用户名: 密码: 验证码:
Al_2O_3/延性夹层/树脂层状复合材料的制备和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延性夹层层状复合材料主要通过夹层的塑性形变引起裂纹在夹层界面钝化、捕获、桥连等,提高层状复合材料的韧性。本研究将陶瓷材料、金属材料和高分子材料有机结合,应用应力分散和多级能耗的机理,以环氧树脂胶黏剂为粘结剂,采用常温下模压的方法制备了Al_2O_3/Al、Al_2O_3/Nylon/Al、Al_2O_3/steel-epoxy层状复合材料,对它们进行了显微结构分析、力学性能测试、载荷-位移曲线分析、裂纹路径分析等,并进行了裂纹扩展机理探讨和Al_2O_3/steel-epoxy层状复合材料的耐水、酸、碱性能测试。
     为了确定固化剂用量,对树脂:固化剂质量比为1∶0.7、1∶0.8、1∶0.9和1∶1.0时环氧树脂固化体系粘结强度和力学性能进行了研究。结果表明:当树脂:固化剂质量比为1:0.8时,环氧树脂胶黏剂的粘结强度最大,力学性能较佳。故选择树脂:固化剂的配比为1∶0.8。
     采用Al_2O_3为陶瓷层,Al薄片为夹层,环氧树脂胶黏剂为粘结剂,在5MPa压力下常温模压固化,制备了Al_2O_3/Al层状复合材料。显微结构分析显示其层间结合紧密,胶层厚度为2~5μm;力学性能测试表明:和氧化铝相比,其强度虽略有下降,但断裂韧性和断裂功有较大提高,这得益于裂纹扩展过程中形成的多裂纹特征。
     鉴于Al_2O_3/Al层状复合材料胶层较薄的情况,在Al_2O_3层和Al夹层间引入尼龙丝网层控制胶层厚度,制备了Al_2O_3/Nylon/Al层状复合材料。胶层厚度约为0.15mm。力学性能测试表明:相比于Al_2O_3/Al层状复合材料,其密度、模量、抗弯强度、断裂韧性有所降低,断裂功稍有提高,但其冲击韧性有较大提高。
     此外,为了增加延性夹层的延展性,提高层状复合材料的综合性能,分别以60、80、120、150、200、250、300、350和400目钢质丝网作为增强体,环氧树脂胶黏剂作为粘结剂和树脂基体形成steel-epoxy夹层,氧化铝作为陶瓷层,在5MPa压力下常温模压固化,制备了一系列Al_2O_3/steel-epoxy层状复合材料。结果表明:用200目钢丝网制备的层状复合材料具有较好的综合力学性能,其抗弯强度和氧化铝片相当,达到303MPa,断裂韧性、断裂功和冲击韧性有很大的提高,分别达到14.5MPa·m~(1/2)、3.0KJ/m~2和8.46KJ/m~2。钢丝网目数对层状复合材料性能有显著的影响。
     本文对延性夹层的桥接作用进行了模拟,并对裂纹扩展模式进行了分析和探讨。夹层材料性质、层间剥离对夹层的桥接应力和塑性形变有显著的影响,而且存在着一个夹层厚度/陶瓷层厚度的的临界值((tm/tc)crit),小于此临界值时发生宏观裂纹断裂,大于此临界值时发生多裂纹断裂。
     最后,对具有较好综合性能的200目丝网制备的Al_2O_3/steel-epoxy层状复合材料进行了吸水率及耐酸碱性测试。结果表明其吸水率较低,在50%H2SO4和20%NaOH溶液中浸泡后质量变化率也不大,这主要是因为层状复合材料裸露在表面的树脂面积较小的缘故。
     本文所制备的Al_2O_3/Al、Al_2O_3/Nylon/Al和Al_2O_3/steel-epoxy层状复合材料具有典型的延性夹层层状复合材料特征,特别是200目钢丝网制备的Al_2O_3/steel-epoxy层状复合材料具有较好的综合性能,不仅密度小,强度适中,断裂韧性、断裂功和冲击韧性高,而且具有较好的耐湿、耐腐蚀性和能量吸收能力,有望在需要能量吸收的抗冲击场合得到应用。
The toughness of laminated composites with ductile interlayers is improved mainly byplastic deformation of the interlayers,which lead to crack blunting, crack capturing and crackbridging in ductile interlayers.In this thesis, with epoxy resin adhesives as binder, ceramic,metal and polymer are combined to fabricate Al_2O_3/Al, Al_2O_3/Nylon/Al andAl_2O_3/steel-epoxy laminated composites using mould pressing method at room temperature.The microstructures, mechanical properties, load-displacement curves and crack paths ofthese composites were analyzed, and the machanism of crack propagation was discussed. Thewater resistance, acid resistance and alkali resistance of Al_2O_3/steel-epoxy composites weretested.
     In order to determine the addition content of curing agent, the bond strength and themechanical properties of epoxy resin adhesives with various mass ratios of epoxy resin tohardener, namely1:0.7,1:0.8,1:0.9and1:1.0, were investigated. The results indicate that thebond strength reaches its maximum when the mass ratio is1:0.8, and the correspondingcuring system can get a better mechanical performance. So, the mass ratio of epoxy resin tohardener is decided to1:0.8.
     Al_2O_3as ceramic layer, Al slice as interlayer, epoxy resin adhesives as binder, laminatedAl_2O_3/Al composites were fabricated via a simple moulding process at room temperature and5MPa, with epoxy resin adhesives as the binder. Microstructure analysis results show that theinterfaces of Al_2O_3/epoxy/Al bond tightly with a2~5μ adhesives thickness. Moreover,mechanical test results show that, the fabricated composites, compared with Al_2O_3monolith,have a slightly lower bending strength but much higher fracture toughness and fracture work,which is attributed to the multiple fractures during the crack propagation.
     In view of the fact that thin adhesives layer in Al_2O_3/Al laminated composites, nylon netwas introduced into the interfaces between Al_2O_3and Al layer, to fabricate Al_2O_3/Nylon/Allaminated composites. The thickness of adhesives layer is about o.15mm. The mechanicalproperties test show that, the fabricated composites, compared with Al_2O_3/Al laminatedcomposites, have lower density, modulus, bending strength and fracture toughness as well as aslight increase of fracture work. But the impact toughness is improved significantly.
     Furthermore, in order to improve the ductility of interlayer and the comprehensiveproperties of laminated composites, steel-epoxy interlayers was prepared by combined epoxy resin adhesives with60,80,120,150,200,250,300,350and400steel mesh, respectively.Then, Al_2O_3as ceramic layer, steel-epoxy as interlayers, Al_2O_3/steel-epoxy laminatedcomposites were fabricated via a simple moulding process at room temperature and5MPa.The results show that the laminated composites prepared using200steel mesh have the bestcomprehensive properties. As compared with Al_2O_3monolith, the fabricated composites havea closing bending strength of303MPa. Moreover, the fracture toughness, fracture work andimpact toughness of the composites are improved greatly, which is about14.5MPa·m~(1/2),3.0KJ/m~2and8.46KJ/m~2, respectively.
     In this thesis, the bridging effect for ductile interlayer of laminated composites wassimulated and the crack propagation patterns were analyzed and discussed. The results showthat the properties of ductile interlayer and the interface debonding have a significantinfluence on bridging stress and plastic deformation of interlayers. The results also show thatthere exist a critical value of metal layer thickness to ceramic layer thickness, namely (tm/tc)crit.When tm/tc<(tm/tc)crit, the crack propagation tend to show macroscopic crack pattern. whereastm/tc>(tm/tc)crit, the crack propagation tend to show multiple crack pattern.
     Finally, the water content, acid resistance and alkali resistance of the Al_2O_3/steel-epoxylaminated composites prepared using200steel mesh were tested. The results show that thewater content is low and the mass change treated in50%H2SO4and20%NaOH tend to befew due to the small area of resin exposed outside.
     Al_2O_3/Al, Al_2O_3/Nylon/Al and Al_2O_3/steel-epoxy laminated composites with typicalcharacteristics of ductile interlayers can be obtained in this research. Especially, theAl_2O_3/steel-epoxy laminated composites perpared using200steel mesh have the bestproperties. The laminated composites have low density, moderate strength, high fracturetoughness, high fracture work and impact toughness, good water resistance, corrosionresistance and high energy consumption during fracture, therefore have a good applicationprospect in fields where requiring energy absorbing such as in anti-impact applications.
引文
[1] Jackson A., Vincent J. and Turner R..The mechanical design of nacre[J].Proceedings ofthe Royal Society of London. Series B. Biological sciences,1988.234(1277):415.
    [2] Clegg W.J., Kendall K. and Alford N.M.. A simple way to make tough ceramics [J].Nature,1990,347(10):445-447.
    [3]李冬云,乔冠军,金志浩等.SiC/C层状陶瓷的断裂行为研究[J].稀有金属材料与工程,2003,32(8):635-638.
    [4]杨大祥,周新贵,金志浩等.SiC/C层状复合材料的烧结工艺及其对性能的影响[J].机械工程材料,2005,29(6):48-51.
    [5] Yang G.,Liu Y. and Qiao G. et al. Preparation and R-curve properties of laminated Si/SiCceramics from paper[J]. Materials Science and Engineering: A,2008,492(1-2):327-332,.
    [6] You C., Jiang D.L. and Tan S..SiC/TiC laminated structure shaped by electrophoreticdeposition[J]. Ceramics International,2004,30(5):813-815.
    [7] Grigoriev O.N., Karoteev A.V. and Maiboroda E.N. et al. Structure, nonlinearstress–strain state and strength of ceramic multilayered composites[J]. Composites PartB: Engineering,2006,37(6):530-541.
    [8] Grigoriev O., Gogotsi G.A. and Gogotsi Y.G.. Synthesis and properties of ceramics in theSiC-B4C-MeB2system[J]. Powder Metallurgy and Metal Ceramics,2000,39(5-6):239-250.
    [9] Grigoriev O.N., Subbotin V.I. and Kovalchuk V.V. et al. Structure and Properties ofSiC-TiB2Ceramics[J]. Journal of Materials Processing and ManufacturingScience,1998,7:99-110.
    [10]李冬云,乔冠军,金志浩等.SiC/BN层状陶瓷耐损伤性能[J].复合材料学报,2003,20(6):21-25.
    [11]李冬云,乔冠军,金志浩等.SiC/BN层状陶瓷的阻力曲线行为[J].中国有色金属学报,2003.13(4):944-948.
    [12]李冬云,杨辉,乔冠军等.弱层成分对SiC/BN层状陶瓷阻力行为的影响[J].复合材料学报,2006,23(2):110-114.
    [13]李冬云,杨辉,乔冠军等.SiC/BN层状陶瓷的抗热震性能研究[J].材料科学与工程学报,2006,24(001):17-19.
    [14] Reynaud C., Thévenot F. and Chartier T. et al. Mechanical properties and mechanicalbehaviour of SiC dense-porous laminates[J]. Journal of the European Ceramic Society,2005,25(5):589-597.
    [15] Tariolle S. Reynaud C. and Thévenot F. et al. Preparation,microstructure andmechanical properties of SiC–SiC and B4C–B4C laminates[J]. Journal of Solid StateChemistry,2004,177(2):487-492.
    [16] Kovar D.,Thouless M. and Halloran J.W.. Crack deflection and propagation in layeredsilicon nitride/boron nitride ceramics[J]. Journal of the American Ceramic Society,1998,81(4):1004-1112.
    [17] Liu H. and Hsu S.M.. Fracture behavior of multilayer silicon nitride/boron nitrideceramics[J]. Journal of the American Ceramic Society,1996,79(9):2452-2457.
    [18]李翠伟,黄勇,汪长安等.放电等离子快速烧结SiC晶须增强Si3N4/BN层状复合材料[J].无机材料学报,2002,17(6):1220-1226.
    [19]李翠伟,汪长安,黄勇等.Si3N4/BN层状复合陶瓷的防弹结构设计[J].稀有金属材料与工程,2007,36(A01):351-353.
    [20]李翠伟,汪长安,黄勇等.Si3N4/BN层状复合陶瓷抗穿甲破坏实验研究[J].无机材料学报,2005,20(1):99-104.
    [21]赵世柯,汪长安,李翠伟等.Si3N4/BN层状陶瓷材料中BN界面层的作用[R].中国硅酸盐学会,2003年学术年会论文摘要集,2003.
    [22]邹林华,黄勇,汪长安等. Si3N4/BN层状复合材料界面断裂韧性的测定[A].张卫等.2000年材料科学与工程新进展(上)-2000年中国材料研讨会论文集[C].北京:冶金工业出版,2000:861-863.
    [23] Yu Z.B., K Z. and K V.D.. Laminated Si3N4/SiC Composites with Self-SealedStructure[J]. Key Engineering Materials,2004,280:1873-1876.
    [24] Orlovskaya N., Kuebler J. and Subbotin V. et al. Design of Si3N4-based ceramiclaminates by the residual stresses[J]. Journal of Materials Science,2005,40(20):5443-5450.
    [25] Blugan G., Dobedoe R. and Lugovy M. et al.Si3N4–TiN based micro-laminates withrising R-curve behaviour[J]. Composites Part B: Engineering,2006,37(6):459-465.
    [26] Hadad M., Blugan G. and Kübler J. et al.Tribological behaviour of Si3N4andSi3N4–%TiN based composites and multi-layer laminates[J]. Wear,2006,260(6):634-641.
    [27] She J.H., Inoue T. and Ueno K..Multilayer Al2O3-SiC ceramics with improvedmechanical behavior[J]. Journal of the European Ceramic Society,2000.20:1771-1775.
    [28] She J.H., Inoue T. and Ueno K..Damage resistance and R-curve behavior of multilayerAl2O3/SiC ceramics[J]. Ceramics International,2000,26(8):801-805.
    [29] Zan Q.F., Wang C.A. and Huang Y. et al. The interface-layer and interface in theAl2O3/Ti3SiC2multilayer composites prepared by in situ synthesis[J]. Materials Letters,2003,57(24-25):3826-3832.
    [30] Zan Q.F., Wang C.A. and Huang Y. et al. Improvement of mechanical properties ofAl2O3/Ti3SiC2multilayer ceramics by adding SiC whiskers into Al2O3layers[J].Ceramics International,2007,33(3):385-388.
    [31] Chartier T. and Rouxel T.. Tape-cast alumina-zirconia laminates: processing andmechanical properties[J]. Journal of the European Ceramic Society,1997,17(2):299-308.
    [32] Boch P., Chartier T. and Huttepain M..Tape casting of Al2O3/ZrO2laminatedcomposites[J]. Journal of the American Ceramic Society,1986,69(8): C_191-C_192.
    [33] Chartier, T., Merle D. and Besson J..Laminar ceramic composites[J]. Journal of theEuropean Ceramic Society,1995,15(2):101-107.
    [34] Sbaizero O. and Lucchini E..Influence of residual stresses on the mechanical propertiesof a layered ceramic composite[J]. Journal of the European Ceramic Society,1996,16(8):813-818.
    [35] Lucchini E. and Sbaizero O..Alumina/zirconia multilayer composites obtained bycentrifugal consolidation[J]. Journal of the European Ceramic Society,1995,15(10):975-981.
    [36] Tomaszewski H., Strzeszewski J. and G bicki W.. The role of residual stresses inlayered composites of Y–ZrO2and Al2O3[J]. Journal of the European Ceramic Society,1999,19(2):255-262.
    [37] Tomaszewski, H. Residual stresses in layered ceramic composites[J]. Journal of theEuropean Ceramic Society,1999,19(6):1329-1331.
    [38] Gurauskis J., Sánchez-Herencia A.J. and Baudín C.. Al2O3/Y-TZP and Y-TZP materialsfabricated by stacking layers obtained by aqueous tape casting[J]. Journal of theEuropean Ceramic Society,2006,26(8):1489-1496.
    [39] Gurauskis, J., Sánchez-Herencia A.J. and Baudín C.. Alumina–zirconia layeredceramics fabricated by stacking water processed green ceramic tapes[J]. Journal of theEuropean Ceramic Society,2007,27(2-3):1389-1394.
    [40] Sánchez-Herencia A.J., Gurauskis J. and Baudín C.. Processing of Al2O3/Y-TZPlaminates from water-based cast tapes[J]. Composites Part B: Engineering,2006,37(6):499-508.
    [41] Bermejo R., Baudín C. and Moreno R. et al. Processing optimisation and fracturebehaviour of layered ceramic composites with highly compressive layers[J]. CompositesScience and Technology,2007,67(9):1930-1938.
    [42] Bermejo R., Ceseracciu L. and Llanes L. et al. Fracture of layered ceramics[J]. KeyEngineering Materials,2009,409:94-106.
    [43] Bermejo R., Llanes L. and Anglada M. et al. Thermal shock behavior of an Al2O3/ZrO2multilayered ceramic with residual stresses due to phase transformations[J]. KeyEngineering Materials,2005,290:191-198.
    [44] Bermejo R., Pascual J. and Lube T. et al. Optimal strength and toughness ofAl2O3-ZrO2laminates designed with external or internal compressive layers[J]. Journalof the European Ceramic Society,2008,28(8):1575-1583.
    [45] Bermejo R., Sánchez-Herencia A.J. and Llanes L. et al. High-temperature mechanicalbehaviour of flaw tolerant alumina-zirconia multilayered ceramics[J]. Acta Materialia,2007,55(14):4891-4901.
    [46] Bermejo R., Supancic P. and Lube T.. Geometry Effect on the Thermal Shock Responseof Al2O3/ZrO2Multilayered Ceramics[J]. Key Engineering Materials,2007,333:251-254.
    [47] Bermejo R., Torres Y. and Anglada M. et al. Fatigue behavior of alumina–zirconiamultilayered ceramics[J]. Journal of the American Ceramic Society,2008,91(5):1618-1625.
    [48] Bermejo R., Torres Y. and Sánchez-Herencia A.J. et al. Threshold strength evaluationon an Al2O3–ZrO2multilayered system[J]. Journal of the European Ceramic Society,2007,27(2-3):1443-1448.
    [49] Bermejo R., Torres Y. and Llanes L.. Loading configuration effects on the strengthreliability of alumina-zirconia multilayered ceramics[J]. Composites Science andTechnology,2008,68(1):244-250.
    [50] Bermejo R., Torres Y. and Sánchez-Herencia A.J. et al. Residual stresses, strength andtoughness of laminates with different layer thickness ratios[J]. Acta Materialia,2006,54(18):4745-4757.
    [51] Bermejo R., Torres Y. and Sánchez-Herencia A.J. et al. Fracture behaviour of anAl2O3–ZrO2multi‐layered ceramic with residual stresses due to phasetransformations[J]. Fatigue&Fracture of Engineering Materials&Structures,2006.29(1):71-78.
    [52] Zhang G.J., Yue X.M. and Watanabe T. Al2O3-TiC-(MoSi2+Mo2B5) MultilayerComposites Prepared by Tape Casting[J]. Journal of the European CeramicSociety,1999,19:2111-2116.
    [53] Watanabe T., Zhang G.J. and Yue X.M. et al. Multilayer composites in Al2O3-MoSi2system[J]. Materials Chemistry and Physics,2001,67:256–262.
    [54] Zhang J.X., Huang Z.R. and Jiang D.L. et al. Preparation of titanium nitride/aluminalaminate composites[J]. Journal of the American Ceramic Society,2002,85(5):1133-1138.
    [55] Park S.Y., Saruhan B. and Schneider H.. Mullite/zirconia laminate composites for hightemperature application[J]. Journal of the European Ceramic Society,2000,20(14):2463-2468.
    [56] Bueno S., Moreno R. and a C.. Design and processing of Al2O3–Al2TiO5layeredstructures[J]. Journal of the European Ceramic Society,2005,25(6):847-856.
    [57]. M. a a.. Reaction sintered Al2O3/Al2TiO5microcrack-freecomposites obtained by colloidal filtration[J]. Journal of the European Ceramic Society,2004,24(9):2785-2791.
    [58] Mawdsley J.R., Kovar D. and Halloran J.W.. Fracture behavior of alumina/monazitemultilayer laminates[J]. Journal of the American Ceramic Society,2000,83(4):802-808.
    [59] Tomaszewski H., W a z H. a Wa. et al. Multilayer ceramic composites withhigh failure resistance[J]. Journal of the European Ceramic Society,2007,27(2):1373-1377.
    [60] Zhang T., Jin H.Y. and Wang Y.I. et al. The Mechanical Properties of AlN/BNLaminated Ceramic Composites[A]. Jun B. et al. Materials ScienceForum[C].Switzerland: Trans Tech Publ,2008,569:97-100.
    [61] Zhou P., Hu P. and Zhang X. et al. Laminated ZrB2–SiC ceramic with improvedstrength and toughness[J]. Scripta Materialia,2011,64(3):276-279.
    [62]罗永明,潘伟,陈健等.SiC/W层状复合材料力学性能与显微结构的研究[J].材料导报,2000,14(005):49-51.
    [63]袁广江,罗永明,陈大明等.SiC基层状复合材料界面层的选择[J].硅酸盐学报,2001,29(003):226-231.
    [64]黄奇良,潘伟. Al2O3/W层状复合材料性能及微观结构研究[J].广西民族学院学报(自然科学版),1998,4(004):24-27.
    [65]黄奇良,潘伟. Al2O3/W层状复合材料的制备[J].广西民族学院学报(自然科学版),1998,4(3):32-34.
    [66] Chen Z.,Mecholsky J.J..Control of strength and toughness of ceramic/metal laminatesusing interface design[J]. Journal of materials research,1993,8(09):2362-2369.
    [67] Chen Z.,Mecholsky J.J.. Damage-tolerant laminated composites in thermal shock[J].Journal of Materials Science,1993,28(23):6365-6370.
    [68] Hehn L., Zheng C. and Mecholsky J.J. et al. Measurement of residual stresses inAl2O3/Ni laminated composites using an X-ray diffraction technique[J]. Journal ofMaterials Science,1995,30(5):1277-1282.
    [69] Chen Z. and Mecholsky J.J.. Toughening by metallic lamina in nickel/aluminacomposites[J]. Journal of the American Ceramic Society,1993,76(5):1258-1264.
    [70] Mekky W., Nicholson P.S.. The fracture toughness of Ni/Al2O3laminates by digitalimage correlation I: Experimental crack opening displacement and R-curves[J].Engineering Fracture Mechanics,2006,73(5):571-582.
    [71] Mekky W., Nicholson P.S.. The fracture toughness of Ni/Al2O3laminates by digitalimage correlation II: Bridging-stresses and R-curve models[J]. Engineering FractureMechanics,2006,73(5):583-592.
    [72] Mekky W., Nicholson P.S.. R-curve modeling for Ni/Al2O3laminates[J]. CompositesPart B: Engineering,2007,38(1):35-43.
    [73] Zuo K.H., Jiang D.L. and Lin Q.L.. Al2O3/Ni Laminar Ceramics Shaped by TapeCasting and Electroless Plating[J]. Journal of the American Ceramic Society,2005,88(9):2659-2661.
    [74] Zuo K.H., Jiang D.L. and Lin Q.L.. Mechanical properties of Al2O3/Ni laminatedcomposites[J]. Materials Letters,2006,60(9-10):1265-1268.
    [75] Zuo K.H., Jiang D.L. and Lin Q.L.. Fabrication and interfacial structure of Al2O3/Nilaminar ceramics[J]. Ceramics International,2006,32(6):613-616.
    [76] Zuo K.H., Jiang D.L. and Lin Q.L. et al. Improving the mechanical properties ofAl2O3/Ni laminated composites by adding Ni particles in Al2O3layers[J]. MaterialsScience and Engineering: A,2007,443(1-2):296-300.
    [77]黄康明,李伟信,饶平根等. Al2O3基片/Al层状陶瓷的力学行为机理[J].人工晶体学报,2009,38(002):476-480.
    [78]黄康明,李伟信,饶平根等. Al2O3基片/Al层状陶瓷的力学性能研究[J].人工晶体学报,2009.(001):133-138.
    [79] Huang K.M,Li W.X and Rao P.G. et al. Preparation and mechanical properties ofAl2O3/Al laminated ceramic matrix composites[J]. Journal of Wuhan University ofTechnology--Materials Science Edition,2011,26(5):891-896.
    [80]黄康明. Al2O3陶瓷基层状复合材料的制备和性能研究[D].中国广东:华南理工大学,2010
    [81] Hong S.H., Kim H. and Lee J.. Crack propagation behaviour during three-pointbending of polymer matrix composite/Al2O3/polymer matrix composite laminatedcomposites[J]. Materials Science and Engineering: A,1995,194(2):157-163.
    [82]汪日志,冯庆玲.仿生设计的Al2O3/纤维增强树脂层状复合材料[J].材料研究学报,1996,10(1):95-100.
    [83] Zhao S., Zhang J., Li W. et al. Effect of inorganic–organic interface adhesion onmechanical properties of Al2O3/polymer laminate composites[J]. Composites Scienceand Technology,2003,63(7):1009-1014.
    [84]黄勇,汪长安.高韧性复相陶瓷材料的仿生结构设计,制备与力学性能[J].成都大学学报:自然科学版,2002,21(003):1-7.
    [85] Clegg W.J. The fabrication and failure of laminar ceramic composites[J]. Actametallurgica et materialia,1992,40(11):3085-3093.
    [86] You C., Jiang D.L. and Tan S.H.. SiC/TiC laminated structure shaped byelectrophoretic deposition[J]. Ceramics International,2004,30(5):813-815.
    [87] Tariolle S., Reynaud C. and Thevenot F. et al. Preparation, microstructure andmechanical properties of SiC–SiC and B4C–B4C laminates[J]. Journal of Solid StateChemistry,2004,177(2):487-492.
    [88]成茵,肖汉宁,李玉平.层状复合陶瓷增韧机理和制备工艺的研究[J].陶瓷学报,2003,24(002):111-115.
    [89] Náhlík L., SestákováL. and Hutar P.. Estimation of apparent fracture toughness ofceramic laminates[J]. Computational Materials Science,2009,46(3):614-620.
    [90] Náhlík L., SestákováL. and Hutar P. et al. Prediction of crack propagation in layeredceramics with strong interfaces[J]. Engineering Fracture Mechanics,2010,77(11):2192-2199.
    [91] Kuo D.H., Kriven W.M.. Fracture of multilayer oxide composites[J]. Materials Scienceand Engineering: A,1998,241(1):241-250.
    [92]罗永明,潘伟,陈健等. SiC/W层状复合材料的制备工艺与力学性能[J].炭素技术,2000,4:43-43.
    [93]刘开平,周敬恩.层状陶瓷复合材料制备技术的研究进展[J].陶瓷,2003,3:15-19.
    [94]梁国正等,模压成型技术[M].北京:化学工业出版社,1999:38-47
    [95]黄家越,史元科.用轧膜成形方法研制95瓷电路基片(板)[J].陶瓷,2004,3:31-33.
    [96]黄勇,向军辉.陶瓷材料流延成型研究现状[J].硅酸盐通报,2001,20(5):22-27.
    [97]李冬云,乔冠军,金志浩.流延法制备陶瓷薄片的研究进展[J].硅酸盐通报,2004,23(2):44-47.
    [98]刘锦生.陶瓷注浆成形及其工艺控制[J].科协论坛,2009,3:160-161.
    [99]赵建玲,王晓慧,郝俊杰.电泳沉积及其在新型陶瓷工艺上的应用[J].功能材料,2005,36(002):165-168.
    [100]关春龙,赫晓东,李垚.叠层状复合材料的研究进展[J].材料导报,2004,18(4):49-52.
    [101]范景莲,黄伯云,刘军.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1):29-33.
    [102]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,12(2):129-133.
    [103]高永毅,焦群英,郑仕远.SiC-W层状复合材料增韧机理分析[J].中国农业大学学报,2002,7(2):53-56.
    [104] Clegg W.J. Design of ceramic laminates for structure applications[J]. Material Scienceand Technology,1998,14:483-495.
    [105] Chen B., Ding P. and Cheng C. et al. Crack growth resistance behavior and thermalshock resistance for ZrO2+Al2O3laminated ceramics[J]. Journal of the Chinese CeramicSociety,2004,32(6):718-722722.
    [106] Zhou Z., Wang Z. and Yi Y. et al.A thermal-shock-resistance model for laminatedceramics and its validation[J]. Journal of the European Ceramic Society,2010,30(6):1543-1547.
    [107]李广宇等.环氧胶黏剂与应用技术[M].北京:化学工业出版社,2007:12-56.
    [108]李子东等.实用胶粘技术[M].北京:国防工业出版社,2007:1-43.
    [109]杨世芳,代化,管蓉.陶瓷用胶黏剂的研究现状[J].化学与黏合,2005,27(2):5.
    [110]管蓉等.玻璃与陶瓷用胶黏剂及粘接技术[M].北京:化学工业出版社,2004:34-89.
    [111]徐祖顺等.织物用胶黏剂及粘接技术[M].北京:化学工业出版社,2004:25-130.
    [112]林润雄,姜斌.高吸水性树脂吸水机理的探讨[J].北京化工大学学报:自然科学版,1998,25(3):20-25.
    [113]黄明志等,金属力学性能[M].西安:西安交通大学出版社,1986:101-104.
    [114] Deng Z.Y., Zhang G.J. and Ando M. et al. Model analysis of multicrack mechanismsin ceramic/superplastic laminates[J]. Journal of the American Ceramic Society,2002,85(7):1793-1803.
    [115] Huang Y., Zhang H.. The role of metal plasticity and interfacial strength in thecracking of metal/ceramic laminates[J]. Acta metallurgica et materialia,1995,43(4):1523-1530.
    [116] Hwu K.,Derby B.. Fracture of metal/ceramic laminates—II. Crack growth resistanceand toughness[J]. Acta Materialia,1999,47(2):545-563.
    [117] Hwu K.,Derby B.. Fracture of metal/ceramic laminates--I. Transition from single tomultiple cracking[J]. Acta Materialia,1999,47(2):529-543.
    [118] Mekky W., Nicholson P.S.. Modeling constrained metal behavior in ceramic/metallaminates[J]. Composites Part B: Engineering,2008,39(3):497-504.
    [119] Rice J.R.. A path independent integral and the approximate analysis of strainconcentration by notches and cracks[R], USA: Brown University providence Ridiv ofEngineering,1967.
    [120] Mataga P.A. Deformation of crack-bridging ductile reinforcements in toughenedbrittle materials[J]. Acta metallurgica,1989,37(12):3349-3359.
    [121] Scheider I., Brocks W. and Cornec A.. Procedure for the determination of truestress-strain curves from tensile tests with rectangular cross-section specimens[J].Journal of engineering materials and technology,2004,126(1):70-76.
    [122] Shaw, M., Clyne T.W. and Cocks A.C.F. et al. Cracking patterns in metal-ceramiclaminates: effects of plasticity[J]. Journal of the Mechanics and Physics of Solids,1996,44(5):801-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700