用户名: 密码: 验证码:
超临界溶液浸渍法制备缓控释给药系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界溶液浸溃法(supercritical solution impregnation, SSI)是一种利用超临界C02将活性物质负载到聚合物中的过程技术。目前,该技术主要用于纤维的染色和聚合物的共混等过程,在缓控释药物领域中的应用还较少涉及。本文将SSI过程与单分散聚合物微球制备技术相结合,开发了一种缓控释给药系统制备方法。全文内容主要分为三部分:SSI过程原理研究,粒径均一聚合物微球制备,利用SSI法将药物负载到微球中实现缓控释给药。
     首先,对SSI过程原理进行了研究。选取罗红霉素(roxithromycin)为模型药物,左旋聚乳酸(poly(l-lactic acid), PLLA)膜为聚合物载体,考察了罗红霉素、PLLA和超临界C02三者之间的相互作用:
     (1)使用静态法测定了罗红霉素在超临界C02中的溶解度。所测数据范围为温度40-60-C和压力10-30MPa之间,测得的溶解度y2最小值为1.47×10-5mol/mol,最大值为1.84x10-4mol/mol。随着压力的升高,溶解度相应增大。而温度对溶解度的影响较为复杂。选用了五种经验模型、三种溶解度参数模型拟合和关联了溶解度数据。其中,SS模型、SP-RM模型和SP-3模型的拟合效果明显优于其它模型,平均相对偏差(AARD)为6.36-6.83%。
     (2)使用重量变化法研究了超临界CO2在PLLA膜中的吸附及扩散行为。所测数据范围为温度40-60℃和压力10.0-20.0MPa。CO2在PLLA膜中的平衡吸附量Ms,∞随着压力的升高而增大,相反随着温度的升高而降低。脱附过程扩散系数Dd与平衡吸附量Ms,∞密切相关。当Ms,∞从8.3%增大到16.9%时,Dd从0.25x10-11m2/s增加到2.57x10-11m2/s,增大了约10倍。吸附过程扩散系数Ds与Dd处于同一数量级。选用溶胀模型、SP-4模型拟合和关联了实验数据。溶胀模型的AARD小于1%。SP-4模型的AARD也仅为1.94%。
     (3)研究了超临界C02条件下罗红霉素在PLLA膜中的吸附行为,考察了浸渍时间(0.5-4.0h)、浸渍压力(8.0-30.0MPa)、浸渍温度(40-70℃)等操作条件对载药量的影响。当浸渍时间为2h,载药量已达到平衡值。载药量随浸渍压力升高而增加。浸渍温度对载药量的影响较为复杂。扫描电镜(SEM)照片显示SSI过程没有引起PLLA膜表面和截面的形貌变化,差示扫描量热(DSC)数据和X射线衍射(XRD)谱图表明以罗红霉素以无定形态均匀分散在PLLA基质中,可能为分子级分散。顶空气相色谱数据显示SSI过程能有效去除溶剂残留。体外缓释实验表明载药PLLA膜具有长期缓慢释放药物的性能。最后,计算了罗红霉素在聚合物相和超临界相之间的分配系数K。
     其次,采用改进的锐孔法制备出粒径均一的PLLA微球。考察了油相流速、搅拌器转速、PLLA浓度和锐孔内径大小等因素对微球平均粒径(d)和变异系数(CV)的影响。通过减小锐孔内径能有效降低CV值。用内径50μm玻璃毛细管针头取代#4.5金属针头,成功使CV值从26.13%降低到17.59%。所得微球的球形度好,粒径可控且分布窄。
     最后,使用SSI法将罗红霉素负载到四种不同粒径大小的PLLA微球中,考察了浸渍时间、微球粒径、浸渍压力、浸渍温度等因素对微球的总载药量、表面载药量及其内部载药量的影响。当浸渍时间达到3h以上,微球的内部载药量达到平衡值。随着微球粒径的减小,内部载药量呈下降趋势,而表面载药量呈增大趋势。微球粒径越小,经SSI处理后粘连越严重。总载药量、表面载药量和内部载药量随浸渍压力升高而增加。浸渍温度对载药量的影响较为复杂。SEM照片显示当微球粒径小于5μm时,极易粘连成块状。DSC数据显示罗红霉素主要以无定形态分布于微球中。四种微球的体外缓释实验表明SSI方法制备的载药微球具有良好的缓释性能。
     此外,本文还对SSI法负载药物制备缓控释给药系统的适用范围进行了探讨。选取了三种药物包括胆固醇、阿司匹林、罗红霉素和三种聚合物如聚乙烯、聚苯乙烯、聚乙烯醇,考察了聚合物与药物溶解度参数之差(Δδ)的绝对值与载药量的关系。结果表明SSI法适用的药物较广,可选择的聚合物范围较宽;对于给定的药物,可将其与聚合物的Aδ作为选取合适载体材料的依据。
     SSI法具有过程效率高、载体形式灵活、可去除有机溶剂残留等优点。本文成功地将SSI法与粒径均一聚合物微球制备技术相结合,为缓控释药物微球的制备提供了一条新的途径。
Supercritical solution impregnation (SSI) is a process technology to load active compounds onto/into polymer matrices using supercritical carbon dioxide (SCCO2). At present, it is mainly utilized in fabric dyeing, polymer blending, etc., and its application in the preparation of sustained-/controlled-release drug delivery system (SCRDDS) is rarely reported. This work combines the SSI technology with preparation of monodisperse polymer microparticles to develop a process of SCRDDS formulation. The contents of the thesis consist of three main parts:principle of SSI process, preparation of monodisperse polymer microparticles, and loading of drug into microparticles with SSI method.
     Firstly, the principle of SSI process was studied in detail, in which roxithromycin and poly (l-lactic acid)(PLLA) were selected as model drug and polymer matrix respectively. The interactions among CO2, roxithromycin and PLLA were examined as follows:
     (1) Solubility of roxithromycin in SCCO2was measured with the static method at temperature range from40to60℃, and pressure from10to30MPa. The minimum of solubility, y2, was determined at1.47×10-5mol/mol, and the maximum was1.84×10-4mol/mol. With the pressure elevating, solubility data increased correspondingly. The effect of temperature on solubility was more complex. Five empirical models and three solubility parameter models were chosen to fit and correlate the obtained solubility data. Among them, correlations of SS model, SP-RM model and SP-3model were better than that of other models, and the average absolute relative deviation (AARD) ranged from6.36%to6.83%.
     (2) Sorption and diffusion behavior of CO2in PLLA film was examined with the weight variation method at temperature of40-60℃and pressure of10-30MPa. Equilibrium sorption amount, Ms,∞, increased with the elevation of pressure, while increased with the descending of temperature. Desorption diffusion coefficient, Dd, was greatly influenced by Ms,∞. Along with Ms,∞increasing from8.3%to16.9%, Dd expanded approximately10times from0.25x10-11m2/s to2.57x10-11m2/s. Sorption diffusion coefficient, Ds, was in the same order of magnitude as Dd at supercritical conditions. The swelling model and SP-4model were selected to correlate the sorption data. AARD of swelling model was below1%, and AARD of SP-4was only1.94%.
     (3) Sorption of roxithromycin into PLLA film at SCCO2was determined. The effect of impregnation time (0.5-4.0h), impregnation pressure (8-30MPa), and impregnation temperature (40-70℃) on drug loading capacity(DLC) was investigated. With the time prolonging, DLC approached up to an equilibrium value. At a certain temperature, DLC increased with the elevating of impregnation pressure. The relationship between impregnation temperature and DLC was more complicated. SEM photos showed that no obvious change was observed for the surface and cross-over morphologies of PLLA film. DSC data and XRD spectra implied that roxithromycin could be molecularly dispersed into PLLA film, and headspace gas chromatography data demonstrated that SSI process could remove solvent residual effectively. In vitro release data indicated that drug-loaded PLLA film could slowly release drug for a long period. Besides, partition coefficient (K) of roxithromycin between polymer phase and supercritical phase was calculated.
     Secondly, an improved orifice method was developed to prepare monodisperse PLLA microparticles. The effects of oil phase flow rate, stirring rate, PLLA concentration, and inner diameter of orifice on average diameter (d) and coefficient of variation (CV) were investigated. Decreasing orifice inner diameter was a valid way to reduce the CV value.Using glass capillary instead of#4.5metal needle, the CV droped greatly from26.13%to17.59%. The microparticles prepared with the improved orifice method presented perfectly spherical shape and narrow size distribution.
     Finally, roxithromycin was loaded into PLLA microparticles with four different size distributions using SSI method. The effects of impregnation time, microparticles size, impregnation pressure and temperature on total drug loading capacity (TDLC), surface drug loading capacity (SDLC), and interior drug loading capacity (IDLC) were investigated. When impregnation time was above3h, IDLC of microparticles achieved an equilibrium value. With reducing of microparticles size, IDLC decreased while SDLC increased. The smaller micropartciles were prone to adhere to each other. With rising of impregnation pressure, TDLC, SDLC and IDLC increased. The effects of impregnation temperature on TDLC, IDLC and SDLC were more complex. SEM photos indicated that microparticles with diameter below5μm were aggregated badly to form a block. DSC data implied that roxithromycin was dispersed into PLLA microparticles mainly in an amorphous state. In vitro release curves showed that all of drug-loaded microparticles with different size distribution could release slowly for a long period.
     Furthermore, the application of SSI technology in SCRDDS field was discussed. Three drugs (cholesterol, aspirin and roxithromycin) and three polymers (polyethylene, polystyrene and polyvinyl alcohol) were selected to investigate the effects of solubility parameter difference (△δ) between drug and polymer on DLC. The results demonstrate that SSI process is available for most of drugs using polymers in a wide range. For a certain SCRDDS,△δ between the drug and a polymer could be a criterion to choose a proper polymer matrix.
     The advantages of SSI method include the high production efficiency, the shape diversity of polymer matrix, and the removal of solvent residual. This work successfully combines SSI technology with monodisperse polymer microparticles preparation to provide a new process to produce SCRDDS formulation.
引文
[1]中国药学会主编.药学学发展报告008-2009.中国科学技术出版社.北京,2009.
    [2]中国药学会主编.药学学科发展报告2010-2011.中国科学技术出版社,北京,2011.
    [3]陈庆华,张强主编.药物微囊化新技术及应用.人民卫生出版社,北京,2008.
    [4]Ye M, Kim S, Park, K. Issues in long-term protein delivery using biodegradable microparticles. Journal of Controlled Release.2010,146(2):241-260.
    [5]Schafroth N, Arpagaus C, Jadhav U Y, Makne S, Douroumis D. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids and Surfaces B:Biointerfaces.2012,90:8-15.
    [6]Wang Y, Guo B H, Wan X, Xu J, Wang X, Zhang Y P. Janus-like polymer particles prepared via internal phase separation from emulsified polymer/oil droplets. Polymer.2009,50(14): 3361-3369.
    [7]朱自强,关怡新,姚善泾.超临界辅助雾化制备适于气溶胶给药的药物微粒.化工学报.2005,56(02):187-196.
    [8]Mishima K. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Advanced Drug Delivery Reviews.2008,60(3):411-432.
    [9]Yeo S D, Kiran E. Formation of polymer particles with supercritical fluids:a review. Journal of Supercritical Fluids.2005,34(3):287-308.
    [10]Herberger J, Murphy K, Munyakazi L, Cordia J, Westhaus E. Carbon dioxide extraction of residual solvents in poly(lactide-co-glycolide) microparticles. Journal of Controlled Release. 2003,90(2):181-195.
    [11]Pasquali I, Bettini R. Are pharmaceutics really going supercritical? International Journal of Pharmaceutics.2008,364(2):176-187.
    [12]Yesil-Celiktas O, Cetin-Uyanikgil E O. In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method. The Journal of Supercritical Fluids.2012,62:219-225.
    [13]Lee S, Kim M S, Kim J S, Park H J, Woo J S, Lee B C, Hwang S J. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique. Journal of Microencapsulation.2006,23(7):741-749.
    [14]关怡新,余金鹏,姚善泾,朱自强.超临界溶液浸渍法制备缓释药物.化工学报.2010,61(02):269-274.
    [15]Kikic I, Vecchione F. Supercritical impregnation of polymers. Current Opinion in Solid State and Materials Science.2003,7(4-5):399-405.
    [16]Guney O, Akgerman A. Synthesis of controlled-release products in supercritical medium. AIChE Journal.2002,48(4):856-866.
    [17]Liu W, Yang X L, Winston Ho W S. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. Journal of Pharmaceutical Sciences.2011,100(1):75-93.
    [18]包德才,郑建华,赵燕军,马小军,袁权.膜乳化技术及其应用.化学通报.2006,(4):241-246.
    [19]任平伟,褚良银.膜乳化和微流控法制备单分散W/O乳液的研究.广州化工.2009,37(2):63-65.
    [20]Li W, Nie Z, Zhang H, Paquet C, Seo M, Garstecki P, Kumacheva E. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir.2007,23(15): 8010-8014.
    [21]Vladisavljevic G T, Kobayashi I, Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics and Nanofluidics.2012:1-28.
    [22]陈国,方柏山,彭益强.一种可控制生物徽胶囊尺寸的气流微囊发生器.高化学工程学报.2008,22(3):466-470.
    [23]杨凤琼编著.实药药物制剂技术.化学工业出版社,北京,2009.
    [24]梅兴国编著.药物心剂型与制剂新技术.化学工业出版社,北京,2007.
    [25]王晓琳,栾瀚森,杨莉,王浩.国外上市新型注射剂的研究进展.中国医药工业杂志.2012,(1):60-67.
    [26]Freitas M N, Marchetti J M. Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. International Journal of Pharmaceutics. 2005,295(1-2):201-211.
    [27]Felder C B, Blanco-Prieto M J, Heizmann J, Merkle H P, Gander B. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. Journal of Microencapsulation.2003,20(5):553-567.
    [28]Knez Z, Weidner E. Particles formation and particle design using supercritical fluids. Current Opinion in Solid State and Materials Science.2003,7(4-5):353-361.
    [29]Reverchon E, Adami R, Cardea S, Porta G D. Supercritical fluids processing of polymers for pharmaceutical and medical applications. Journal of Supercritical Fluids.2009,47(3):484-492.
    [30]Du Z, Guan Y X, Yao S J, Zhu Z Q. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme:particle morphology, size and protein stability. International Journal of Pharmaceutics.2011,421(2):258-268.
    [31]Reverchon E, Antonacci A. Chitosan microparticles production by supercritical fluid processing. Industrial & Engineering Chemistry Research.2006,45(16):5722-5728.
    [32]Sievers R E, Quinn B P, Cape S P, Searles J A, Braun C S, Bhagwat P, Rebits L G, McAdams D H, Burger J L, Best J A, Lindsay L, Hernandez M T, Kisich K O, Iacovangelo T, Kristensen D, Chen D. Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals. Journal of Supercritical Fluids.2007,42(3):385-391.
    [33]Sievers R E, Huang E T S, Villa J A, Engling G, Brauer P R. Micronization of water-soluble or alcohol-soluble pharmaceuticals and model compounds with a low-temperature bubble dryer(?). Journal of Supercritical Fluids.2003,26(1):9-16.
    [34]Sievers R E, Milewski P D, Sellers S P, Miles B A, Korte B J, Kusek K D, Clark G S, Mioskowski B, Villa J A. Supercritical and near-critical carbon dioxide assisted low-temperature bubble drying. Industrial & Engineering Chemistry Research.2000,39(12):4831-4836.
    [35]马光辉,苏志国编著.高分子微球材料.化学工业出版社,北京,2005.
    [36]余金鹏,关怡新,姚善泾,朱自强.改进的锐孔法制备粒径均一的聚乳酸微球.高分子材料科学与工程2011,27(9):115-118.
    [37]张艳,雷建都,林海,耿立媛,苏海佳,马光辉,苏志国.利用微流控装置制备微球的研究进展.过程工程学报.2009,9(5):1028-1034.
    [38]侯惠民.新给药系统的工程化-新制剂及制造装置.中国医药工业杂志.2007,38(3):146-155.
    [39]Tran V T, Benoit J P, Venier-Julienne M C. Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? International Journal of Pharmaceutics.2011,407(1-2):1-11.
    [40]Sand M L, Del W. Method for impregnating a thermoplastic polymer. US Patent,4598006, 1986.
    [41]Alessi P, Cortesi A, Kikic I. Effect of operating parameters on the impregnation of polymers with drugs. Proceedings of the 5th Meeting on Supercritical Fluids, Nice, France,1998: 373-378.
    [42]Natu M V, Gil M H, de Sousa H C. Supercritical solvent impregnation of poly (ε-caprolactone)/poly (oxyethylene-b-oxypropylene-b-oxyethylene) and poly(ε-caprolactone)/ poly(ethylene-vinyl acetate) blends for controlled release applications. Journal of Supercritical Fluids.2008,47(1):93-102.
    [43]Uzer S, Akman U, Hortacsu O. Polymer swelling and impregnation using supercritical CO2:a model-component study towards producing controlled-release drugs. Journal of Supercritical Fluids.2006,38(1):119-128.
    [44]叶树明,鲍成满,蒋春跃.超临界CO2药物插嵌及在线检测研究进展.化工进展.2007,26(3):381-385.
    [45]黄捷.超临界浸渍法制备以聚合物为载体的茂金属催化剂微粒的研究.杭州:浙江大学,2004.
    [46]Paolo A, Kikic I, Cortesi A, Fogar A, Moneghini M. Polydimethylsiloxanes in supercritical solvent impregnation (SSI) of polymers. Journal of Supercritical Fluids.2003,27(3):309-315.
    [47]Hay J N, Khan A. Environmentally friendly coatings using carbon dioxide as the carrier medium. Journal of Materials Science.2002,37(22):4743-4752.
    [48]Lopez-Periago A, Argemi A, Andanson J M, Fernandez V, Garcia-Gonzalez C A, Kazarian S G, Saurina J, Domingo C. Impregnation of a biocompatible polymer aided by supercritical CO2: evaluation of drug stability and drug-matrix interactions. Journal of Supercritical Fluids.2009, 48(1):56-63.
    [49]Kazarian S G, Chan K L A. FTIR Imaging of polymeric materials under high-pressure carbon dioxide. Macromolecules.2003,37(2):579-584.
    [50]Duarte A R C, Casimiro T, Aguiar-Ricardo A, Simplicio A L, Duarte C M M. Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery. Journal of Supercritical Fluids.2006,39(1):102-106.
    [51]Elvira C, Fanovich A, Fernandez M, Fraile J, San Roman J, Domingo C. Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-CO2 impregnation and by dissolution-evaporation techniques. Journal of Controlled Release.2004,99(2):231-240.
    [52]Braga M E M, Pato M T V, Silva H S R C, Ferreira E I, Gil M H, Duarte C M M, de Sousa H C. Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. Journal of Supercritical Fluids.2008,44(2):245-257.
    [53]Duarte A R C, Costa M S, Simplicio A L, Cardoso M M, Duarte C M M. Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. International Journal of Pharmaceutics.2006,308(1-2):168-174.
    [54]Gong K, Rehman I U, Darr J A. Characterization and drug release investigation of amorphous drug-hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation. Journal of Pharmaceutical And Biomedical Analysis.2008,48(4):1112-1119.
    [55]Shen Z, Huvard G S, Warriner C S, Me Hugh M, Banyasz J L, Mishra M K. CO2-assisted fiber impregnation. Polymer.2008,49(6):1579-1586.
    [56]Braga M E M, Costa V P, Pereira M J T, Fiadeiro P T, Gomes A P A R, Duarte C M M, de Sousa H C. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon a commercial contact lenses. International Journal of Pharmaceutics.2011,420(2):231-243.
    [57]Cabezas L I, Fernandez V, Mazarro R, Gracia I, de Lucas A, Rodriguez J F. Production of biodegradable porous scaffolds impregnated with indomethacin in supercritical CO2. Journal of Supercritical Fluids..2012,63:155-160.
    [58]Sproule T L, Lee J A, Li H, Lannutti J J, Tomasko D L. Bioactive polymer surfaces via supercritical fluids. Journal of Supercritical Fluids.2004,28(2-3):241-248.
    [59]Masmoudi Y, Azzouk L B, Forzano O, Andre J M, Badens E. Supercritical impregnation of intraocular lenses. Journal of Super critical Fluids.2011,60(0):98-105.
    [60]Yu J, Guan Y, Yao S, Zhu Z. Preparation of roxithromycin-loaded poly(1-lactic acid) films with supercritical solution impregnation. Industrial & Engineering Chemistry Research.2011, 50(24):13813-13818.
    [61]Rybaltovskii A O, Bogomolova L D, Jachkin V A, Minaev N V, Samoilovich M I, Tsvetkov M Y, Tarasova V V, Bagratashvili V N. Spectroscopic investigations of nanoporous SiO2 impregnated with Ag β-diketonates from supercritical solution of carbon dioxide. Optical Materials.2011,34(1):169-174.
    [62]Varona S, Rodriguez-Rojo S, Martin A, Cocero M J, Duarte C M M. Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. Journal of Supercritical Fluids.2011,58(2):313-319.
    [63]Tsutsumi C, Fukukawa N, Sakafuji J, Oro K, Hata K, Nakayama Y, Shiono T. Impregnation of poly(L-lactide-ran-cyclic carbonate) copolymers with useful compounds with supercritical carbon dioxide. Journal of Applied Polymer Science.2011,121(3):1431-1441.
    [64]Diez-Municio M, Montilla A, Herrero M, Olano A, Ibanez E. Supercritical CO2 impregnation of Iactulose on chitosan:a comparison between scaffolds and microspheres form. Journal of Supercritical Fluids.2011,57(1):73-79.
    [65]Dias A M A, Braga M E M, Seabra I J, Ferreira P, Gil M H, de Sousa H C. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. International Journal of Pharmaceutics.2011,408(1-2):9-19.
    [66]ArgemiA, Ellis J L, Saurina J, Tomasko D L. Development of a polymeric patch impregnated with naproxen as a model of transdermal sustained release system. Journal of Pharmaceutical Sciences.2011,100(3):992-1000.
    [67]Costa V P, Braga M E M, Guerra J P, Duarte A R C, Duarte C M M, Leite E O B, Gil M H, de Sousa H C. Development of therapeutic contact lenses using a supercritical solvent impregnation method.. Journal of Supercritical Fluids.2010,52(3):306-316.
    [68]Costa V P, Braga M E M, Duarte C M M, Alvarez-Lorenzo C, Concheiro A, Gil M H, de Sousa H C. Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. Journal of Supercritical Fluids.2010,53(1-3):165-173.
    [69]Belhadj-Ahmed F, Badens E, Llewellyn P, Denoyel R, Charbit G. Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. Journal of Supercritical Fluids.2009,51(2):278-286.
    [70]Tsutsumi C, Sakafuji J, Okada M, Oro K, Hata K. Study of impregnation of poly(l-lactide-ran-ε-caprolactone) copolymers with useful compounds in supercritical carbon dioxide. Journal of Materials Science.2009,44(13):3533-3541.
    [71]Andanson J M, Lopez-Periago A, Garcia-Gonzalez C A, Domingo C, Kazarian S G. Spectroscopic analysis of triflusal impregnated into PMMA from supercritical CO2 solution. Vibrational Spectroscopy.2009,49(2):183-189.
    [72]Banchero M, Manna L, Ronchetti S, Campanelli P, Ferri A. Supercritical solvent impregnation of piroxicam on PVP at various polymer molecular weights. Journal of Supercritical Fluids.2009,49(2):271-278.
    [73]Duarte A R C, Simplicio A L, Vega-Gonzalez A, Subra-Paternault P, Coimbra P, Gil M H, de Sousa H C, Duarte C M M. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. Journal of Supercritical Fluids.2007,42(3):373-377.
    [74]Diankov S, Barth D, Vega-Gonzalez A, Pentchev I, Subra-Paternault P. Impregnation isotherms of hydroxybenzoic acid on PMMA in supercritical carbon dioxide. Journal of Supercritical Fluids.2007,41(1):164-172.
    [75]Manna L, Banchero M, Sola D, Ferri A, Ronchetti S, Sicardi S. Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2. Journal of Supercritical Fluids.2007,42(3):378-384.
    [76]Gong K, Rehman I U, Darr J A. Synthesis of poly(sebacic anhydride)-indomethacin controlled release composites via supercritical carbon dioxide assisted impregnation. International Journal of Pharmaceutics.2007,338(1-2):191-197.
    [77]Gong K, Darr J A, Rehman I U. Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications. International Journal of Pharmaceutics.2006,315(1-2):93-98.
    [78]Moneghini M, Kikic I, Perissutti B, Franceschinis E, Cortesi A. Characterisation of nimesulide-betacyclodextrins systems prepared by supercritical fluid impregnation. European Journal of Pharmaceutics And Biopharmaceutics.2004,58(3):637-644.
    [79]Kazarian S G, Martirosyan G G. Spectroscopy of polymer/drug formulations processed with supercritical fluids:In situ ATR-IR and Raman study of impregnation of ibuprofen into PVP. International Journal of Pharmaceutics.2002,232(1-2):81-90.
    [80]Cortesi A, Alessi P, Kikic I, Kirchmayer S, Vecchione F. Supercritical fluids chromatography for impregnation optimization. Journal of Supercritical Fluids.2000,19(1):61-68.
    [81]刘大壮,王兆勤编著.溶度参数及其在涂料工业中的应用.海洋出版社,北京,2008.
    [82]van Krevelen D W, Te Nijenhuis K. Properties of polymers.科学出版社,北京,2010.
    [83]Prausnitz J M, Lichtenthaler R N, de Azevedo E G(著).陆小华,刘洪来(译).相平衡的分子热力学(原著第三版).化学工业出版社,北京,2006.
    [84]何曼君,陈维孝,董西侠编著.高分子物理复旦大学出版社,上海,1990.
    [85]李小苗,刘大壮,董雪茹.Hansen三维溶度参数的40年.粘接2007,(6):33-35.
    [86]陈福明,于磊.四维基团溶解度参数及其与分子溶解度参数的关联.清华大学学报(自然科学版).2000,(6):17-21.
    [87]赵沫,陈福明.计算液液平衡的基团溶解度参数模型研究.计算机与应用化学.2005,(1):33-37.
    [88]Marcus Y. Are solubility parameters relevant to supercritical fluids? Journal of Supercritical Fluids.2006,38(1):7-12.
    [89]Williams L L, Rubin J B, Edwards H W. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region. Industrial& Engineering Chemistry Research.2004,43(16):4967-4972.
    [90]邹亮,罗杰英,贺福元.溶度参数理论在药学领域中的应用.成都中医药大学学报.2007,(4):46-49.
    [91]王康,张效林,薛伟明,亢茂德.侧柏叶有效成分提取过程研究.化笋工程.1998,(3):21-24.
    [92]Reddy S N, Madras G. Solubilities of benzene derivatives in supercritical carbon dioxide. Journal of Chemical and Engineering Data.2011,56(4):1695-1699.
    [93]王伟彬,银建中,张礼鸣.溶解度参数法计算超临界流体的溶解度.化学工程.2008,(2):37-41.
    [94]曹栋,裘爱泳,王兴国.超临界流体分离大豆磷脂酰胆碱.中国油脂.2002,(3):72-73.
    [95]Greenhalgh D J, Williams A C, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. Journal of Pharmaceutical Sciences.1999,88(11):1182-1190.
    [96]Mohammad M A, Alhalaweh A, Velaga S P. Hansen solubility parameter as a tool to predict cocrystal formation. International Journal of Pharmaceutics.2011,407(1-2):63-71.
    [97]国家药典委员会.中华人民共和国药典2005版二部.化学工业出版社,北京,2005.
    [98]Tang Z, Jin J, Zhang Z, Liu H. New experimental data and modeling of the solubility of compounds in supercritical carbon dioxide. Industrial & Engineering Chemistry Research..2012, 51(15):5515-5526.
    [99]Gong X, Cao X. Measurement and-correlation of solubility of artemisinin in supercritical carbon dioxide. Fluid Phase Equilibria.2009,284(1):26-30.
    [100]Chrastil J. Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry.1982,86(15):3016-3021.
    [101]Kumar S K, Johnston K P. Modelling the solubility of solids in supercritical fluids with density as the independent variable. Journal of Supercritical Fluids.1988,1(1):15-22.
    [102]Sung H, Shim J. Solubility of C. I. disperse red 60 and C. I. disperse blue 60 in supercritical carbon dioxide. Journal of Chemical and Engineering Data.1999,44(5):985-989.
    [103]Bartle K D, Clifford A A, Jafar S A, Shilstone G F. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data. 1991,20(4):713-756.
    [104]Mendez-Santiago J, Teja A S. The solubility of solids in supercritical fluids.Fluid Phase Equilibria.1999,158-160:501-510.
    [105]Temtem M, Casimiro T, Mano J F, Aguiar-Ricardo A. Green synthesis of a temperature sensitive hydrogel. Green Chemistry.2007,9(1):75-79.
    [106]Cooper A I, Hems W P, Holmes A B. Synthesis of highly cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization. Macromolecules.1999,32(7): 2156-2166.
    [107]Wang Q, Guan Y, Yao S, Zhu Z. Microparticle formation of sodium cellulose sulfate using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Chemical Engineering Journal.2010,159(1-3):220-229.
    [108]Miao S, Yu J, Du Z, Guan Y, Yao S, Zhu Z. Supercritical fluid extraction and micronization of Ginkgo flavonoids from Ginkgo Biloba leaves. Industrial & Engineering Chemistry Research. 2010,49(11):5461-5466.
    [109]Cai M, Guan Y, Yao S, Zhu Z. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride. Journal of Supercritical Fluids.2008,43(3):524-534.
    [110]Xing Z, Wu G, Huang S, Chen S, Zeng H. Preparation of microcellular cross-linked polyethylene foams by a radiation and supercritical carbon dioxide approach. Journal of Supercritical Fluids.2008,47(2):281-289.
    [111]Xu Z, Jiang X, Liu T, Hu G, Zhao L, Zhu Z, Yuan W. Foaming of polypropylene with supercritical carbon dioxide. Journal of Supercritical Fluids.2007,41(2):299-310.
    [112]Ma S, Lu Z, Wu Y, Zhang Z. Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector. Journal of Supercritical Fluids.2010,54(2):129-136.
    [113]Hasan M M, Li Y G, Li G, Park C B, Chen P. Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. Journal of Chemical and Engineering Data.2010,55(11):4885-4895.
    [114]Duarte A R C, Martins C, Coimbra P, Gil M H M, de Sousa H C, Duarte C M M. Sorption and diffusion of dense carbon dioxide in a biocompatible polymer. Journal of Supercritical Fluids.2006,38(3):392-398.
    [115]Tang M, Du T, Chen Y. Sorption and diffusion of supercritical carbon dioxide in polycarbonate. Journal of Supercritical Fluids..2004,28(2-3):207-218.
    [116]Liu D, Tomasko D L. Carbon dioxide sorption and dilation of poly(lactide-co-glycolide). Journal of Supercritical Fluids.2007,39(3):416-425.
    [117]Liu H, Finn N, Yates M Z. Encapsulation and sustained release of a model drug, indomethacin, using CO2-based microencapsulation. Langmuir.2005,21(1):379-385.
    [118]Pini R, Storti G, Mazzotti M, Tai H, Shakesheff K M, Howdle S M. Sorption and swelling of poly(DL-lactic acid) and poly(lactic-co-glycolic acid) in supercritical CO2:an experimental and modeling study. Journal of Polymer Science Part B:Polymer Physics.2008,46(5): 483-496.
    [119]Duarte A R C, Anderson L E, Duarte C M M, Kazarian S G. A comparison between gravimetric and in situ spectroscopic methods to measure the sorption of CO2 in a biocompatible polymer. Journal of Supercritical Fluids.2005,36(2):160-165.
    [120]Crank J. The mathematics of diffusion. Oxford University Press, Oxford,1975.
    [121]利帕托夫.聚合物物理化学手册.中国石化出版社,北京,1995.
    [122]Kiran E. Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part Ⅱ. Foaming of poly(ε-caprolactone-co-lactide) in carbon dioxide and carbon dioxide+acetone fluid mixtures and formation of tubular foams via solution extrusion. Journal of Supercritical Fluids.2010,54(3):308-319.
    [123]赵瑞玲,丁红,谢茵.阿霉素聚乳酸微球的制备及体外释药特性研究.中国医院药学杂志.2004,(2):12-13.
    [124]Reverchon E, Porta G D. Micronization of antibiotics by supercritical assisted atomization. Journal of Supercritical Fluids.2003,26(3):243-252.
    [125]张凯,雷毅,王宇光,江璐霞.微米级单分散共聚物微球的制备.高分子学报.2002,(3):341-344.
    [126]田瑞,王连艳,吴颉,张洁,曾烨婧,马光辉.快速膜乳化法制备粒径均一的PLGA微球和微囊.过程工程学报.2009,9(4):754-762.
    [127]胡巧玲,屈建,王征科,费若冲,柴飞彝,伍佳,王幽香.高压静电法制备多孔磁性壳聚糖微球.告等学校化学学报.2008,(8):1660-1664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700