T. Rovis, J. Am. Chem. Soc.,2005,127,6284.
    [28]S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. Int. Ed.2009,48,3322.
    [29]Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed.2009,48,4194.
    [30]H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. org. Chem.,2008,73, 8039.
    [31]H. Wang, G R. Zhang, Y. Z. Liu, Y. W. Luo, J. X. Lu, Electrochem. Commun., 2007,9,2235.
    [32]L. Zhang, D. F. Niu, K. Zhang, G R. Zhang, Y. W. Luo, J. X. Lu, Green Chem., 2008,10,202.
    [33]D. F. Niu, J. B. Zhang, K. Zhang, T. Xue, J. X. Lu, Chin. J. Chem.2009,27, 1041.
    [34]T. Nishida, Y. Tashiro, M. Yamamoto, J. Fluorine Chem.,2003,120,135.
    [35]J. D. Holbrey, W. M. Reichert, I. Tkatchenko, E. Bouajila, O. Walter, I. Tommasi, R. D. Rogers, Chem. Commun.,2003,28.
    [36]P. Bonhote, A. P. Dias, N. Ppageorigion, M. Gratzel, Inorg. Chem.,1996,35, 1168.
    [37]S. T. Handy, M. Okello, J. Org. Chem.,2005,70,1915.
    [38]M. C. Kroom, W. Buijs, C. J. Peters, G J. Witkamp, Green Chem.,2006,8,241.
    [39]O. O. Okoturo, T. J. VanderNoot, J. Electroanal. Chem.,2004,568,167.
    [40]Y. H. Yu, A. N. Soriano, M. H. Li, Thermochim. Acta,2009,482,42.
    [41]M. B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res.2005,44,4453.
    [42]曾昭琼,有机化学,第三版,p263.
    [43]I. Chiarotto, M. M. M. Feeney, M. Feroci, A. Inesi, Electrochim. Acta,2009,54, 1638.
    [44]I. Chiarotto, M. Feroci, M. Orsini, G Sotgiu, A. Inesi, Tetrahedron,2009,65, 3704.
    [1]Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc.1988,110, 6463.
    [2]A. Igau, A. Baceiredo, G Trinquier, G. Bertrand, Angew. Chem., Int. Ed. Engl. 1989,28,621.
    [3]A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.1991,113,361.
    [4]A. J. Arduengo, H. V. R. Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc.1992, 114,5530.
    [5]D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev.,2000,100,39.
    [6]J. Fuller, R. T. Carlin, J. Chem. Crystal.,1994,24,489.
    [7]M. Feroci, I. Chiarotto, M. Orsini, G Sotgiu, Adv. Synth. Catal.2008,350,1355.
    [8]M. Feroci, M. N. Elinson, L. Rossi, A. Inesi, Electrochem. Commun.,2009,11, 1523.
    [9]M. Orsini, I. Chiarotto, M. N. Elinson, G. Sotgiu, A. Inesi, Electrochem. Commun.,2009,11,1013.
    [10]M. Orsini, I. Chiarotto, G. Sotgiu, A. Inesi, Electrochimica Acta 2010,55,3511.
    [11]I. Tommasi, F. Sorrentino, Tetrahedron Lett.,2005,46,2141.
    [12]I. Tommasi, F. Sorrentino, Tetrahedron Lett.,2009,50,104.
    [13]Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed.,2009,48,4194.
    [14]H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. Org. Chem.,2008,73, 8039.
    [15]S. N. Riduan, Y. Zhang, J. Y. Ting, Angew. Chem. Int. Ed.2009,48,3322.
    [16]L. Gu, Y. Zhang, J. Am. Chem. Soc.,2010,132,914.
    [17]V. Nair, V. Varghese, R. R. Paul, A. Jose, C. R. Sinu, R. S. Menon, Org. Lett., 2010,12,2653.
    [18]T. Nishida, Y. Tashiro, M. Yamamoto, J. Fluorine Chem.,2003,120,135.
    [19]M. B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res.,2005,44,4453.
    [20]L. Xiao, K. E. Johnson, J. Electrochem. Soc.,2003,150, E307.
    [21]M. C. Kroom, W. Buijs, C. J. Peters, G J. Witkamp, Green Chem.,2006,8,241.
    [22]Y. H. Yu, A. N. Soriano, M. H. Li, Thermochim. Acta,2009,482,42.
    [23]H. Tokuda, K. Ishii, M. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, J. Phys. Chem. B,2006,110,2833.
    [24]L. A. Blanchard, Z. Gu, J. F. Brennecke, J. Phys. Chem. B,2001,105,2437.
    [25]C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc.,2004,126,5300.
    [26]P. Bonhote, A. P. Dias, N. Ppageorigion, M. Gratzel, Inorg. Chem.,1996,35, 1168.
    [27]O. O. Okoturo, T. J. VanderNoot, J. Electroanal. Chem.,2004,568,167.
    [28]Y. H. Yu, A. N. Soriano, M. H. Li, Thermochim. Acta,2009,482,42.
    [1]L. Xiao, K. E. Johnson, J. Electrochem. Soc.,2003,150, E307.
    [2]B. Gorodetsky, T. Ramnial, N. R. Branda, J. A. C. Clyburne, Chem. Commun., 2004,1972.
    [3]M. Feroci, I. Chiarotto, M. Orsini, A. Inesi, Chem. Commun.,2010,46,4121.
    [4]S.-F. Zhao, L.-X. Wu, H. Wang, J.-X. Lu, A. M. Bond, J. Zhang, Green Chem., 2011,13,3461.
    [5]I. Tommasi, F. Sorrentino, Tetrahedron Lett.,2005,46,2141.
    [6]I. Tommasi, F. Sorrentino, Tetrahedron Lett.,2009,50,104.
    [7]Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed.2009,48,4194.
    [8]H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. org. Chem.,2008,73, 8039.
    [9]S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. Int. Ed.2009,48,3322.
    [10]C. A. Dvorak, V. H. Rawal, Tetrahedron Lett.,1998,39,2925.
    [11]Y. Tachibana, N. Kihara, T. Takaka, J. Am. Chem. Soc.,2004,126,3438.
    [12]J. Pesch, K. Harms, T. Bach, Eur. J. Org. Chem.,2004,2025.
    [13]S. Raghavan, K. Anuradha, Tetrahedron Lett.,2002,43,5181.
    [14]M. S. Kerr, J. Alaniz, T. Rovis, J. Am. Chem. Soc.,2002,124,10298.
    [15]J. R. Alaniz, T. Rovis, J. Am. Chem. Soc.,2005,127,6284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700