用户名: 密码: 验证码:
介质阻挡放电低温等离子体降解亚甲基蓝溶液及其体系气液相中活性粒子化学行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对色度深、毒性大的有机废水,以亚甲基蓝溶液作为实验研究对象,采用介质阻挡放电(DBD)等离子体技术对其进行降解实验研究,对降解过程气、液相中的活性粒子的化学行为进行探索。
     主要完成的内容为:
     (1)分析空气气氛条件下DBD等离子体对亚甲基蓝溶液的降解效果。对DBD等离子体降解亚甲基蓝溶液的中间产物和最终产物进行了检测,推测了亚甲基蓝分子的降解反应历程。考察了以氩气、空气和氢气作为放电气氛条件下,DBD等离子体降解亚甲基蓝溶液的效果,分析了不同放电气氛对DBD等离子体降解亚甲基蓝溶液过程的影响机理。通过对DBD体系液相的设计,初步探索了降解反应在DBD体系中发生的位置。实验结果表明:以空气为放电气氛时,亚甲基蓝溶液有最高的降解率,放电30min时,亚甲基蓝溶液降解率为84.8%。分别以氩气、空气和氢气作为DBD过程放电气氛,对比了亚甲基蓝溶液的pH值、电导率和总有机碳含量(TOC)的变化趋势及变化幅度。在对实验结果进行综合分析的基础上,探讨了不同的放电气氛对DBD等离子体降解亚甲基蓝溶液过程的影响机理:在不同的放电气氛条件下,DBD过程产生的气相活性粒子的种类、气相活性粒子的能量状态以及放电过程气相中产生的一些特殊放电产物,是影响DBD等离子体降解亚甲基蓝溶液过程的重要因素。通过实验设计对DBD体系中降解反应发生位置进行初步探索,实验结果表明DBD体系中降解反应不仅仅发生在气液接触面,而是在整个液相区域均有发生。
     (2)采用Optical Emission Spectroscopy (OES)检测方法,对以氩气、空气和氢气作为放电气氛的DBD过程气相中的活性粒子进行检测分析。分别考察了在三种不同的放电气氛条件下,DBD过程气相中产生的主要激发态分子(原子)的种类及其能量状态。采用Boltzmann-Plot方法计算了以氩气作为放电气氛的DBD过程的电子激发温度,并考察了输入电压和电源频率对电子激发温度的影响情况。对以空气为放电气氛的DBD过程产生的主要激发态氮分子(原子)、主要激发态氧分子(原子)以及放电过程中产生的氮氧化物和臭氧进行了分析。
     (3)考察了不同的放电气氛条件对DBD过程液相中羟基自由基和过氧化氢浓度的影响。通过添加不同的猝灭剂,分别对DBD降解亚甲基蓝溶液过程中产生的羟基自由基和过氧化氢进行屏蔽,依次考察了羟基自由基和过氧化氢对亚甲基蓝溶液降解过程的贡献。实验结果表明:在以空气作为DBD过程的放电气氛时,液相中产生的羟基自由基浓度最高。放电30min时,液相中羟基自由基的浓度为2.27×10-4mol/L。当以氩气作为DBD过程放电气氛的条件下,液相中产生的过氧化氢浓度最高,放电30min时,液相中过氧化氢的浓度为1.27×10-5(w/w)。以氢气作为DBD过程放电气氛的条件下,液相中产生的过氧化氢和羟基自由基浓度均最低,放电30min,羟基自由基和过氧化氢的浓度分别为6.05×10-5mol/L和2.32×10-6(w/w)。添加猝灭剂的屏蔽实验结果表明,分别在以氩气、空气和氢气为放电气氛条件下,放电30min时,羟基自由基和过氧化氢对亚甲基蓝降解过程的贡献值依次为47.8%和21.8%、29.0%和18.8%以及44.4%和16.6%。
     (4)揭示了DBD等离子体降解亚甲基蓝溶液的作用过程机理。其作用过程分为以下三个阶段:
     第一阶段:气相激发、离解和电离阶段,即气相中激发态活性粒子和高能电子的产生阶段。
     第二阶段:气相中激发态活性粒子和高能电子与液相水分子的作用过程,同时也是液相中活性粒子(羟基自由基和过氧化氢等)的产生阶段。即液相中的羟基自由基和过氧化氢等活性粒子是液相中水分子与气相中激发态活性粒子和高能电子发生相互作用的产物。
     第三阶段:液相中活性粒子(羟基自由基和过氧化氢等)与亚甲基蓝分子的作用阶段。
This essay is focused on the degradation of the high toxic organic wastewater with darkcolor. Methylene blue solution was used as the research subject. Dielectric Barrier Discharge(DBD) plasma was employed to treat methylene blue solution and the treatment process wasstudied in detail. The radical species in the gas phase and the liquid phase of the DBDdegradation process were studied.
     The main contents are shown as below:
     (1) Took air as the working gas of the DBD process, the intermediate products and thefinal products in the methylene blue degradation process by DBD plasma were detected. Thedegradation path of the methylene blue molecule was inferred based on the analysis of themolecular structure. The degradation effect of methylene blue solution was studied whenhydrogen, argon or air was employed as the different working gas of the DBD process,respectively. The liquid phase in the DBD system was designed to analyze the occurringposition of the degradation reactions. The results indicate that: the degradation percentage ofmethylene blue solution reached the maximum value when air was used as the working gasand the degradation percentage of methylene blue solution was84.8%when it was treated for30min. when different working gases were employed, the variation trends and scales of thepH value, Total Organic Carbon (TOC) value and conductivity during the DBD processeswere studied. The influence mechanism of the working gas on the DBD degradation processwas inferred as that: different radical species were generated when different working gaseswere employed as the working gases of the DBD processes. The main reason caused thedifferent degradation effect was that different radical species and discharge products weregenerated when different working gases were employed. The experimental results alsoindicate that the degradation reactions occurred not only at the interface of the gas-liqud phase,but in the entire liquid phase of the DBD system.
     (2) The radical species generated in the gas phase during the three different DBDprocesses were studied using Optical Emission Spectroscopy (OES) method. The energybalance of the DBD process was studied when different working gas was employed. Thespecies of the radical and their energy states were analyzed when argon, hydrogen or air wasemployed as the working gas, respectively. Boltzman-plot method was used to calculate theelectron temperature when argon was employed as the working gas of the DBD process. Thedischarge products (ozone and nitrogen oxidize) were quantitatively detected when air wasemployed as the working gas of the DBD process.
     (3) Hydroxyl radical and hydrogen peroxide in the liquid phase were quantitativelydetermined. Different quenchers were added into methylene blue solution to analyze thecontributions of the hydroxyl radical and hydrogen peroxide to the methylene bluedegradation process, respectively. The results indicate that: when air was employed as theworking gas of the DBD process, the concentration of hydroxyl radical in the liquid phasereached the maximum value. When air was employed as the working gas, the concentratio n ofhydroxyl radical in the liquid phase was2.27×10-4mol/L when it was treated for30min.When argon was employed as the working gas, the concentration of hydrogen peroxide in theliquid phase reached the maximum value. When argon was employed as the working gas, theconcentration of hydrogen peroxide in the liquid phase was1.27×10-5(w/w) when it wastreated for30min. When hydrogen was employed as the working gas of the DBD process, theconcentrations of hydrogen peroxide and hydroxyl radical were both the lowest and they were6.05×10-5mol/L and2.32×10-6(w/w) when it was treated for30min. When argon, air orhydrogen was employed as the working gas, the contribution values of hydroxyl radical andhydrogen peroxide were47.8%and21.8%,29.0%and18.8%,44.4%and16.6%,respectively.
     (4) It was suggested that the methylene blue solution DBD degradation process wasdivided into three stages:
     The first stage: the excitation, dissociation and ionization process in the gas phase. It wasalso the generation processes of the radical species and high energy electrons in the gas phase;
     The second stage: the interaction process between the radical species and the watermolecules at the gas-liquid interface. It was also the radical species (hydroxyl radical,hydrogen peroxide et al.) generation process in the liquid phase. Hydroxyl radical andhydrogen peroxide are the products of the interactions between radical species, high energyelectrons and the water molecules.
     The third stage: the reaction processes between radical species (hydroxyl radical,hydrogen peroxide et al.) and methylene blue molecules in the liquid phase.
引文
[1]戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33-36
    [2] Xue J., Chen L., Wang H. L. Degradation mechanism of alizarin red in hybrid gas-liquidphase dielectric barrier discharge plasma: Experimental and theoretical examination [J].Chemical Engineering Journal,2008,138:120-127
    [3] Huang F. M., Chen L., Wang H. L., et al. Analysis of the degradation mechanism ofmethylene blue by atmospheric pressure by dielectric barrier discharge plasma [J].Chemical Engineering Journal,2010,162:250-256
    [4] Sandra G. D. M., Renato S. F., Nelson D. Degradation and toxicity reduction of textileeffluent by combined photocatalytic and ozonation process [J]. Chemosphere,2000,40(4):369-373
    [5] Ledakowicz S., Solecka M., Zylla R. Biodegradation, decolourisation and detoxificationof textile wastewater enhanced by advanced axidation process [J]. Biotechnol,2001,89(2-3):175-184
    [6]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997
    [7] Rys P., Zollinger H.染料化学基础[M].陈水林译.北京:译纺织工业出版社,1999
    [8]朱建平,劳永麒,曾运生.吸附气浮法脱除染料离子的研究[J].环境工程,1993,11(1):10-12
    [9]宋轩,张利红.有机废水生物处理系统中SMP的形成及特性[J].科技创新导报,2008,(27):126-128
    [10] Fitch M. W., Pearson N., Richards G., et al. Biological fixed-film systems [J]. Wat.Environ. Res.1998,70(4):495-518
    [11]郝瑞彼,程水源. SBR法处理印染废水的研究[J].环境科学进展,1996,4(5):56-62
    [12]张晓慧.催化臭氧氧化法处理有机废水的研究[D].天津:天津大学,2006
    [13]任随周,郭俊,王亚丽,等.细菌脱色酶TpmD对三苯基甲烷类染料脱色的酶学特性研究[J].微生物学报,2006,46(3):385-389
    [14] Silveira E., Marques P. P., Silva S. S., et al. Selection of pseudomonas for industrialtextile dyes decolourization [J]. International Biodeterioration&Biodegradation,2009,63(2):230-235
    [15] Kalyuzhnyi S., Fedorovich V. Integrated mathematical model of uasb reactor forcompetition between sulphate reduction and methanogenesis [J]. Water Science andTechnology,1997,36(6-7):201-208
    [16]高东,雷乐成.用兼氧、好氧生物接触氧化-气浮工艺处理高浓度印染废水[J].环境污染与防治,2000,22(4):20-22
    [17]袁慧慧.电化学转盘法处理染料废水的研究[D].上海:上海交通大学,2007
    [18]姚福琪,张占吉,王孟歌.炉灰脱色剂对分散红染料废水的脱色处理研究[J].河北化工,2003,2:45-47
    [19] Ozoh P. T. E. Adsorption of cotton fabric dyestuff wastewater and Nigeria agriculturalsemi activated carbon [J]. Environmental Monitoring and Assessment,1997,46(3):255-265
    [20] Shi W. X., Xu X. J., Sun G. Chemically modified sunflower stalks as adsorbents for colorremoval from textile wastewater [J]. Applied Polymer Sci.1999,71(11):1841-1850
    [21] Sun G., Xu X. J. Sunflower stalks as adsorbents for color removal from textilewastewater [J]. Ind.&Eng. Chem. Res.1997,36(3):808-812
    [22]丁忠浩.废水资源化综合利用技术[M].北京:国防工业出版社,2007
    [23]李惠娟.非平衡等离子体降解废水中苯酚的研究[D].广州:广东工业大学,2006
    [24]肖羽堂.萃取法及其在含酚废水处理中的应用[J].污染防治技术,1997,10(3):138-141
    [25]杨义燕,戴猷元.络合萃取法处理高浓度有机废水[J].现代化工,1997,17(3):10-14
    [26]顾满刘,占晶,刘扬,等.炼油厂碱渣废水络合萃取法脱酚实验研究[J].环境科学与技术,2006,29(11):31-33
    [27]侯文俊,余健.印染废水处理技术的研究新进展[J].化工环保,2004,24(增刊):105-107
    [28]上海市环境保护局编.上海工业废水治理最佳实用技术[M].上海:科学普及出版社,1992
    [29]田玉萍. Fenton预处理一序批式生物膜反应器处理模拟染料生产废水研究[D].成都:四川大学,2006
    [30]陈英旭.环境学[M].北京:中国环境科学出版社,2001
    [31]徐荣安.膜技术在饮用水深度处理中的应用[J].水处理技术,1999,25(5):249-255
    [32]黎阳,孙世栋.焚烧法处理高浓度有机废水[J].化学工程师,2003,94(l):55-57
    [33]杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[D].杭州:浙江大学,2006
    [34] Malik P. K., Saha S. K. Oxidation of direct dyes with hydrogen peroxide using ferrousion as catalyst [J]. Separation and purification technology,2003,31(3):241-250
    [35]钟先锦.高级氧化法降解对甲基苯磺酸机理的研究[D].开封:河南大学,2007
    [36]李锋,柳艳修,宋华,等. Fenton试剂预处理丙烯睛废水的研究[J].工业安全与环保,2007,33(1):21-23
    [37]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002
    [38]李晓娥,祖庸.纳米TiO2光催化氧化机理及应用[J].化工进展,1999,18(4):34-37
    [39]雷雪飞,刘文占,张洪林,等.纳米二氧化钛粉体光催化染料脱色的研究[J].南昌大学学报·工科版,2006,28(l):12-14
    [40]张红艳,陆雪梅,刘志英,等.湿式氧化法处理高盐度难降解农药废水[J].化工进展,2007,26(3):417-421
    [41] Liu Y., Sun D. Z. Development of Fe2O3-CeO2-TiO2/γ-Al2O3as catalyst for catalytic wetair oxidation of methyl orange azo dye under room condition [J]. Applied Catalysis B:Environmental,2007,72:205-211
    [42] Rchorek A., Tauber M., Gubitz G. Application of power ultrasound for azo dyedegradation [J]. Ultrasonics Sonochemistry,2004,11(3-4):177-182
    [43] Vera Pérez, I., Rogak, S., Branion, R. Supercritical water oxidation of phenol and2,4-dinitrophenol [J]. The Joumal of Supercritical Fluids,2004,30(1):71-87
    [44] Yuan P. Q., Cheng Z. M., Zhang X. Y., et al. Catalytic denitrogenation of hydrocarbonsthrough partial oxidation in supercritical water [J]. Fuel,2006,85(3):367-373
    [45]赵苏,李连君,杨合.超临界水氧化技术及在废水处理中的应用[J].工业安全与环保,2005,31(4):24-25
    [46] Vlyssides A., Barampouti E. M., Mai S, et al. Degradation of Methyl parathion inaqueous solution by electrochemical oxidation [J]. Environment Science and Technology,2004,38(22):6125-6131
    [47]于秀娟,王辉,闫鹤,等.电化学氧化对罗丹明B脱色的研究[J].重庆环境科学,2003,25(9):42-44
    [48]刘和义,包南,张敏,等.臭氧化降解吠吗哇酮模拟废水的实验研究[J].工业水处理,2003,23(11):43-78
    [49] Koch M., Yediler A., Lienert D., et al. Ozonation of hydrolyzed azo dye reaetive yellow84(CI)[J]. Chemosphere,2002,46(1):109-113
    [50]陈银生.高压脉冲放电等离子体降解酚类废水的研究[D].上海:华东理工大学,2003
    [51]金伟成.介质阻挡放电脱除NO的实验研究[D].南京:南京理工大学,2006
    [52]刘强,孙鹞鸿.水中脉冲电晕放电等离子体特性及气泡运动[J].高电压技术,2006,32(2):54-56
    [53]杨世东,史富丽,马军,等.水中高压脉冲放电机理与效能[J].工业水处理,2005,25(8):5-9
    [54]郑攀峰.高压脉冲放电协同臭氧处理模拟染料废水[D].大连:大连理工大学,2006
    [55] Clements J. S., Sato M., Davis R. H. Preliminary investigation of prebreakdownphenomena and chemical reactions using a pulse high-voltage discharge in water [J].IEEE Trans. Ind. APPI,1987,23:224-235
    [56]文岳中,姜玄珍,吴墨.高压脉冲放电降解水中苯乙酮的研究[J].中国环境科学,1999,19(5):406-409
    [57]俞洁.辉光放电等离子体降解水体中的有机污染物[D].兰州:西北师范大学,2005
    [58] Czernichowski A. Gliding arc. Applications to engineering and environment control [J].Pure and Applied Chemistry,1994,66(6):1301-1310
    [59] Lesueur H., Czernichowski A. Device for generation glow-temperature plasmas byformation of sliding electric discharges [P]. France: Patent FR2639172,1990
    [60] Richard F., Cormier J. M., Pellerin S., et al. Physical study of a gliding arc discharge[J].Journal of Applied Physics,1996,79(5):2245-2250
    [61]林烈,吴承康.大气压非平衡等离子体中非平衡度的探讨[J].核聚变与等离子体物理,1998,18(2):57-61
    [62] Fridman A., Nester S., Kennedy L. A., et al. Gliding arc gas discharge [J]. Progress inEnergy and Combustion Science,1998,25(2):211-231
    [63] Czernichowski A., Nassar H., Ranaivosoloarimanana A. Spectral and electricaldiagnostics of gliding arc [J]. Acta Physica Poloulca A,1996,89(5-6):595-603
    [64] Pawelec E., Simek M., Nassar H., et al. Temperature measurements in non-equilibrium“ferroelectric”plasma [J].Acta Physica POlonica A,1996,89:503-507
    [65] Rusanov V. D., Petrusev A. S., Potapkin B. V., et al. Possibility of maintaining a highlynonequilibrium plasma in an arc discharge at atmospheric pressure [J]. Phys. Doki,1993,38(9):398-400
    [66] Mutaf-Yardimci O., Saveliev A. V., Porshnev P. I., et al.“Non-equilibrium effects inGliding Arc discharges” in heat and mass transfer under plasma conditions [A]. Annalsof the New York Academy of Sciences [C]. New York: New York Acad Sciences,1999,891:304-308
    [67] Mutaf-Yardimei O., Saveliev A. V., Fridman A. A., et al. Thermal and nonthermalregimes of gliding arc discharge in air flow [J]. Joumal of APPlied Physics,2000,87(4):1632-1641
    [68] Kuznetsova I. V., Kalashnikov N. Y., Gutsol A. F., et al. Effect of “overshooting” in thetransitional regimes of the low-current gliding arc discharge [J]. Joumal of AppliedPhysics,2002,92(8):4231-4237
    [69] Ding H. X., Zhu A. M., Lu F. G., et al. Low-temperature plasma-catalytic oxidation offormaldehyde in atmospheric pressure gas streams [J]. Journal of Physics D: AppliedPhysics,2006,39(16):3603-3608
    [70] Venugopalan M., Veprk S. Kinetics and catalysis in plasma chemistry [M]. Springer:Berlin-Heidelberg-New York,1983
    [71] Liu C. J., Xu G. H., Wang T. Non-thermal plasma approaches in CO2utilization [J]. FuelProcessing Technology,1999,58(2-3):119-134
    [72]王保伟.天然气等离子体转化制C2烃特性研究[D].天津:天津大学,2001
    [73]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009
    [74] Roth J. R.工业等离子体工程基本原理(第一卷)[M].吴坚强.北京:科学出版社,1998
    [75]李明伟.温室气体冷等离子体反应制合成气基础研究[D].天津:天津大学,2000
    [76] Tas M. A. Plasma-induced catalysis-A feasibility study and fundamentals [D].Netherlands: Eindhoven University of Technology,1995
    [77]等离子体物理学科发展战略研究课题组.核聚变与低温等离子体[M].北京:科学出版社,2004
    [78]江南.我国低温等离子体研究进展(I)[J].物理,2006,35(2):130-139
    [79]江南.我国低温等离子体研究进展(II)[J].物理,2006,35(3):230-237
    [80]张远涛.大气压介质阻挡放电时空演化行为理论研究[D].大连:大连理工大学,2006
    [81] Huang F. M., Chen L., Wang H. L., et al. Degradation of methy orange by atmosphericDBD plasma: Analysis of the degradation effects and degradation path [J]. Journal ofelectrostatics,2012,70:43-47
    [82] Clements J. S., Sato M., Davis R. H. Preliminary investigation of prebreakdownphenomena and chemical reaction using a pulsed high-voltage discharge in water [J].IEEE Transaction on Industry Application,1987, IA-23(2):224-235
    [83] Sugianto A. T., Sato M. Pulsed plasma processing of organic compounds in aqueoussolution [J]. Thin Solid Films,2001,386(2):295-299
    [84] Sato M., Ohgiyama T., Clements J. S. Formation of chemical species and their effects onmicroorganic using a pulsed high voltage discharge in wa ter [J]. IEEE Trans. Ind. Appl,1996,32(1):106-112
    [85] Suarasan I., Ghizdavu L., Ghizdavu I., et al. Experimental characterization of multi-pointcorona discharge devices for direct ozonization of liquids [J]. Journal of Electrostatics,2002,54(2):207-214
    [86] Sun B., Sato M., Clements J. S. Optical study of active species produced by apulsedstreamer corona discharge in water [J]. Journal of Electrostatics,1997,39(3):189-202
    [87] Wang H. J., Li J., Quan X. Decolorzation of azo dye by a multi-needle-to-platehigh-voltage pulsed corona discharge system in water [J]. Journal of Electrostatics,2006,64(6):416-421
    [88] Huang X. H., Wang L. M., Guan Z. C., et al. A study on dyeing wastewater byapplication of impulse discharge [J]. Pulsed Power Plasma Science,2001,2:1130-1133
    [89] Abou-Ghazala A., Katsuki S., Schoenbach K. H., et al. Bacterial decontamination ofwater by means of pulsed-corona discharges [J]. PlasmaScience, IEEE Transactions on,2002,30(4):1449-1453
    [90] Katsuki S., Akiyama H., Abou-Ghazala A., et al. Parallel streamer discharges betweenwire and plane electrodes in water [J]. Dielectrics and Electrical Insulation, IEEETransactions on,2002,9(4):498-506
    [91] Sugianto A. T., Ohshima T., Sato M. Advanced oxidation processes using pulsed streamercorona discharge in water [J]. Thin Solid Films,2002,407(1-2):174-178
    [92] Bystritskii V., Yankelevich Y., Wood T., et al. Pulsed discharge in the fluidizedpacked-bed reactor for toxic water remediation [J]. Pulsed Power Conference,12th IEEEInternational,1999(1):464-467
    [93]雪晶,陈砺,王红林,等.介质阻挡放电等离子体对茜素红溶液的降解[J],化工学报,2007,58(10):2595-2600
    [94]张若兵.双向窄脉冲放电染料废水脱色技术研究[D].大连:大连理工大学,2005
    [95]张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工,2000,20:4-5
    [96]张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(下)[J].上海化工,2000,21:4-5
    [97]朱元右.等离子体技术在废水处理中的应用[J].工业水处理,2004,24(9):13-16
    [98] Loeke B. R., Sato M., Sunka P., et al. Electrohydraulic discharge and nonthermal plasmafor water treatment [J]. Industrial&Engineering Chemistry Researeh,2006,45(3):882-905
    [99] Bai Y., Chen J., Yang Y., et al. Degradation of organophosphorus pesticide induced byoxygen plasma: effects of operating parameters and reaction mechanisms [J].Chemosphere,2010,81(3):408-414
    [100]屈广周. DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D].大连:大连理工大学,2010
    [101] Chen G. L., Zhou M. Y., Chen S. H., et al. The different effects of oxygen and air DBDplasma byproducts on the degradation of methyl violet5BN [J]. Journal of HazardousMaterials,2009,172(2-3):786-791
    [102]杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[D].杭州:浙江大学,2006
    [103]杜长明,严建华,李晓东,等.气液两相流滑动弧放电降解苯酚废水[J].工程热物理学报,2005,26(3):534-536
    [104] Yan J. H., Du C. M., Li X. D., et al. Plasma chemical degradation of phenol in solutionby gas-liquid gliding arc discharge [J]. Plasma Source Science and Technology,2005,14(4):637-644
    [105] Moussa D., Brisset J. L., Hnatiuc E., et al. Plasma-Chemical destruction oftrilaurylamine issued from nuclear laboratories of reprocessing plants [J]. Industrial andEngineering Chemistry Research,2006,45(1):30-33
    [106] Moussa D., Brisset J. L. Disposal of spent tributylphosphate by gliding arc plasma [J].Journal of Hazardous Materials,2003,102(2-3):189-200
    [107] Ghezzar M. R. Abdelmalek F., Belhadj M., et al., Enhancement of the bleaching anddegradation of textile wastewater by gliding arc discharge plasma in the presence of TiO2catalyst [J]. Journal of Hazardous Materials,2009,164(2-3):1266-1274
    [108] Gao J. Z., Liu Y. J., Yang W., et al. Oxidative degradation of phenol in aqueous inducedby plasma from a direct glow discharge [J]. Plasma Sources Science&Technology,2003,12(4):533-537
    [109] Gao J. Z., Pu L. M., Yang W., et al. Oxidative degradation of nitrophenols in aqueoussolution induced by pIasma with submersed glow discharge electrolysis [J]. PlasmaProcesses and Polymers,2004,1(2):171-176
    [110] Gao J. Z., Gai K., Lu Q. F., et al. Plasma induced degradation of aniline in aqueoussolution [J]. Plasma Science&Technology,2002,4(2):1243-1251
    [111] Gao J. Z., Hu Z. A., Wang X. Y. Degradation of α-naphthol by plasma in aqueoussolution [J]. Plasma Science&Technology,2001,3(1):641-646
    [112] Lu Q. F., Yu J., Gao J. Z., et al. Glow discharge induced hydroxyl radical degradation of2-naphthylamine [J]. Plasma Science&Technology,2005,7(3):2856-2859
    [113] Gao J. Z., Yu J., Lu Q. F., et al. Plasma degradation of l-naphtlzylamine by glowdischarge electrolysis [J]. Pakistan Journal of Biological Seienees,2004,7(10):1715-1720
    [114] Gao J. Z., Wang X. Y., Hu Z. A., et al. Plasma degradation of dyes in water with contactglow discharge electrolysis [J]. Water research,2003,37(2):267-272
    [115]高锦章,俞洁,李岩,等.辉光放电等离子体技术处理印染废水的研究[J].环境化学,2005,24(2):183-185
    [116] Gao J. Z., Hu Z. A., Wang X. Y., et al. Oxidative degradation o f acridine orange inducedby plasma with contact glow discharge electrolysis [J]. Thin Solid Film,2001,390(l-2):154-158
    [117]吴蓉,李燕,朱顺官,等.等离子体电子激发温度的发射光谱法诊断[J].光谱学与光谱分析,2008,28(4):731-735
    [118] Feng J. W., Zheng Z., Sun Y., et al. Degradation of diuron in aqueous solution bydielectric barrier discharge [J]. Journal of Hazardous Materials,2008,154(1-3):1081-1089
    [119]黎松强,吴馥萍.有机化工废水COD与TOC的相关性[J].精细化工,2007,24(3):282-286
    [120]赵伟荣.阳离子红X-GRL染料的UV、O3、O3/UV氧化处理研究[D].浙江:浙江大学,2004
    [121] Risch M. J. T., Schlegel, G. E., Scuseria, M. A., et al. Gaussian09, revision A.01.Gaussian, Inc.: Wallingford CT,2009
    [122] Nguyen T., Ulrich S., Bsul J., et al., Influence of argon gas pressure and target power onmagnetron plasma parameters [J]. Diamond&Related Materials,2009,18(5-8):995-998
    [123] Bogaerts A., Neyts E., Gijbels R., et al. Gas discharge plasma and their applications [J].Spectrochim Acta B,2002,57:609-658
    [124] Karaoglu S. Structural characterization and wear behavior of plas ma-nitrided AISI5140low-alloy steel [J], Mater. Charact,2002,49(4):349-357
    [125] Li W., Jiang X., Xu K., et al. Determination of ultratrace nitrogen in pure argon gas bydielectric barrier discharge-molecular emission spectrometry [J], Microchemical Journal,2011,99(1):114-117
    [126] Kunze K., Miclea M., Musa G., et al. Diode laser-aided diagnostics of a low-pressuredielectric barrier discharge applied in element-selective detection of molecular species[J]. Spectrochimica Acta B: Atomic Spectroscopy,2002,57(1):137-146
    [127] Laux C. O., Spence T. G., Kruger C. H., et al. Optical diagnostics of atmosphericpressure air plasmas [J]. Plasma Sources Science&Technology,2003,12(2):125-138
    [128] Lee Y. K., Hwang K. T., Lee M. H., et al. Spectroscop ic measurement of the electrontemperatures and the metastable densities by using a simple collisional-radiative modelin a low-pressure inductively-coupled argon plasma [J]. Journal of the Korean PhysicalSociety,2008,52(6):1792-1799
    [129] Donnelly V. M. Plasma electron temperatures and electron energy distributionsmeasured by trace rare gases optical emission spectroscopy [J]. Journal of Physics D:Applied Physics,2004,37(19):217-236
    [130] Mijatovic Z., Nikolic D., Kobilarov R., et al. Stark broadening of the hydrogenH-gamma spectral line at moderately low plasma electron densities [J]. Journal ofQuantitative Spectroscopy&Radiative Transfer,2010,111(7-8):990-996
    [131]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996
    [132] Wu R., Li Y., Zhu S. G., et al., Emission spectroscopy diagnostics of plasma electrontemperature [J], Spectroscopy and Spectral Analysis,2008,28(4):731-735
    [133] Wiese W. L., Brault J. W., Danzmann K., et al. Unified set of atomic transitionprobabilities for neutral argon [J], Phys Rev A,1989,39(5):2461-2471
    [134] Liu F., Wang W., Wang S., et al., Diagnostic of OH radical by optical emissionspectroscopy in a wire-plate bi-directional pulsed corona discharge [J], Journal ofElectrostatics,2007,65(7):445-451
    [135] Hahn T. D., Wiese W. L. Atomic transition probability ratios between some ArI4s-4pand4s-5p transitions [J], Phys Rev A.1990,42(9):5747-5749
    [136] Iordanova S., Koleva I. Optical emission spectroscopy diagnostic of inductively-drivenplasmas in argon gas at low pressures [J], Spectrochimica Acta Part B,2007,62(4):344-356
    [137] Aueiello O., Flamn D. L.等离子体诊断[M].郑少白,胡建芳,郭淑静,等.北京:电子工业出版社,1994
    [138]张连水,刘凤良,党伟,等.脉冲放电等离子体电子激发温度发射光谱诊断[J].河北大学学报(自然科学版),2009,29(3):245-250
    [139] Sansonettia J. E., Martin W. C. Handbook of basic atomic spectroscopic data [J]. J. Phys.Chem. Ref. Data,2005,34(4):1559-2259
    [140]刘佳宏,唐书凯,王文春,等.氢异常辉光放电阴极鞘层区中Hn+的质谱分析[J].核聚变与等离子体物理,2000,20(1):43-47
    [141]罗利霞,吴卫东,朱永红,等. CH4/H2和CH4/He体系等离子体发射光谱分析[J].强激光与粒子束,2008,20(6):899-902
    [142] Brandenburg R., Maiorov V. A., Golubovskii Y. B., et al. Diffuse barrier discharges innitrogen with small admixtures of oxygen: discharge mechanism and transition to thefilamentary regime [J]. J. Phys. D: Appl. Phys.,2005,38(13):2187-2197
    [143] Piper L. G. The excitation of N2(B3∏g, v=1-12) in the reaction between N2(A3Σu+) andN2(X, v≥5)[J]. The Journal of Chemical Physics,1989,91(2):864-873
    [144] Thomas, J. M., Kaufman F. Rate constants of the reactions of metastable N2(A3Σu+) nv=0,1,2, and3with ground state O2and O [J]. Journal of Chemical Physics,1985,83(6):2900-2903
    [145] Garscadden A., Nagpal R. Non-equilibrium electronic and vibrational kinetics in H2-N2and H2discharges [J]. Plasma Sources Science and Technology,1995,4(2):268-280
    [146] Piper, L. G. State-to-state N2(A3Σu+) energy-pooling reactions.∏. The formation of N2(C3Πu) and the Herman infrared system [J]. The Journal of Chemical Physics,1988,88(1):231-239
    [147] Piper L. G. State-to-state N2(A3Σu+) energy pooling reactions. II. The formation andquenching of N2(B3Πg, v=1-12)[J]. Journal of Chemical Physics,1988,88(11):6911-6921
    [148] Brühl S. P., Russell M. W., Gomez B. J., et al. A study by emission spectroscopy of theactive species in pulsed DC discharges [J]. J. Phys. D: Appl. Phys.,1997,30(21):2917-2922
    [149] Lofthus, A., Krupenie P. H. The spectrum of molecular nitrogen [J]. J. Phys Chem RefData,1977,6(1):113-307
    [150] Cernogora G., Hochard L., Touzeau M., et al. Population of N2(A3Σu+) metastablestates in a pure nitrogen glow discharge [J]. Journal of Physics B: Atomic and MolecularPhysics,1981,14(16):2977-2987
    [151] Moore C. E. Selcted Table of Atomic Spectra [M]. Washington D. C.: Office ofStandard Reference Data,1980
    [152] Slanger T. G., Copeland R. A. Energetic oxygen in the upper atmosphere and thelaboratory [J]. Chemical reviews,2003,103(12):4731-4766
    [153]卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D].杭州:浙江大学,2005
    [154] Benstaali B., Boubert P., Cheron B. G., et al. Density and rotational temperaturemeasurements of the OH and NO radical produced by a gliding arc in humid air [J].Plasma Chem and Plasma Process,2002,22(4):553-571
    [155] Buxton G. V., Greenstock C. L., Helman W. P., et al. Critical review of ra te constants forreactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) inaqueous solution [J]. J. Phys. Chem. Ref. Data,1988,17(2):513-886
    [156] Spinks J. W. T., Woods R. J. An Introduction to Radiation Chemistry [A].3rdEd.,John-Wiley and Sons, Inc., New York: Toronto,1900:574
    [157] Stokes N. J., Tabner B. J., Hewitt C. N. The determination of hydroxyl radicalconcentrations in environmental chambers using electron spin resonance [J].Chemosphere,1994,28(5):999-1008
    [158] Tai C., Peng J. F., Liu J. F., et al. Determination of hydroxyl radicals in advancedoxidation processes with dimethyl sulfoxide trapping and liquid chromatography [J].Anal Chim Acta,2004,527(1):73-80
    [159] Lau C., Lu Z. J., Kai M. Chemiluminescence determination of tetracycline based onradical production in a basic acetonitrile-hydrogen peroxide reaction [J]. Anal Chim Acta,2004,503(2):235-239
    [160]徐向荣,王文华,李华斌.荧光法测定Fenton反应产生的羟自由基[J].分析化学,1998,26(12):1460-1463
    [161]刘立明,刘丽虹,宋功武,等.分光光度法测定Fenton反应产生的羟自由基[J].湖北大学学报:自然科学版,2002,24(4):326-328
    [162]杨明惠,何丽仙,李珍贵.分光光度法测定Fenton体系中产生的羟自由基[J].大理学院学报,2007,6(4):38-40
    [163] Jen J. F., Leu M. F., Yang T. C. Determination of hydroxyl radical in an advancedoxidation process with salicylic acid trapping and liquid chromatography [J]. J.Chromatogr. A,1998,796(2):283-288
    [164]许利君,王凯雄, Kang J. W.过氧化氢测定方法研究及水处理过程中过氧化氢自动连续监测系统的设计构思[J].浙江大学学报理学版,2003,30(3):303-305
    [165]庄会荣,胡顺番,陈鸿琪.靛红褪色光度法测定过氧化氢[J].理化检验化学分册,2000,36(1):37-41
    [166] GBZ/T160.32-2004,工作场所空气中氧化物的测定方法[S].中国:黄雪祥,2004
    [167]章亚彦,林荔,苏必桔.碘化钾碘蓝分光光度法测定微量过氧化氢[J].分析试验室,2001,20(4):41-42
    [168] Pupo Nogueira R. F., Oliveira M. C., Paterlini W. C. Simple and fast spectrophotometricdetermination of H2O2in photo-fenton reactions using metavanadate. Talanta,2005,66(1),86-91
    [169] Wojnárovits L., Pálfi T., Takács E., et al. Reactivity differences of hydroxyl radicals andhydrated electrons in destructing azo dyes. Radiation Physics and Chemistry,2005,74(3-4),239-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700