用户名: 密码: 验证码:
低介电常数聚酰亚胺/纯硅沸石杂化膜的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(polyimide, PI)因集多种优异性能于一体而被广泛应用于电子电气产业中。随着高性能超大规模集成电路的快速发展,电路中导线密度不断增加及器件尺寸不断减小对电介质提出了更高要求,要求相应电介质材料具有更低的介电常数。PI受制于其较高的本征介电常数,尚不能满足现代微电子产业的要求。因此,制备新一代兼具低介电常数和优异综合性能的PI材料成为近年来材料领域的一个研究重点。
     本文合成了具有较低框架密度的MEL型纯硅沸石纳米晶(pure silica zeolitenanocrystal, PSZN),并通过表面改性制备了PSZN的氨基衍生物(amino-derivative ofPSZN, A-PSZN),通过溶液共混法将A-PSZN添加至具有不同主链结构的PI的前驱体PAA溶液中,经涂膜和静电纺丝后再热酰亚胺化处理制备了一系列PI/A-PSZN杂化膜,并对杂化材料各方面性能进行系统研究。
     1.以正硅酸乙酯(TEOS)为硅源,四丁基氢氧化铵(TBAOH)为模板剂及碱源,经合成釜内水热静态晶化法制备了PSZN,并采用硅烷偶联剂3-氨丙基三乙氧基硅烷(KH550)在弱酸性条件下对PSZN进行表面改性制备A-PSZN。通过考察和优化PSZN合成过程中各个影响因素,确定了制备粒径分布均匀且形貌规整的PSZN的适宜条件为:将各组分摩尔比为1TEOS/0.3TBAOH/20H2O的合成液在室温下搅拌预水解24h后,在110°C下晶化24h。随着TBAOH/TEOS摩尔比降低,H2O/TEOS摩尔比增大,晶化温度升高,PSZN的粒径增大,分布变宽,颗粒出现团聚现象且外观形貌不规则。研究结果表明,KH550主要在PSZN的(101)晶面进行接枝反应。因此,该表面改性处理并未对样品的微观形貌、结晶度及微孔特性产生明显影响,PSZN和A-PSZN均为单分散的橄榄形颗粒,具有高结晶度及相似的微孔性质,KH550在PSZN表面的接枝率为3.10%。
     2.分别将A-PSZN和PSZN通过溶液共混法添加至均苯四甲酸酐(PMDA)-4,4’-二氨基二苯醚(ODA)型PI的前驱体聚酰胺酸(PAA)中,经热酰亚胺化制备了PMDA-ODA型PI/A-PSZN杂化膜和PMDA-ODA型PI/PSZN复合膜。研究表明,A-PSZN可通过氨基与基体反应而均匀分散并形成交联结构,而PSZN因与基体相容性差而团聚,相比之下,杂化膜比复合膜具有更为优异的综合性能。当A-PSZN添加量为5wt%时,杂化膜在1MHz测试频率下的介电常数由基体的3.52降至3.11,同时材料的热性能、力学性能和表面性能得到提升。然而,当A-PSZN添加量超过5wt%后,由于过量的A-PSZN不能通过化学键与基体良好结合而团聚,导致材料综合性能反而下降。
     3.在PI的主链中引入-CF3取代基降低基体的介电常数,同时通过添加A-PSZN进一步降低含氟PI介电常数并改善其较差的热性能和力学性能。以4,4’-六氟亚异丙基邻苯二甲酸酐(6FDA)、4,4’-二氨基二苯醚(ODA)和4,4’-二氨基-2,2’-双三氟甲基联苯(TFDB)为单体,将A-PSZN通过溶液共混法添加至含氟PI的前驱体中,经热酰亚胺化处理制备了6FDA-ODA型PI/A-PSZN和6FDA-TFDB型PI/A-PSZN两种杂化薄膜。研究表明,由于氨基不仅能够通过与主链链端的酸酐发生反应形成共价键作用,还可与取代基-CF3形成分子间氢键作用,因此A-PSZN在含氟PI中分散均匀。当A-PSZN添加量为7wt%时,6FDA-ODA型PI/A-PSZN和6FDA-TFDB型PI/A-PSZN杂化薄膜具有较低介电常数,在1MHz测试频率下两种杂化膜的介电常数分别为2.73和2.56;同时,6FDA-ODA型PI/7wt%A-PSZN杂化膜的储存模量(storage modulus)、玻璃化转变温度(glass transition tempera, Tg)和分解温度(decomposition temperature, Tdec)分别比基体提高了0.59GPa、14.7°C和2.6°C,而热膨胀系数(in-plane coefficient of thermal expansion, CTE)则降低了11.5μm/m°C,6FDA-TFDB型PI/7wt%A-PSZN杂化膜的杨氏模量和拉伸强度则分别比基体提高了0.88GPa和27.1MPa,而吸水率降至0.79%。
     4.通过静电纺丝技术制备具有二维蜘蛛网状结构的PMDA-ODA型PI纤维膜和PMDA-ODA型PI/A-PSZN杂化纤维膜。研究结果表明,本工作中制备形貌规整的PI纤维的合适条件为:推进速度为0.5mL/h,环境温度为25°C,相对湿度为40%,PAA溶液固含量为15wt%,外加电压为15kV,接收距离为15cm;实验测得PMDA-ODA型PI纤维膜的孔隙率高达87.20%,经Maxwell-Garnett方程计算可知PMDA-ODA型PI纤维膜的理论介电常数仅为1.22,但由于其内部的多孔结构导致易吸水,在1MHz的测试频率下PMDA-ODA型PI纤维膜的实际介电常数为1.61;尽管添加A-PSZN并未对纤维膜的介电常数带来明显影响,但是有利于提高纤维膜的力学性能,PMDA-ODA型PI/7wt%A-PSZN杂化纤维膜的拉伸强度由原来的29.4MPa提高至41.3MPa。
Polyimide (PI) possesses remarkable thermal stability, mechanical strength, durability andsolvent resistance, and has been widely applied in the electrical and electronic industries. Withthe rapid development of ultra large scale integrated circuit (ULSIC), the increasing density ofwire and decreasing size of device in ULSIC make a requirement for the dielectric materialwith lower dielectric constant. Constrained by the higher intrinsic dielectric constant, PI stillcan not meet the requirement of modern microelectronic industry. Therefore, the preparationof a new generation of PI with low dielectric constant and excellent overall performances is aresearch focus in the field of materials in the recent year.
     In this paper, MEL-type pure silica zeolite nanocrystal (PSZN) and amino-derivative ofPSZN (A-PSZN) were synthesized, and then the inorganic filler was introduced into PI matrixvia solution blending with PI-precursor (PAA) and subsequently thermal imidization toprepare a series of PI/A-PSZN hybrid films, and the performances of hybrid films werestudies in detailed.
     1. PSZN was synthesized from tetraethyl orthosilicate (TEOS) by usingtetrabutylammonium hydroxide (TBAOH) as template and alkali via the static hydrothermalcrystallization and then was surface modified to prepare A-PSZN byγ-aminopropyltriethoxysilane coupling agent (KH550) in acid medium. By making effort tooptimize the experimental parameters of synthesizing PSZN, the suitable experimentalcondition to synthesize uniform PSZN with regular morphology was obtained and showed asfollow: the solution with a molar ratio of1TEOS/0.3TBAOH/20H2O was stirred for24h at25°C, after pre-hydrolization, the solution was transferred into a Teflon-lined autoclave andwas further heated at110°C for24h crystallization. Meanwhile, the studies show that KH550tend to graft onto the (101) crystal face of PSZN and the surface modification does not bringsignificant impact on the morphology, crystallinity and microporous properties of sample, theamount of KH550grafted onto the surface of PSZN is3.10%.
     2. PSZN and A-PSZN were incorporated respectively into pyromellitic dianhydride(PMDA)-4,4’-diaminodiphenyl ether (ODA) type PI matrix to preparedPI(PMDA-ODA)/PSZN composite films and PI(PMDA-ODA)/A-PSZN hybrid films. The studies show that A-PSZN can be uniformly dispersed in the matrix with the aid of thereaction between amino group of A-PSZN and anhydride of PI and form the crosslinkedstructure within the hybrid, while PSZN tend to agglomerate due to the poor compatibilitybetween PSZN and PI, thus PI(PMDA-ODA)/A-PSZN hybrid film possesses more excellentoverall performances compared with PI(PMDA-ODA)/PSZN composite film; when theaddition of A-PSZN is5wt%, the dielectric constant (1MHz) of PI(PMDA-ODA)/A-PSZNhybrid film decreases from3.52of matrix to3.11, moreover, hybrid film possesses increasedthermal and mechanical properties, as well as improved hydrophobicity with respect to matrix;however,when excessive A-PSZN is added, agglomeration will occur, and therefore resultingin worse overall performance.
     3. The dielectric constant of PI matrix can be reduced by incorporated–CF3into PImain-chain, and the addition of A-PSZN not only can reduce the dielectric constant offluorinated PI, but also can improved the poor thermal and mechanical properties offluorinated PI. Using2,2-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA),4,4’-diaminodiphenyl ether (ODA) and2,2’-bis(trifluoromethyl)-4,4’-diaminobiphen (TFDB)as monomer, the hybrid films of PI(6FDA-ODA)/A-PSZN and PI(6FDA-TFDB)/A-PSZNwere prepared through the solution blending of A-PSZN with precursor of fluorinated PI. Thestudies show that when the addition of A-PSZN is7wt%, the hybrid film ofPI(6FDA-ODA)/A-PSZN and PI(6FDA-TFDB)/A-PSZN have the lowest dielectric constant,are2.73and2.56(1MHz), respectively; on the other hand, storage modulus, glass transitiontempera(Tg) and decomposition temperature(Tdec) of PI(6FDA-ODA)/7wt%A-PSZN increase0.59GPa,14.7°C and2.6°C than that of matrix, respectively, while Young’s modulus andtensile strength of PI(6FDA-TFDB)/7wt%A-PSZN improves0.88GPa and27.1MPa thanthat of matrix, respectively.
     4. PI(PMDA-ODA) fiber membrane and corresponding A-PSZN hybrid fiber membranewere fabricated by electrospinning technology. The studies show that the optimizedelectrospinning is carried out with the feeding rate of0.5mL/h at applied voltage of15kV atambient temperature of25°C and relative humidity of40%, while PAA concentration andcollective distance is set to be15wt%and15cm, respectively; since moisture absorptionfrom the internal porous structure, PI(PMDA-ODA) fiber membrane possesses a dielectric constant of1.61(1MHz), which is higher than the theoretical dielectric constant of1.22calculated by Maxwell-Garnett equation; although the addition of A-PSZN does not affect thedielectric constant, but improved the mechanical properties, tensile strength ofPI/7wt%A-PSZN hybrid fiber membrane is improve to41.3MPa from29.4MPa of matrix.
引文
[1]丁孟贤,PI-化学、结构与性能的关系及材料[M],北京:科学出版社,2006
    [2] M. T. Bogert, R. R. Renshaw,4-Amino-o-phthalic Acid and Some of Its Derivatives[J],Journal of the American Society,1908,30:1135-1144
    [3] N. E. Searle, Inventor. N-arylmaleimides[P], US patent,2444536,1948-07-06.
    [4] W. M. Edwards, I. M. Robinson, Inventors. Polymer of Pyromellitic Acid[P], US patent,2710853,1955-06-14
    [5]李生柱,吴建华,朱小华,高性能聚酰亚胺的进展[J],化工新型材料,2002,30(6):19-24
    [6]李战雄,王标兵,欧育湘,耐高温聚合物[M],北京:化学工业出版社,2007
    [7]丁孟贤,何天白,聚酰亚胺新型材料[M],北京:科学出版社,1998
    [8] M. Hasegawa, N. Koyanaka, Polyimides containing trans-1,4-cyclohexane unit:Polymerizability of their precursors and Low-CTE, low-K and high-Tg properties[J], Highperformance polymer,2003,15(1):47-64
    [9] T. Le Bouder, O. Maury, H. L. Bozec, Synthesis of a highly thermally stable octupolarpolyimide for nonlinear optics[J], Chemical Communications,2001,23:2430-2431
    [10] D. M. Sullivan, M. L. Bruening, Ultrathin, ion-selective polyimide membranes preparedfrom layered polyelectrolytes[J], Journal of the American Chemical Society,2001,123(47):11085-11086
    [11] M. Peer, S. Mehdi Kamali, M. Mahdeyarfar, Separation of Hydrogen from CarbonMonoxide Using a Hollow Fiber Polyimide Membrane: Experimental and Simulation[J],Chemical Engineering&Technology,2007,30(10):1418-1425
    [12] C. Neuber, R. Giesa, H. W. Schmidt, Polyimide Orientation Layers Prepared fromLyotropic Aromatic Poly(Amic Ethyl Ester)s[J], Advanced Functional Materials2003,13(5):387-391
    [13] K. S. Patel, K. R. Desai, Polyimides based on poly(2-furanmethanol-formaldehyde)[J],Advances in Polymer Technology,2004,23(1):76-80
    [14]张俊彦,刘维民,薛群基,聚酰亚胺膜的热性能分析[J],化学物理学报,1999,12(2):197-200
    [15] M. Ueda, T. Nakayama, A New Negative-Type Photosensitive Polyimide Based onPoly(hydroxyimide), a Cross-Linker, and a Photoacid Generator[J], Macromolecules,1996,29(20):6427-6431
    [16] F. Zhai, X. Guo, J. Fang, H. Xu, Synthesis and Properties of Novel Sulfonated PolyimideMembranes for Direct Methanol Fuel Cell Application[J], Journal of Membrane Science,2007,296(1-2):102-109
    [17] M. B. Saeed, M. S. Zhan, Effect of Monomer Structure and Imidization Degree onMechanical Properties and Viscoelastic Behavior of Thermoplastic Polyimide Films[J],European Polymer Journal,2006,42(8):1844-1854
    [18] T. Sasaki, H. Moriuchi, S. Yano, R. Yokota, High Thermal StableThermoplastic-Thermosettiing Polyimide Film by Use of Asymmetric Dianhydride(a-BPDA)[J], Polymer,2005,46(18):6968-6975
    [20] Y. H. Kim, F. W. Harris, S. Z. D. Cheng, Crystal Structure and Mechanical Properties ofODPA-DMB Polyimide Fibers[J], Thermochimica Acta,1996,282-283,411-423
    [21] Q. H. Zhang, M. Dai, M. X. Ding, D. J. Chen, L. X. Gao, Mechanical Properties ofBPDA-ODA Polyimide Fibers[J], European Polymer Journal,2004,40(11):2487-2493
    [22] M. Hou, Wafer Level Packaging for CSP[J], Semiconduct,1998,21(8):305-308
    [23] Semiconductor Industrials Association (SIA) Roadmap[M].1997,104-115
    [24] S. D. Pascoli, P. E. Bagnoli, C. Casarosa, Thermal Analysis of Insulated Metal Substratesfor Automotive Electronic Assemblies[J], Microelectronics Journal,1999,30:1129-1135
    [25] D. Soloman, P. Hoffman, G. Brathwaite, P. Robinson, Thermal and ElectricalCharacterization of the Metal Ball Grid Array[C]. Proceeding of45thElectronic Componentsand Technology Conference,1995,1011-1015
    [26]李云平,注射成型W/Cu研究现状及产业化发展趋势[J],粉末冶金技术,2003,23(2):45-51
    [27]田民波,梁彤翔,何卫,电子封装技术和封装材料[J],半导体报,1995,24(2):56-61
    [28]张海坡,阮建明,电子封装材料及其技术发展状况[J],粉末冶金材料科学与工程,2003,8(3):216-223
    [29] M. A. Shahram, B. B. Naeemeh, Synthesis and Properties of Polyimides andCopolyimides Containing Pyridine Units: A Review[J],Iranian Polymer Journal,2008,17(2):54-124
    [30]刘秋萍,聚酰亚胺/无机纳米复合材料的制备与表征[J],陕西:陕西师范大学,2007.
    [31]曹红葵,聚酰亚胺性能及合成方法[J],化学推进剂与高分子材料,2008,6(3):24-26
    [32]翟燕,PMDA-ODA型聚酰亚胺聚集态结构的可控制备及其薄膜性能研究[D],成都:四川大学,2007
    [33] C. Hyunsoo, J. Yungil, H. Haksoo. The Effect of Curing History on the Residual StressBehaviors of Polyimide Thin Films[J], Journal of Applied Polymer Science,1999,74:3287-3298
    [34] C. Zhang, M. Zhang, H. Cao, Z. Zhang, Z. Wang, L. Gao, M. Ding, Synthesis andProperties of a Novel Isomeric Polyimide/SiO2Hybrid Materials[J], Composites Science andTechnology,2007,67(3-4):380-389
    [35] H. Delig z, S. zgümüs, T. YalcInyuva, S. YidIrIm, Deg, Denizer, K. Ulutas, A NovelCross-Linked Polyimide Film: Synthesis and Dielectric Properties[J], Polymer,2005,46(11):3720-3729
    [36]赵德仁,张慰盛,高聚物合成工艺学[M],北京:化学工业出版社,2009.
    [37]王伟,来育梅,孙琳,流延法制备聚酰亚胺薄膜工艺研究[J],塑料工程,2006,34(1):15-17
    [38]汪锰,王湛,李政雄,膜材料及其制备[M],北京:化学工业出版社,2003
    [39]黄荣辉,许伟,刘向阳,顾宜,叶光斗,聚酰亚胺纤维热酰亚胺化的研究[J],合成纤维工业,2007,30(4):1-4
    [40]王卫,李承祥,张国斌,盛六四,聚酰亚胺的合成与研究[J],材料导报,2008,22(2):119-128
    [41] M. Ree, Y. H. Park, K. Kim, S. I. Kim, Effect of Film Formation Process on ResidualStress of Poly(p-phenylene biphenyltetracarboximide) in Thin Films[J], Polymer,1997,38(26):6333-6345
    [42] H. Chung, Y. Joe, H. Han, The Effect of Curing History on the Residual Stress Behaviorof Polyimide Thin Films[J], Journal of Applied Polymer Science,1999,74:3287-3298
    [43] P. Mezza, J. Phalippou, Sol–gel Derived Porous Silica Film[J], Journal ofNon-Crystalline Solids,1999,243(1):75-79
    [44] G. E. Moore, Progress in Digital Integrated Electronics, IET Computers&DigitalTechniques,1975,11-13.
    [45] M. Gad, D. Yevick, P. Jessop, Compound Ring Resonator Circuit for Integrated OpticsApplications[J], Journal of the Optical Society of America A-Optics Image Science andVision,2009,26(9):2023-2032.
    [46] Peatman W., Daniel E.S.. Introduction to The Special Section on The IEEE CompoundSemiconductor Integrated Circuit Symposium[J], IEEE Journal of Solid-State Circuits,2009,44(10):2267-2268
    [47] C. Chen, S. C. Klamkin, Compact Beam Splitters with Deep Gratings for MiniaturePhotonic Integrated Circuits: Design and Implementation Aspects[J], Applied Optics,2009,48(25):68-75
    [48]王永刚,集成电路的发展趋势和关键技术[J],电子元器件应用,2009,11(1):70-72
    [49] B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Perovic, G.A. Ozin, Materials Chemistry for Low-k Materials[J], Materialstoday,2006,9:22-31
    [50] H. Treiehel, G. Ruhl, P. Ansmann, C. Muller, M. Dietlmeier, Low Dielectric ConstantMaterial of Interlayer Dielectric[J], Microelectronic Engineering,1998,40: l-19
    [51] G. Maier, Low Dielectric Constant Polymers for Microelectronics[J], Progress inPolymer Science,2006,26:3-65
    [52]何曼君,陈维孝,董西侠,高分子物理[M],上海:复旦大学出版社,2000
    [53]武岳山,于利亚,介电常数的概念研究[J],现代电子技术,2007,2:177-185
    [54]曹晨忠,李志良,分子极化效应与烷烃、醇的空腔表面积[J],有机化学,1998,18:248-252
    [55]周雅君,朱颀人,潘守甫,原子极化率计算中的核实极化效果[J],原子与分子物理学报,1990,7(1):1254-1258
    [56]吕自学,王亚军,张建梅,离子极化与键型关系的研究[J],河西学院学报,2002,5:32-35
    [57]黄尚毅,葛文,离子极化定量理论在无机化学中的应用[J],江西教育学院学报,2000,21(6):32-35
    [58]陈小林,成永红,吴锴,一种非对称双原子分子的电子位移极化率计算模型[J],西南交通大学学报,2009,43(4):90-94
    [59]周建军,江若琏,姬小利,界面极化效应对AlxGa(1-x)N/GaN异质结pin探测器光电响应的影响[J],半导体学报,2007,28(6):947-950
    [60]章坚,聚酰亚胺/二氧化硅复合材料的制备与介电性能研究[D],浙江:浙江大学,2005
    [61] K. Daejoong, E. Darve, Molecular Dynamics Simulation of Electro-osmotic Flows inRough Wall Nanochannels[J], Physical Review E-Statistical,2006,75(5):051203(1-12)
    [62] J. O. Simpson, A. K. Stclair, Fundamental Insight on Developing Low DielectricConstant Polyimides[J], Thin Solid Flims,1997,308-309
    [63] H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, C. Muller, M. Dietlmeier, Low DielectricConstant Materials for Interlayer Dielectric[J], Microelectronic Engineering,1998,40(1):1-19.
    [64] C. V. Nguyen, K. R. Carter, Low-Dielectric Nanoporous Organosilicate Films Preparedvia Inorganic/Organic Polymer Hybrid Templates[J], Chemistry of Materials,1999,11:3080-3085
    [65] M. B. H. Othman, N. A. S. Ming, H. M. Akil, Z. Ahmad, Dependence of the DielectricConstant on the Fluorine Content and Porosity of Polyimide[J], Journal of Applied PolymerScience,2011,121:3192-3200
    [66] T. Miyagawa, T. Fukushima, T. Oyama, T. Iijima, M. Tomoi, Photosensitive FluorinatedPolyimides with a Low Dielectric Constant Based on Reaction Development Patterning[J],Journal of Polymer Science: Part A: Polymer Chemistry:2003,41:861-871
    [67] R. Hariharan, M. Sarojadeve, Synthesis and Characterization of Organo-SolubleFluorinated Polyimides[J], Polymer International,2007,56:22-31
    [68] C. Y. Wang, H. P. Zhao, G. Li, J. M. Jiang, Novel Fluorinated Polyimides Derived froman Unsymmetrical Diamine Containing Trifluoromethyl and Methyl Pendant Groups[J],Polymers for Advanced Technologies,2011,22:1861-1823
    [69] S. Y. Yang, Z. Y. Ge, D. X. Yin, J. G. Liu, Y. F. Li, L. Fan, Synthesis and Characterizationof Novel Fluorinated Polyimide Derived from4,4–[2,2,2-Trifluoro-1-(3-trifluoromethylphenyl)ethylidene]diphthalic Anhydride and AromaticDiamines[J], Journal of Polymer Science: Part A: Polymer Chemistry,2004,42:4143-4152
    [70] W. Yasufumi, S. Yu, J. Shin, et al, Synthesis and Characterization of Novel Low-kPolyimide from Aromatic Dianhydrides and Aromatic Diamine Containing Phenylene Etherand Perfluorobiphenyl Units[J], Polymer Journal,2006,38(1):79-84
    [71]刘金刚,何民辉,王丽芳,含氟聚酰亚胺及其在微电子工业中的研究进展Ⅱ含氟聚酰亚胺在微电子工业中的应用[J],高分子通报,2003,8:10-24
    [72] S. Choi, S. Lee, J. Jeon, J. An, S. B. Khan, S. Lee, J. Seo, H. Han, A Photoinitiator-FreePhotosensitive Polyimide with Low Dielectric Constant[J], Journal of Applied PolymerScience,2010,117:2937-2945
    [73] C. M. Len, Y. T. Chang, K. H. Wei, Synthesis and Dielectric Properties ofPolyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites viaPOSS-diamine[J], Macromolecules,2003,36:9122-9127
    [74] C. P. Yang, Y. Y. Su, S. H. Hsiao, Synthesis and Properties of Low-ColorPolyimide/Silica Hybrid Films[J], Journal of Applied Polymer Science,2007,104,4046-4052
    [75]刘金刚,尚玉明,范琳,杨士勇,高耐热、低介电常数含氟聚酰亚胺材料的合成与性能研究[J],高分子学报,2003,4,565-570
    [76] S. Banerjee, M. K. Madhra, A. K. Salunke, G. Maier, Synthesis and Properties ofFluorinated Polyimides.1. Derived from Novel4,4‖-Bis(aminophenoxy)-3,3‖-trifluoromethyl Terphenyl[J], Journal of Polymer Science: Part A: Polymer Chemistry,2002,40:1016-1027
    [77] H. S. Li, J. G. Liu, J. M. Rui, L. Fan, S. Y. Yang, Synthesis and Characterization of NovelFluorinated Aromatic Polyimides Derived from1,1–Bis(4-amino-3,5-Dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and Various AromatcDianhydrides[J], Journal of Polymer Science: Part A: Polymer Chemistry,2006,44:2665-2674
    [78] W. C. Wang, R. H. Vora, E. Kang, K. G. Neoh, C. K. Ong, L. F. Chen, NanoporousUltra-Low-κ Films Prepared from Fluorinated Polyimide with Grafted Poly(acrylic acid) SideChains[J], Advanced Materials,2004,16(1):54-57
    [79] K. G. H. Berned, Ultralow-k Dielectrics Made by Supercritical Foaming of Thin PolymerFilms[J], Advanced Materials,2002,14(151):1041-1046
    [80] T. Nguyen, X. Wang, Multifunctional Composite Membrane Based on Highly PorousPolyimide Matrix for Direct Methanol Fuel Cells[J], Journal of Power Sources,2010,195:1024-1030
    [81] J. L. Hedrick, T. P. Russell, Polyimide Nanofoams from Caprolactone-BasedCopolymers[J], Macromolecules,1996,29(10):3642-3662
    [82] J. L. Hedrick, R. DiPietro, Polyimide Crosslinked Polyimide Foams Derived fromPoly(imide-propylene oxide) Copolymers [J], Macromolecular chemistry and Physics,1997,198(2):549-559
    [83] H. H. Sang, D. J. Sek, Preparation and Characterization of a Polyimide Nanofoamthrough Grafting of Labile Poly(Propylene Glycol) Oligomer[J], Polymers for AdvancedTechnologies,2004,15(7):370-376
    [84] G. D. Fu, W. C. Wang, Nanoporous low-k Polyimide Films Prepared from Poly(AmicAcid)s with Grafted Poly(Methylmethacrylate)/Poly(Acrylamide) Side Chains[J], Journal ofMaterials Chemistry,2003,13(9):2150-2156
    [85] G. D. Fu, B. Y. Zong, E. T. Kang, K. G. Neoh, C. C. Lin, D. J. Liaw, NanoporousLow-Dielectric Constant Polyimide Films via Poly(amic acid)s with RAFT-GraftCopolymerized Methyl Methacrylate Side Chains[J], Industrial&Engineering ChemistryResearch,2004,43,6723-6730
    [86] Y. W. Chen, W. C. Wang, Ultra-Low-k Materials Based on Nanoporous FluorinatedPolyimide with Well-Defined Pores via RAFT-Moderated Graft Polymerization Process[J],Journal of Materials Chemistry,2004,14(9):1406-1412
    [87] H. J. Chu, B. K. Zhu, Y. Y. Xu, Preparation and Dielectric Properties of Polyimide FoamsContaining Crosslinked Structures[J], Polymers for Advanced Technologies,2006,17,366-371
    [88] L. Jiang, J. Liu, D. Wu, H. Li, R. Jin, A Methodology for the Preparation of NanoporousPolyimide Films with Low Dielectric Constants[J], The Solid Films,2006,510(1-2):241-246
    [89] T. Ogoshi, J. P. Miyake, Y. Chujo, Multiresponsive Photopatterning Organic-InorganicPolymer Hybrids Using a Caged Photoluminescence Compound[J], Macromolecules,2005,38:4425-4431
    [90] M. H. Tsai, Y. C. Huang, I. H. Tseng, H. P. Yu, Y. K. Lin, S. L. Huang, Thermal andMechanical Properties of Polyimide/nano-silica Hybrid Films[J], Thin Solid Films,2011,519:5238-5242
    [91] Y. Y. Yu, W. C. Chien, T. W. Tsai, High Transparent Soluble Polyimide/silica HybridOptical Thin Films[J], Polymer Testing,2010,29:33-40
    [92] M. K. Mistry, N. R. Choudhury, N. K. Dutta, R. Knott, Z. Q. Shi, S. Holdcroft, NovelOrganic-Inorganic Hybrids with Increased Water Retention for Elevated Temperature ProtonExchange Membrane Application[J], Chemistry of Materials,2008,20:6857-6870
    [93] Y. C. Yen, S. W. Kuo, C. F. Huang, J. K. Chen, F. C. Chang, Miscibility andHydrogen-Bonding Behavior in Organic-Inorganic Polymer Hybrids Containing OctaphenolPolyhedral Oligomeric Silsesquioxane[J], The Journal of Physical Chemistry B,2008,112:10821-10829
    [94] Y. H. Zhang, S. G. Lu, Y. Q. Li, Z. M. Dang, J. H. Xin, S. Y. Fu, G. T. Li, R. R. Guo, L. F.Li, Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant[J],Advanced Materials,2005,17:1056-1059
    [95] C. Min, T. Wu, W. Yang, C. Chen, Functionalized Mesoporous Silica/PolyimideNanocomposite This Films with Improved Mechanical Properties and Low DielectricConstant[J], Composites Science and Technology,2008,68:1570-1578
    [96] J. J. Lin, X. D. Wang, Novel Low-κ Polyimide/Mesoporous Silica Composite Films:Preparation, Microstructure, and Properties[J], Polymer,2007,48:318-329
    [97] S. J. Lee, M. C. Choi, S. S. Park, C. S. Ha, Synthesis and Characterization of HybridFilms of Polyimide and Silica Hollow Spheres[J], Macromolecular Research,2011,19:599-607
    [98]潘其维,范星河,六面体倍半硅氧烷(POSS)杂化材料[J],化学进展,2006,18(5):616-621
    [99] D. B. Cordes, P. D. Lickiss, F. Rataboul, Recent Developments in the Chemistry of CubicPolyhedral Oligosilsesquioxanes[J], Chemical Reviews,2010,110(4):2081-2173
    [100] C. X. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A.F. Yee, High Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization[J],Journal of American Chemical Society,1998,120:8380-8391
    [101] C. V. Nguyen, K. R. Carter, Low-Dielectric, Nanoporous Organosilicate FilmsPrepared via Inorganic/Organic Polymer Hybrid Templates[J], Chemistry of Materials,1999,11(11):3080-3085
    [102] T. C. Merkel,B. D. Freeman, Ultrapermeable, Reverse-Selective NanocompositeMembranes[J], Science,2002,296(5567):519-521
    [103] L. Zheng,A. Waddon, X-Ray Characterizations of Polyethylene Polyhedral OligomericSilsesquioxane Copolymers[J], Macromolecules,2002,35(6):2375-2379
    [104] C. M. Leu,G. M. Reddy, Synthesis and Dielectric Properties of Polyimide-Chain-EndTethered Polyhedral Oligomeric Silsesquioxane Nanocomposites[J], Chemistry of Materials,2003,15(11):2261-2265
    [105] C. M. Leu,Y. T. Chang, Polyimide-Side-Chain Tethered Polyhedral OligomericSilsesquioxane Nanocomposites for Low-Dielectric Film Applications[J]. Chemistry ofMaterials,2003,15(19):3721-3727
    [106] C. M. Leu,Y. T. Chang, Synthesis and Dielectric Properties of Polyimide-TetheredPolyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine[J],Macromolecules,2003,36(24):9122-9127
    [107] J. C. Huang, C. B. He, Y. Xiao, K. Y. Mya, J. Dai, Y. P. Siow, Polyimide/POSSNanocomposites: Interfacial Interaction, Thermal Properties and Mechanical Properties[J],Polymer,2003,44:4491-4499
    [108] J. C. Huang, P. C. Lim, Cubic Silsesquioxane-Polyimide Nano-Composites withImproved Thermomechanical and Dielectric Properties[J], Acta Materialia,2005,53(8):2395-2404
    [109] Y. J. Lee,J. M. Huang, Low-Dielectric, Nanoporous Polyimide Films Prepared fromPEO-POSS Nanoparticles[J], Polymer,2005,46(23):10056-10065
    [110] W. Y. Chen, S. H. Ko, Simultaneous Preparation of PI/POSS Semi-IPNNanocomposites[J], Macromolecular Rapid Communications,2006,27(6):452-457
    [111] Y. S. Ye, W. Y. Chen, Y. Z. Wang, Synthesis and Properties of Low-Dielectric-ConstantPolyimides with Introduced Reactive Fluorine Polyhedral Oligomeric Silsesquioxane[J],Journal of Polymer Science Part A: Polymer Chemistry,2006,44:5391-5402
    [112] Y. S. Ye, Y. C. Yen, W. Y. Chen, C. C. Cheng, F. C. Chang, A Simple Approach TowardLow-Dielectric Polyimide Nanocomposites: Blending the Polyimide Precursor with aFluorinated Polyhedral Oligomeric Silsesquioxane[J], Journal of Polymer Science Part A:Polymer Chemistry,2008,46:6296-6304
    [113] B. Govindaraj, P. Sundararajan, M. Sarojadevi, Synthesis and Characterization ofPolyimide/Polyhedral Oligomeric Silsesquioxane nanocomposites containing quinolylmoiety[J], Polymer International,2012,61:1344-1352
    [114] J. Y. Wang, S. Y. Yang, Y. L. Huang, H. W. Tien, W. K. Chin, C. C. M. Ma, Preparationand Properties of Graphene Oxide/Polyimide Composite Films with Low Dielectric Constantand Ultrahigh Strength via in Situ Polymerization[J], Journal of Materials Chemistry,2011,21:13569-13575
    [115] S. Gross, V. D. Noto, U. Schubert, Dielectric investigation of inorganic–organic hybridfilm based on zirconium oxocluster-crosslinked PMMA[J], Journal of Non-Crystalline Solids,2003,322(1):154-159
    [116] H. Colfen, M. Antonietti, Mesocrystals: Inorganic Superstructures Made by HighlyParallel Crystallization and Controlled Alignment[J], Angewandte Chemie-InternationalEdition,2005,44:5576-5591
    [117] A. Franceschetti, A. Williamson, A. Zunger, Addition Spectra of Quantum Dots: theRole of Dielectric Mismatch[J], The Journal of Physical Chemistry B,2000,104:3398-3401
    [118] A. Szymczyk, M. Sbai, P. Fievet, Transport Properties and ElectrokineticCharacterization of an Amphoteric Nanofilter[J], Langmuir,2006,22:3910-3919
    [119] H. G. Chen, L. Xie, H. B. Lu, Y. L. Yang, Ultra-Low-κ Polyimide Hybrid Films viaCopolymerization of Polyimide and Polyoxometalates[J], Journal of Materials Chemistry,2007,17:1258-1261
    [120] L. Tan, S. M. Liu, F. Zeng, Z. Y. Ling, J. Q. Zhao, Polyimide/PolyoxometalateCopolymer Thin Films: Synthesis, Thermal and Dielectric Properties[J], Polymers forAdvanced Technologies,2010,21:435-411
    [121] T. Tan, S. M. Liu, F. Zeng, S. K. Zhang, J. Q. Zhao, Y. Yu, A Low Dielectric ConstantPolyimide/Polyoxometalate Composite[J], Polymers for Advanced Technologies,2011,22:209-214
    [122] M. E. Davis, R. F. Lobo, Zeolite and Molecular Sieve Synthesis[J], Chemistry ofMaterials,1992,4:756-768
    [123] K. Seff, Structural Chemistry Inside Zeolite A[J], Accounts of Chemical Research,1976,9:121-128
    [124] J. H. Lee, B. J. R. Thio, T. H. Bae, J. C. Meredith, Role of Lewis Basicity and Van DerWaals Forces in Adhesion of Silica MFI Zeolites (010) with Polyimides[J], Langmuir,2009,25:9101-9107
    [125] Z. J. Li, C. M. Lew, S. Li, D. I. Medina, Y. S. Yan, Pure-Silica-Zeolite MEL Low-κFilms from Nanoparticle Suspensions[J], The Journal of Physical Chemistry B,2005,109:8652-8658
    [126] Z. J. Li, S. Li, H. M. Luo, Y. S. Yan, Effect of Crystallinity in Spin-onPure-Silica-Zeolite MFI Low-Dielectric-Constant Film[J], Advanced Functional Materials,2004,4:1019-1024
    [127] E. M. Flanigen, Molecular Sieve Zeolite Technology-The First Twenty-Five-Years[C],Proc. Of the Fifth Intl. Conf. on Zeolite,1980:760-780
    [128]张雄福,王金渠,殷德宏等,多孔陶瓷管基膜上合成ZSM-5沸石膜新方法[J],大连理工大学学报,2000,40(6):673-675
    [129] J. H. Koegler, B. H. Van, J. C. Jansen, Growth Model of Oriented Crystals of ZeoliteSi-ZSM-5[J], Zeolite,1997,4(19):262-269
    [130] S. M. Holmes, C. Market, R. J. Plaisted, et al, A Novel Method for the Growth ofSilicalite Membrane on Stainless Steel Supports[J], Chemistry of Material,1999,11:3329-3332
    [131] Z. B. Wang, H. T. Wang, A. Mitra, L. M. Huang, Y. S. Yan, Pure-Silica Zeolize Low-κDielectric Thin Films[J], Advanced Materials,2001,13:746-749
    [132] Z. B. Wang, A. Mitra, H. T. Wang, L. M. Huang, Y. S. Yan, Pure-Silica Zeolize Flimsas Low-κ Dielectrics by Spin-On of Nanoparticle Suspensions[J], Advanced Materials,2001,13:1463-1466
    [133] S. Li, Z. J. Li, Y. S. Yan, Ultra-Low-κ Pure-Silica Zeolite MFI Films UsingCyclodextrin as Porogen[J], Advanced Materials,2003,15:1528-1531
    [134] Z. J. Li, M. C. Johnson, M. W. Sun, E. T. Ryan, D. J. Earl, W. Maichen, J. I. Martin, S.Li, C. M. Lew, J. L. Wang, M. W. Deem, M. E. Davis, Y. S. Yan, Mechanical and DielectricProperties of Pure-Silica-Zeolite Low-κ Materials[J], Angewandte Chemie,2006,118:6477–6480
    [135] C. M. Lew, Z. J. Li, S. I. Zones, M. W. Sun, Y. S. Yan, Control of Size and Yield ofPure-Silica-Zeolite MFI Nanocrystals by Addition of Methylene Blue to the SynthesisSolution[J], Microporous and Mesoporous Materials,2007,105:10-14
    [136] Y. Liu, M. W. Sun, C. M. Lew, J. W. Wang, Y. S. Yan, MEL-type Pure-Silica-ZeoliteNanocrystals Prepared by an Evaporation-Assisted Two-Stage Synthesis Method asUltra-Low-κ Materials[J], Advanced Functional Materials,2008,18:1732–1738
    [137] C. M. Lew, Z. J. Li, S. Li, S. J. Hwang, Y. Liu, D. I. Medina, M. W. Sun, J. L. Wang,M. E. Davis, Y. S. Yan, Pure-Silica-Zeolite MFI and MEL Low Dielectric-Constant Filmswith Fluoro-Organic Functionalization[J], Advanced Functional Materials,2008,18:3454–3460
    [138] Y. Liu, C. M. Lew, M. W. Sun, R. Cai, J. L.Wang, G. Kloster, B. Boyanov, Y. S. Yan,On-Wafer Crystallization of Ultralow-κ Pure Silica Zeolite Films[J], AngewandteChemie-International Edition,2009,48-4777-4780
    [139] R. A. V. Santen, Reactivity Theory of Zeolite Bronsted Acidic Sites[J], ChemicalReviews,1995,95:637-660
    [140] J. F. Haw, T. Xu, J. B. Nicholas, P. W. Goguen, Solvent-Assisted Proton Transfer inCatalysis by Zeolite Solid Acids[J], Nature,1997,389:832-825
    [141] E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, J.V. Smith, Silicalite, a New Hydrophobic Crystalline Silica Molecular Sieve[J], Nature,1978,271:512-516
    [142] M. Ziook, J. Kujawa, Reactions of Alcohols with Hydrogen Sulfide over Zeolite: Ⅲ.The Role of Divalent Cations in the Reaction of C2and C3Alcohols with H2S over X-TypeZeolite Catalysts[J], Zeolite,1990,657-661
    [143]孔春龙,纯硅沸石及其复合膜的制备、表征与应用研究[D],大连:大连理工大学,2008
    [144]韩会林,Silicalite-1沸石膜的制备和改性及应用研究[D],大连:大连理工大学,2009
    [145]王小莉,ZSM-11沸石和B-ZSM-11沸石的合成及其性能研究[D],太原:太原理工大学,2007
    [146]孔德金,邹薇,郑均林,祁晓岚,房鼎业,MFI/MFI核壳分子筛合成的影响因素及结晶动力学[J],物理化学学报,2009,25(9):1921-1927
    [147]柳云骐,刘春英,刘晨光,微孔分子筛纳米晶的控制合成及其催化应用[J],化学进展,2005,17(4):666-671
    [148]吕婧,张光才,马强志,刘海鸥,张雄福,邱介山,毛细管微通道内流动法连续合成亚微-纳米分子筛[J],无机材料学报,2011,26(12):1034-1038
    [149] S. Li, X. Wang, D. Beving, Z. W. Chen, Y. S. Yan, Molecular Sieving in a Nanoporousb-Oriented Pure-Silica-Zeolite MFI Monocrystal Film[J], Journal of the American ChemicalSociety,2004,126:4122-4123
    [150] K. Suzuki, S. Siddiqui, C. Chappell, J. A. Siddiqui, R. M. Ottenbrite, Modification ofPorous Silica Particles with Poly(acrylic acid)[J], Polymer for Advanced Technologies,2000,11:92-97
    [151] Y. Y. Sun, Z. Q. Zhang, C. P. Wong, Study on Mono-Dispersed Nano-Size Silica bySurface Modification for Underfill Application[J], Journal of Colloid and Interface Science,2005,292:436-444
    [152] R. Y. Hong, H. P. Fu, Y. J. Zhang, L. Liu, J. Wang, H. Z. Li, Y. Zheng, Surface-ModifiedSilica Nanoparticles for Reinforcement of PMMA[J], Journal of Applied Polymer Science,2007,105:2176-2184
    [153] O. H. Lin, H. M. Akil, Z. M. Ishak, Surface-Activated Nanosilica Treated with SilaneCoupling Agents/Polypropylene Composites: Mechanical, Morphological, and ThermalStudise[J], Polymer Composites,2011:1568-1583
    [154] M. H. Du, Y. Zheng, Modification of Silica Nanoparticles and Their Application inUDMA Dental Polymeric Composites[J], Polymer Composites,2007:198-207
    [155]张兵波,宫晓群,林婷婷,何彦津,成靖,单顺阳,常津,氨基化单分散量子点/二氧化硅核壳纳米粒子的制备及其细胞标记[J],高等学校化学学报,2009,30:246-249
    [156]孙艳华,扎拉嘎胡,张金利,关丛笑,郑琳,李韡,乔建军,荧光二氧化硅纳米颗粒的制备、修饰及细胞成像分析[J],化学学报,2011,69(8):967-972
    [157] Y. C. Liao, X. F. Wu, Z. Wang, R. L. Yue, G. Liu, Y. F. Chen, Composite Thin Film ofSilica Hollow Spheres and Waterborne Polyurethane: Excellent Thermal Insulation and LightTransmission Performances[J], Materials Chemistry and Physics,2012,133:642-648
    [158] M. Moritz, M. Laniecki, SBA-15Mesoporous Material Modified with APTES as theCarrier for2-(3-benzoylphenyl) Propionic Acid[J],2012,258:7523-7529
    [159] J. Lin, J. A. Siddiqui, R. M. Ottenbrite, Surface Modification of Inorganic OxideParticles with Silane Coupling Agent and Organic Dyes[J], Polymers for AdvancedTechnologies,2001,12:285-292
    [160] Y. Yu, M. Z. Rong, M. Q. Zhang, Grafting of Hyperbranched Aromatic Polyamide ontoSilica Nanoparticles[J], Polymer,2010,51:492-499
    [161]魏保权,柴苍修,应用LTC-3722集成电路设计全桥移相同步整流电源[J],武汉电力职业技术学院学报,2006,04(4):48-52
    [162] Y. Q. Huang, J. Economy, New High Strength Low-κSpin-on Thin Films for ICApplication[J], Macromolecules,2006,39(5):1850-1853
    [163]胡一帆,章瑛,付丹蓉,低介电常数甲基倍半硅氧烷多孔膜的制备及表征[J],华中科技大学学报(自然科学版),2008,36(2):104-107
    [164]唐晓东,叶光斗,李守群,徐建军,低介电常数交联聚苯乙烯的合成与表征[J],塑料工业,2007,35(3):26-28
    [165]王洋,牟建新,祝存生,姜振华,新型低介电常数聚芳醚酮的合成及性能研究[J],高等学校化学学报,2005,26(3):586-588
    [166] K. R. Carter, R. A. DiPietro, M. I. Sanchez, P. Thomas, Polyimide NanofoamsBased on Ordered Polyimides Derived from Poly(amic alkyl esters): PMDA/4-BDAF[J],Chemistry of Materials,1997,9:105-118
    [167] K. R. Carter, R. A. DiPietro, M. I. Sanchez, S. A. Swanson, Nanoporous PolyimidesDerived from Highly Fluorinated Polyimide/Poly(propylene Oxide) Copolymers[J],Chemistry of Materials,2001,13:213-221
    [168] B. Y. Myung, C. J. Ahn, T. H. Yoon, Synthesis and Characterization of Polyimidesfrom Novel1-(3′,5′-bis(trifluoromethyl)benzene) Pyromellitic dianhydride (6FPPMDA)[J],Polymer,2004,45:3185-3193
    [169] H. S. Li, J. G. Liu, J. M. Rui, L. Fan, S. Y. Yang, Synthesis and Characterization ofNovel Fluorinated Aromatic Polyimides Derived from1,1-bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethaneand Various Aromatic Dianhydrides[J], Journal of Polymer Science: Part A: PolymerChemistry:2006,44:2665-2674
    [170] Y. C. Su, W. C. Chen, K. L. Ou, F. C. Chang, Study of the Morphologies and DielectricConstants of Nanoporous Materials Derived from Benzoxazine-TerminatedPoly(-caprolactone)/Polybenzoxazine Co-Polymers[J], Polymer,2005,46:3758-3766
    [171] Y. W. Chen, E. T. Kang, New Approach to Nanocomposites of Polyimides ContainingPolyhedral Oligomeric Silsesquioxane for Dielectric Applications[J], Materials Letters,2004,58:3716-3719
    [172] Y. W. Chen, W. C. Wang, R. H. Vora, Ultra-Low-κ Materials Based on NanoporousFluorinated Polyimide with Well-Defined Pores via the RAFT-Moderated DraftPolymerization Process[J], Journal of Materials Chemistry,2004,14:1406-1412
    [173] P. Roura, J. Fort, Local Thermodynamic Derivation of Young’s Equation[J], Journal ofColloid and Interface Science,2004,272:420-429
    [174] D. Grosso, Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared fromBlock Copolymers: Detailed Characterization and Formation Mechanism[J], Chemistry ofMaterials,2001,13(5):1848-1856
    [175]谭麟,甚低介电常数聚酰亚胺/多金属氧酸盐复合薄膜的制备及性能[D],广州:华南理工大学,2010
    [176]郑斌,SiO2纳米管/聚酰亚胺复合薄膜的制备及性能研究[D],北京:中国科学院物化技术研究所,2007
    [177] N. G. Devaraju, E. S. Kim, B. I. Lee, The Synthesis and Dielectric Study ofBaTiO3/Polyimide Nanocomposite Films[J], Microelectronic Engineering,2005,1(82):71-83
    [178] Y. H. Zhang, D. M. Dang, J. H. Xin, W. A. Daoud, J. H. Ji, Y. Y. Liu, B. Fei, Y. Q. Li, J.T. Wu, S. Y. Yang, L. F. Li, Dielectric Properties of Polyimide-Mica Hybrid Films[J],Macromolecular Rapid Communications,2005,18(26):1473-1477
    [179] J. Zhang, B. K. Zhu, H. J. Chu, Y. Y. Xu, Silica/Polyimide Hybrids and Their DielectricProperties. Ⅰ. Preparation with an Improved Sol-Gel Process with Poly(amic acid) as thePrecursor[J], Journal of Applied Polymer Science,2005,1(97):20-24
    [180] T. L. Li, S. L. C. Hsu, Enhanced Thermal Conductivity of Polyimide Films via a Hybridof Micro-and Nano-Sized Boron Nitrid[J], The Journal of Physical Chemistry B,2010,114:6825-6829
    [181] S. R. Wang, Z. Y. Liang, P. Gonnet, Y. H. Liao, B. Wang, C. Zhang, Effect of NanotubeFunctionalization on the Coefficient of Thermal Expansion of Nanocomposites[J], AdvancedFunctional Materials,2007,17:87-92
    [182] T. Miyagawa, T. Fukushima, T. Oyama, T. Iijima, M. Tomoi PhotosensitiveFluorinated Polyimides with a Low Dielectric Constant Based on Reaction DevelopmentPatterning[J], Journal of Polymer Science: Part A: Polymer Chemistry:2003,41:861-871
    [183] T. C. Mo, H. W. Wang, S. Y. Chen, R. X. Dong, C. H. Kuo, Y. C. Yeh, Synthesis andCharacterization of Polyimide-Silica Nanocomposites Using Fluorine-Modified SilicaNanoparticles[J], Journal of Applied Polymer Science,2007,104:882-890
    [184] M. G. Todd, F. G. Shi, Characterizing the Interphase Dielectric Constant of PolymerComposite Materials: Effect of Chemical Coupling Agents[J], Journal of Applied Physics,2003,94(7):4551-4557
    [185] M. G. Todd, F. G. Shi, Molecular Basis of the Interface Dielectric Properties ofMicroelectronic and Optoelectronic Packaging Materials[J], IEEE Transactions onComponents and Packaging Technologies,2003,26(3):667-672
    [186] M. H. Tsai, Y. C. Huang, I. H. Tseng, H. P. Yu, Y. K. Lin, S. L. Huang, Thermal andMechanical Properties/Nano-Silica Hybrid Films[J], This Solid Films,2011,519:5238-5242
    [187] J. C. Huang, P. C. Lim, L. Shen, P. K. Pallathadka, K. Zeng, C. B. He, CubicSilsesquioxane-Polyimide Nanocomposites with Improved Thermomechanical and DielectricProperties[J], Acta Materialia,2005,53:2395-2404
    [188] M. Rubal, C. W. Wilkins, Jr, P. E. Cassidy, C. Lansford, Y. Yamada, FluorinatedPolyimide Nanocomposites for CO2/CH4Separation[J], Polymer for Advanced Technologies,2008,19:1033-1039
    [189] Y. Ren, T. P. Lodge, M. A. Hillmyer, A Simple and Mild Route to Highly FluorinatedModel Polymers[J], Macromolecules,2001,34:4780-4787
    [190] E. L. Brantley, G. K. Jennings, Fluorinated Polymer Films from Acylation of ATRPSurface-Initiated Poly(hydroxyethyl methacrylate)[J], Macromolecules,2004,37:1476-1483
    [191] H. R. Allcock, E. S. Powell, A. E. Maher, E. B. Berda, Poly(methylmethacrylate)-graft-poly-[bis(trifluoroethoxy)phosphazene] Copolymers: Synthesis,Characterization, and Effects of Polyphosphazene Incorporation[J], Macromolecules,2004,37,5824-5829
    [192] L. Andruzzi, A. Hexemer, X. Li, K. Ober, E. J. Kramer, G. Galli, E. Chiellini, D. A.Fischer, Control of Surface Properties Using Fluorinated Polymer Brushes Produced bySurface-Initiated Controlled Radical Polymerization[J], Langmuir,2004,20:10498-10506
    [193] T. Matsuura, Y. Hasuda, S. Nishi, N. Yamada, Polyimide Derived from2,2’-Bis(trifluoromethyl)-4,4’-diaminobiphenyl.1. Synthesis and Characterization ofPolyimides Prepared with2,2-Bis(3,4-dicarboxyphenyl) hexafluoropropane Dianhydride orPyromellitic Dianhydride[J], Macromolecules,1992,24:5001-5005
    [194] S. H. Hsiao, Y. H. Chang, Synthesis and Properties of SolubleTrifluoromethyl-Substituted Polyimides Containing Laterally Attached p-Terphenyls[J],Journal of Polymer Scicence Part A: Polymer Chemistry,2004,42(6):1255-1271
    [195] D. J. Liaw, F. C. Chang, Highly Organosoluble and Flexible Polyimides with ColorLightness and Transparency Based on2,2-bis[4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl] Propane [J], Journal of Polymer Scicence Part A: Polymer Chemistry,2004,42(22):6766-5774
    [196] K. Wang, L. Fan, J. G. Liu, M. S. Zhan, S. Y. Yang, Preparation and Properties ofMelt-Processable Polyimides Based on Fluorinated Aromatic Diamines and AromaticDianhydrides[J], Journal Applied Polymer Science,2008,107(4):2126-2135
    [197] H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman, J. S. Manello, C.McGowan, R. A. Minns, R. Sahatjian, Highly Amorphous Birefringent, Para-Linked AromaticPolyamides[J], Macromolecules,1985,18:1058-1068
    [198] G. Maier, Low Dielectric Constant Polymers for Microelectronics[J], Progress inPolymer Science,2001,26,3-65
    [199] A. Formalas, Apparatus for Producing Artificial Filament from Materials Such asCellulose Acetate[P], US19755041934
    [200] B. Vonnegut, R. L. Neubauer, Production of Monodisperse Liquid Particles byElectrical Atomization[J], Journal of Colloid and Interface Science,1952,7:616-622
    [201] P. K. Baumgarten, Electrostatic Spinning of Acrylic Microfibers[J], Journal of Colloidand Interface Science,1971,36:71-79
    [202] L. Larrando, R. S. J. Manley, Electrostatic Fiber Spinning from Polymer Melts. Ⅰ.Experimental Observations on Fiber Formation and Properties[J], Journal of Polymer SciencePart B: Polymer Physics,1981,19:909-920
    [203] H. Fong, I. Chun, D. H. Reneker, Beaded Nanofibers Formed During Electrospinning[J],Polymer,1999,40:4585-4592
    [204] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, Bending Instability ofElectrically Charged Liquid Jets of Polymer Solutions in Electrospinning[J], Journal ofApplied Physics,2000,87:4531-4547
    [205] Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Electrospinning: AWhipping Fluid Jet Generates Submicron Polymer Fibers[J], Applied Physics Letter,2001,78:1149-1151
    [206] C. Nah, S. H. Han, M. H. Lee, J. S. Kim, D. S. Lee, Characteristics of PolyimideUltrafine Fibers Prepared though Electrospinning[J], Polymer International,2003,52:429-432
    [207] Q. Zhang, D. Z. Wu, S. L. Qi, Z. P. Wu, X. P. Yang, R. G. Jin, Preparation of Ultra-FinePolyimide Fibers Containing Silver Nanoparticles[J], Materials Letters,2007,61:4027-4030
    [208] S. Chisca, A. I. Barzic, I. Sava, N. Olaru, M. Bruma, Morphological and RheologicalInsights on Polyimide Chain Entanglement for Electrospinning Produced Fibers[J], TheJournal of Physical Chemistry B,2012,116,9082-9088
    [209] S. Cheng, X. F. Li, S. B. Xie, Y. Chen, L. F. Fan, Preparation of ElectrospunLuminescent Polyimide/Europium Nanofibers by Simultaneous in Situ Sol-Gel andImidization Processes[J], Journal of Colloid and Interface Science,2011,356:92-99
    [210] E. L. Han, D. Z. Wu, S. L. Qi, G. F. Tian, H. Q. Niu, G. P. Shang, X. N. Yan, X. P. Yang,Incorporation of Silver Nanoparticles into the Bulk of the Electrospun Ultrafine PolyimideNanofibers via a Direct Ion Exchange Self-Metallization Process[J], Applied Materials&Interfaces,2012,4:2583-2590
    [211]赵晓燕,可溶性聚芳醚(PAE)和聚酰亚胺(PI)的合成及其电纺纤维膜性能研究[D],上海:东华大学,2010
    [212] J. Y. Liu, Y. Min, J. Y. Chen, H. W. Zhou, C. Wang, Preparation of the Ultra-LowDielectric Constant Polyimide Fiber Membranes Enabled by Electrospinning[J],Macromolecular Rapid Communications,2007,28,215-219
    [213] S. Cheng, D. Z. Shen, X. S. Zhu, X. G. Tian, D. Y. Zhou, L, J, Fan, Preparation ofNonwoven Polyimide/Silica Hybrid Nanofiberous Fabrics by Combining Electrospinning andControlled in Situ Sol-Gel Techniques[J], European Polymer Journal,2009,45:2767-2778
    [214] F. Chen, D. Bera, S. Banerjee, S. Agarwal, Low Dielectric Constant PolyimideNanomats by Electrospinning[J], Polymers for Advanced Technologies,2012,23:951-957
    [215] D. Chen, T. X. Liu, X. P. Zhou, W. C. Tjiu, H. Q. Hou, Electrospinning Fabrication ofHigh Strength and Toughness Polyimide Nanofiber Membranes Containing MultiwalledCarbon Nanotubes[J], The Journal of Physical Chemistry B,2009,113:9741-9748
    [216] J. H. Torres, A. M. Galvan, Formation of NiO-SiO2Nanocomposite Thin Films by theSol-Gel Method[J], Journal of Non-Crystalline Solid,2005,351:2029-2035
    [217] J. H. Zhu, S. Y. Wei, X. L. Chen, A. B. Karki, D. Rutman, D. P. Young, Z. H. Guo,Electrospun Polyimide Nanocomposite Fibers Reinforced with Core-Shell Fe-FeONanoparticles[J], The Journal of Physical Chemistry C,2010,114:8844-8850
    [218] Y. Chen, D. H. Han, W. Ouyang, S. L. Chen, H. Q. Hou, Y. Zhao, H. Fong, Fabricationand Evaluation of Polyamide6Composites with Electrospun Polyimide Nanofibers asSkeletal Framework[J], Composites: Part B,2012,43:2382-2388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700