用户名: 密码: 验证码:
渐开线水液压内啮合齿轮泵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前柱塞泵是水液压动力元件最为常见的结构形式,虽然部分水液压柱塞泵产品的工作性能已经达到甚至超过油压产品,但仍无法避免其结构形式所带来的结构复杂、对污染物敏感、自吸性能差、流量/压力脉动大和振动噪声等级高等固有弊端,这在一定程度上限制了水液压传动技术的应用和发展。水液压内啮合齿轮泵是将绿色水液压技术和高压内啮合齿轮泵技术结合的产物,该泵能够克服已有水液压泵存在上述缺点,符合液压动力元件“高压化”、“高速化”、“集成化”和“绿色化”的发展趋势。
     本文选取了新型渐开线内啮合齿轮副(简称“渐开线内啮合齿轮副”)作为水液压内啮合齿轮泵的核心关键元件,该种齿轮副能够减小齿轮泵的无用死体积和困油体积,因而使内啮合齿轮泵具有更好的工作特性;研究了渐开线内啮合齿轮副的参数化数学建模方法及图形化建模方法,分析了渐开线内啮合齿轮副的啮合特性,推导了渐开线内啮合齿轮副避免根切的极限条件;推导了渐开线内啮合齿轮副的参数化瞬时流量方程以及相关流体输运特性评价指标,分析了齿轮设计参数对泵流体输运特性的影响规律;分析了渐开线内啮合齿轮副运动特性对困油特性的影响,提出了基于内啮合齿轮副图形模型的困油特性图形化求解方法,研究了齿轮设计参数对泵困油特性的影响,并给出了困油消除结构设计方法;提出了基于内啮合齿轮副图形模型的不平衡径向力精确求解方法,获得了内啮合齿轮副不平衡径向力的周期性变化数值,设计了水润滑环境下齿轮轴滑动轴承和内齿轮壳体两对关键摩擦副的静压支承结构;设计了水液压内啮合齿轮泵轴向和径向间隙自动补偿控制元件,结合有限元分析软件分析了间隙补偿元件在工作过程中的应力和变形分布状况,计算了间隙自动补偿控制过程中的内泄漏量;确定了水液压内啮合齿轮泵的主要技术指标及内啮合齿轮副的设计参数,基于关键零部件的工况特点选定了其材料及对应加工工艺;参考油压齿轮泵相关标准设计了水液压内啮合齿轮泵样机试验系统,试验研究了水液压内啮合齿轮泵样机的工作性能,分析了其主要失效形式及原因。
     第一章概述了水液压动力元件的发展现状及所存在的固有缺点,介绍了本课题的来源、研究目的和意义,简述了现代水液压技术和内啮合齿轮泵技术的发展现状,指出了水液压内啮合齿轮泵的优势所在,介绍了本课题的关键问题和主要研究内容。
     第二章运用二次展成法建立了渐开线内啮合齿轮副的参数化数学模型,基于所获得的数学模型,建立了内啮合齿轮副的图形模型,分析了该种齿轮副独特的啮合运动特性,结合齿轮啮合理论推导了渐开线内啮合齿轮副避免根切的极限条件。
     第三章推导了渐开线内啮合齿轮副的参数化瞬时流量公式,提出了考核内啮合齿轮副流体输运特性的三个性能指标,分析了模数、变位系数、齿数、压力角和过渡圆角半径等齿轮设计参数对内啮合齿轮副流体输运特性的影响。
     第四章分析了渐开线内啮合齿轮副运动特性对其困油特性的影响,提出了基于内啮合齿轮副图形模型的困油特性求解方法,分析了模数、变位系数、齿数、压力角和过渡圆角半径等齿轮设计参数对内啮合齿轮副困油特性的影响,设计了对应困油消除结构。
     第五章提出了求解渐开线内啮合齿轮副不平衡径向力的图形化求解方法,获得了不平衡径向力随齿轮旋转的周期时变特性,确定了水润滑条件下、承受周期变负载的齿轮轴滑动轴承和内齿轮壳体两对关键摩擦副静压支承结构形式,分析了静压支承结构参数对其承载力和泄漏量的影响,确定了减摩耐磨、泄漏小的静压支承结构参数。
     第六章分析了水液压内啮合齿轮泵利用浮动侧板和月牙块实现轴向和径向间隙自动补偿控制的原理,基于浮动侧板反推力时变特性设计了其背压腔结构,利用有限元方法获得了浮动侧板和月牙块的应力和变形分布,计算了间隙自动补偿过程中的泄漏量。
     第七章确定了水液压内啮合齿轮泵的主要技术指标及对应的齿轮设计参数,确定了内啮合齿轮副高精度加工成形方法以及浮动侧板、月牙块和滑动轴承等复合塑料零件的加工工艺,搭建了水液压内啮合齿轮泵样机试验系统,试验研究了水液压内啮合齿轮泵样机的工作性能、失效形式。
     第八章总结了本文的研究工作,并对进一步研究做了展望。
At present, piston pumps are the most common structure forms in water hydraulic pumps. Although performances of some water hydraulic piston pumps have reached or even over those of oil hydraulic ones, they still have shortcomings which are caused by their structure forms, such like complicated structures, sensitive to contaminants, bad suction performance, large flowrate and pressure pulsation, high level of vibration and noise and so on. To a certain extent, these shortcomings have restricted the application and development of water hydraulic technologies. Water hydraulic internal gear pumps have combined the advantages of green water hydraulic technologies and high-pressure internal gear pump technologies, which makes they overcome the shortcomings of traditional water hydraulic pumps and consistent with the development trend of hydraulic pumps, such as higher operation pressure, higher operation speed, more compact and more greener.
     In this dissertation, a new kind of involute internal gear pairs, short for "involute internal gear pairs" are chosen as the key components of water hydraulic internal gear pumps. Compared to the conventional involute gear pairs, these new gear pairs can decrease the useless dead volumes and trapped volumes, which can improve the performances of internal gear pumps. Firstly, a parametric mathematical modeling method of conjugated involute internal gear pairs is proposed and then the graphical modeling method is presented. With the mathematical models, meshing characteristics of the gear pairs are discussed and the limiting conditions to avoid overcutting are derived. Then, the parametric instantaneous flow equation of the internal gear pumps is obtained. And, some indexes are proposed to evaluate the influences of gear parameters on fluid transport performance. Also, the influences of meshing characteristics on trapped volumes are discussed and a graphical method is presented to investigate influences of gear parameters on trapped oil characteristics, based on which the structure for eliminating trapped oil is designed. With the help of graphical model of gear pairs, the unbalance radial forces acting on internal gear pairs can be accurately solved, which are periodically changing with gear rotation. According to the unbalance radial forces, the hydrostatic bearing forms are determined for the two key friction pairs, which are gear shaft-sliding bearing and internal gear-pump case, under water lubrication conditions. Components are designed to compensate gaps and make axial and radial gaps always at a lower level. With the help of FEA tool, results of stress and deformation of these components during the operation process are obtained. And, the deformation-resulting leakages are analyzed. The main technical specifications of water hydraulic internal gear pumps are determined, which help to determine the parameters of internal gear pairs. Based on the operation conditions, materials for key components are chosen and so are the machining methods. Finally, referring to the standards of oil gear pumps, an experiment system for water hydraulic internal gear pumps is designed, which lays the foundation for the experiment researches and the following optimization and improvement of the pumps.
     In Chapter1, the development status and shortcoming of existing water hydraulic pumps are briefly described. The source, purpose and significance of this dissertation are introduced. With descriptions of development statuses of modern water hydraulic technologies and internal gear pump technologies, the advantages of water hydraulic internal gear pumps are pointed out. The key problems and main research contents are listed.
     In Chapter2, the mathematical models of involute internal gear pairs are built based on double generating method. With the obtained mathematical models, the graphical models of the gear pairs are built. Then, the meshing characteristics of internal gear pairs are analyzed. Moreover, the limiting conditions to avoid overcutting are derived according to the gear meshing principles.
     In Chapter3, the parametric instantaneous flowrate formula of involute internal gear pairs is derived. Three indexes are proposed to evaluate the fluid transport performances. And, the influences of module, shifting coefficient, tooth number, pressure angle and fillet radius are discussed.
     In Chapter4, the influence of meshing characteristics on trapped oil is discussed. A solving method for trapped oil characteristics is presented, which is based on the graphical models of internal gear pairs. Then, the influences of module, shifting coefficient, tooth number, pressure angle and fillet radius are discussed. With the obtained trapped oil characteristics, structures for eliminating trapped oil are designed.
     In Chapter5, based on the graphical models, a method for solving unbalance radical forces, which are acting on the internal gear pairs, are proposed. And then, the unbalance radical forces are obtained, which are periodically changing with gear rotation. With these results, the hydrostatic bearing forms are determined for the two key friction pairs, which are gear shaft-sliding bearing and internal gear-pump case, under water lubrication conditions. Also, the influences of hydrostatic bearing parameters on bearing capacity and leakage are discussed, which helps to optimize the hydrostatic bearing parameters with larger bearing capacity and smaller leakage.
     In Chapter6, the operation principles of compensating axial and radial gaps are presented, which are achieved by using floating plates and crescent plates. According to the characteristics of reverse pushing forces, the back-pressure chamber of floating plates is designed. With the help of FEA tools, the results of stress and deformation of floating plates and crescent plates are obtained, which help to calculate the leakage occurring during the gap-compensating process.
     In Chapter7, the main technical specifications of water hydraulic internal gear pumps are determined and so are the design parameters of internal gear pairs. Then, the machining methods with higher accuracy are chosen for the internal gear pairs and so are the machining methods for floating plates, crescent plates and sliding bearings, whose material is composite plastic. Finally, an experiment system for water hydraulic internal gear pumps is built and based on experiments analyses on operation performances and failure modes are carried on.
     In Chapter8, conclusions of this dissertation are made and so are some outlooks for the further research of water hydraulic internal gear pumps.
引文
[1]Cooke P. General features of water hydraulic systems[Z]. London, UK:1996.
    [2]Hitchcox A L. Water hydraulics continues steady growth[J]. Hydraulics & Pneumatics.1999,19(12): 33-34.
    [3]Lim G H, Chua P, He Y B. Modern water hydraulics-the new energy-transmission technology in fluid power[J]. Applied Energy.2003,76(1):239-246.
    [4]Heney P J. Fluid power:2000 and beyond:a blueprint for the future[J]. Hydraulics & Pneumatics.1998, 51(3):68-70.
    [5]杨华勇,周华.水液压技术的研究现状与发展趋势[J].中国机械工程.2000,11(12):1430-1433.
    [6]杨华勇,周华.纯水液压传动技术的若干关键问题[J].机械工程学报.2009(z1):96-100.
    [7]周华,杨华勇.重新崛起的现代水压传动技术[J].液压气动与密封.2000(4):6-9.
    [8]Fitch E C. Proactive Maintenance of Fluid Power Systems[Z]. Beijing:19918-17.
    [9]Seabrook C, Burrows C R. Water hydraulics-some design challenges[J]. Fluid Power Systems and Technology.1994,1:59-63.
    [10]Terava J, Kuikko T, Vilenius M. Development of sea water hydraulic power pack[C].1995.
    [11]Vantysyn J, Ivantysynova M. Hydrostatic pumps and motors[M]. New Delhi:Academia Books International,2001.
    [12]Crocker M J. Handbook of noise and vibration control[M]. New Jersey:Johe Wiley & Son, Inc,2007.
    [13]翟江.海水淡化高压轴向柱塞泵的关键技术研究[D].杭州:浙江大学,2012.
    [14]杨兰春.渐开线内啮合齿轮副的设计与计算[M].机械工业出版社,1995.
    [15]浙江大学机械系液压传动专业,新技术译丛,编译组.液压传动-油泵油马达专辑[M].浙江大学出版社,1971.
    [16]Robbine R W, Schneider W F, Sasse J A. Design and Test of A High-Pressure Seawater Pump[R]. 1971.
    [17]杨曙东.基于海水润滑的中高压海水液压泵研究[D].武汉:华中科技大学,2005.
    [18]Hicks D C, Pleass C M. Development and testing of a composite/plastic high pressure seawater pump[C].1988.
    [19]Brookes C A, Fagan M J, James R D, et al. The development of water hydraulic pumps using advanced engineering ceramics[C].1995.[20]西冈石夫.2000m潜水调查船用海水ポンプの開发[J].三菱重工技报.1980,17(1):36-38.[24]西冈石夫.6000m级潜水调查船用海水求ポンプの開发[J].关西造船协会誌.1983,9(190):1-9.[25]寺田泰治.超高压海水ポンプの開发[J].关西造船协会誌.1983,9(190):11-15.
    [29]Terava J, Kuikko T, Vilenius M. Development of sea water hydraulic power pack[C].1995.
    [30]Dubus G, David O, Measson Y, et al. Making hydraulic manipulators cleaner and safer:from oil to demineralized water hydraulics[C]. Nice, France:2008.
    [31]Kekalainen T, Mattila J, Virvalo T. Development and design optimization of water hydraulic manipulator for ITER[J]. Fusion Engineering and Design.2009,84(2):1010-1014.
    [32]Muhammad A, Esque S, Mattila J, et al. Development of water hydraulic remote handling system for divertor maintenance of ITER[C]. IEEE,2007.
    [33]周华,杨华勇.轴向柱塞式纯水液压泵的研究分析[J].机床与液压.1999(1):28-30.
    [34]Trostmann E. Water hydraulics control technology[M]. CRC,1995.
    [35]周华.海水液压泵及其基础理论的研究[D].武汉:华中理工大学,1997.
    [36]贺小峰.水压泵(马达)摩擦副模拟试验台及其关键水压元件的研究[D].武汉:华中科技大学,2002.
    [37]刘银水.水压阀口流量压力特性实验研究及海水流量控制阀的研制[J].华中科技大学博士论文.2002,5.
    [38]焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究[D].杭州:浙江大学,2004.
    [39]邓斌.水压轴向柱塞泵的特性研究与分析[D].西南交通大学,2004.
    [40]刘桓龙.水压柱塞泵的润滑基础研究[D].2007.
    [41]唐向阳.纯水液压试验系统的设计及动态特性研究:[博士学位论文][D].昆明:昆明理工大学机电工程学院,2001.
    [42]王强.纯水液压齿轮泵及试验系统研究[D].昆明:昆明理工大学,2003.
    [43]刘谦,阮俊,陈磊,等.斜轴式海水柱塞泵的研制[J].机床与液压.2011,39(5):62-64.
    [44]Wang D, Li Z, Zhu Y Q. Lubrication and tribology in seawater hydraulic piston pump[J]. Journal of Marine Science and Application.2003,2(1):35-40.
    [45]吴德发,李斌,陈经跃,等.水润滑超高压海水泵斜盘/滑靴副摩擦学特性仿真研究[J].液压与气动.2010(009):65-67.
    [46]杨珍,吴德发,陈经跃,等.超高压水液压柱塞泵柱塞副泄漏性能分析[J].机床与液压.2012,40(19):39-42.
    [47]刘银水,吴德发,贺小峰,等.自补水型阀配流柱塞式超高压水泵[P].
    [48]Mimmi G C, Pennacchi P E. Involute gear pumps versus lobe pumps:a comparison[J]. Journal of Mechanical Design.1997,119(4):458-465.
    [49]Eckerle O. Heavy-duty gear pump[Z]. Google Patents,1966.
    [50]Eckerle O. Wear-compensating high efficiency gear pump[Z]. Google Patents,1967.
    [51]Eckerle O. Gear pump having a rotor shaft internal with the crown gear [Z]. Google Patents,1968.
    [52]Eckerle O. Wear and tear-compensating high-pressure gear pump [Z]. Google Patents,1970.
    [53]Eckerle O. High-pressure gear pump [Z]. Google Patents,1973.
    [54]Eckerle O. Axially and radially compensated high pressure gear pump [Z]. Google Patents,1975.
    [55]Eckerle O. High pressure hydraulic gear pump or motor[Z]. Google Patents,1979.
    [56]Eckerle O. Internal-gear machine[Z]. Google Patents,1990.
    [57]Eckerle O, Buchmuller K. Internal gear machine with segmented filler members[Z]. Google Patents, 1984.
    [58]Eckerle O. Internal-gear machine having a divided filling portion[Z]. Google Patents,1997.
    [59]Truninger P. Truninger gear pump[Z]. Google Patents,1970.
    [60]吴序堂.齿轮啮合原理[M].机械工业出版社,1982.
    [61]张炜.内啮合摆线转子齿轮泵的优化设计及加工工艺分析[D].福州大学,2006.
    [62]Eckerle O. Filling member-less internal-gear pump having a sealed running ring[Z]. Google Patents, 1999.
    [63]Eckerle O. Filling member-less internal-gear machine[Z]. Google Patents,2000.
    [64]姚培棣.内啮合齿轮泵和NB泵[J].液压与气动.1999,2(32.35).
    [65]毕晴春,凌俊杰,张策,等.IGP型高压低噪声内啮合齿轮泵结构特点分析[J].机床与液压.2010(002):50-52.
    [66]Beard J E, Hall A S, Soedel W. Comparison of Hypotrochoidal and Epitrochoidal Gerotors[J]. ASME Journal of Mechanical Design.1991,113(6):133-141.
    [67]Beard J E, Hall S S, Soedel W. Hypotrochoidal Versus Epitrochoidal Gerotor Type Pumps with Special Attention to Volume Change Ratio and Size[C].1987.
    [68]Beard J E. Epitrochoidal Versus Hypotrochoidal Gerotor Type Pumps With Special Attention to Rubbing Velocities[J].1988.
    [69]Colbourne J R. The geometry of trochoid envelopes and their application in rotary pumps[J]. Mechanism and Machine Theory.1974,9(3):421-435.
    [70]Colbourne J R. Gear shape and theoretical flow rate in internal gear pumps[J]. Canadian Society for Mechanical Engineering, Transactions.1975,3(4):215-223.
    [71]Colbourne J R. Reduction of the contact stress in internal gear pumps[J].Journal of Engineering for Industry.1976,98:1296.
    [72]Mimmi G, Pennacchi P. Rotor design and optimization in internal lobe pumps[J]. Applied Mechanics Reviews.1997,50(11).
    [73]Litvin F L, Fuentes A. Gear geometry and applied theory[M]. Cambridge University Press,2004.
    [74]Mimmi G C, Pennacchi P E. Non-undercutting conditions in internal gears[J]. Mechanism and Machine Theory.2000,35(4):477-490.
    [75]Bonandrini G, Mimmi G, Rottenbacher C. Theoretical analysis of internal epitrochoidal and hypotrochoidal machines[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2009,223(6):1469-1480.
    [76]Fabiani M, Manco S, Nervegna N, et al. Modeling and simulation of gerotor gearing in lubricating oil pumps[J]. SAE transactions.1999,108(3):989-1003.
    [77]Gamez-Montero P J, Macia E C. Fluid dynamic behaviour of an internal rotary pump generated by trochoidal profiles[C]. Citeseer,2000.
    [78]Kim G, Park J, Jang J. Performance Development for Hydraulic Elements of Hyundai Automotive Automatic Transmission[C].2000.
    [79]Kwon S M, Kim M S, Shin J H. Analytical wear model of a gerotor pump without hydrodynamic effect[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing.2008,2(2):230-237.
    [80]Bednarczyk S, Stryczek J. Plastic cycloidal gears applied in hydraulic machines [J]. TEKA Kom. Mot. Energ. Roln.-OL PAN.2007(7):24-30.
    [81]Stryczek J, Biernacki K. Gerotor Pump with Plastic Gears[Z]. Archen, Germany:2010.
    [82]Biernacki K, Stryczek J. Analysis of stress and deformation in plastic gears used in gerotor pumps[J]. The Journal of Strain Analysis for Engineering Design.2010,45(7):465-479.
    [83]Antoniak P A. Designing of the flow processes in the rotational displacement pumps exemplify the gerotor pump[Z].2006:68.
    [84]Andrzej Antoniak P. Forming the flow processes in the positive-displacement rotary pumps exemplified by the gerotor pump (in Polish) Ksztaliowanie procesow przeptywowych w rotacyjnych pompach wyporowych na przykladzie pompy gerotorowej[J]. Archives of Civil and Mechanical Engineering.2006, 6(2):93.
    [85]Antoniak P A, Stryczek J. Model of the flow processes in the channels of the gerotor pump[Z]. Aachen, Germany:2006.
    [86]Antoniak P A, Stryczek J. Designing the channels and the inner clearances in gerotor pump[Z]. Sarasota FL, USA:2006.
    [87]Antoniak P A, Stryczek J. Cycloidal gear machines'optimal designing of inner channels in gerotor pumps[Z].2008.
    [88]Antoniak P A. Appliation of the PIV method to optimization of the internal channels of gerotor pumps[Z]. Aachen, Germany:2010.
    [89]W S, W S, A V. A Study on the Sealing Gaps of Internal Gear Ring Pumps for Automotive Drivetrain Applications[Z]. Chicago, Illinois, United States:2011.
    [90]Schweiger W, Schoefmann W, Vacca A. Gerotor Pumps for Automotive Drivetrain Applications:A Multi Domain Simulation Approach[J]. SAE International Journal of Passenger Cars-Mechanical Systems. 2011,4(3):1358-1376.
    [91]Zhou Q. Engine lubrication system analysis and oil pump design optimization[J]. Advanced Tribology. 2010:56-60.
    [92]陈忠强,杨丹青,李庆.直齿内啮合齿轮泵的特性分析[J].液压气动与密封.1996(003):10-12.
    [93]崔建昆,秦山,闻斌,等.QX型直线共轭内啮合齿轮泵研制[J].流体机械.2004,12:41-44.
    [94]崔建昆,泰山,闻斌.直线共轭内啮合齿轮副啮合特性分析[J].齿轮机械传动,Vol.28 (6), pp.12-15.2004(6):12-15.
    [95]崔建昆.直线共轭内啮合齿轮泵的流量脉动分析[J].机械设计.2004,21(z1):157-158.
    [96]董永昌,崔建昆,李凯,等.直线共轭内啮合齿轮副的齿间相对滑动分析[J].机械设计与制造.2006(6):83-84.
    [97]李凯,崔建昆.直线共轭内啮合齿轮泵齿圈强度分析[J].机床与液压.2006(6):83-84.
    [98]杨国来,白桂香.基于啮合角函数的直线共轭内啮合齿轮泵齿廓方程[J].液压与气动.2012(7):39-41.
    [99]杨国来,白桂香,张姗玲,等.直线共轭内啮合齿轮泵的困油特性分析[J].新技术新工艺.2012(2):51-54.
    [100]李宏伟,张方晓.内啮合齿轮泵齿形干涉的研究明.机床与液压.2006(003):135-136.
    [101]李宏伟,张方晓.内啮合齿轮泵的排量分析[C].2006.
    [102]李宏伟,高绍站.内啮合齿轮泵齿轮轴的受力分析[J].液压与气动.2007(5):70-72.
    [103]李宏伟,成小创.内啮合齿轮泵齿轮轴强度分析[J].机床与液压.2009,37(10):96-98.
    [104]李宏伟,崔玲玲,成小创.内啮合齿轮泵齿轮轴挠度分析[J].机床与液压.2009,37(9):116-118.
    [105]李宏伟,杨成.基于ANSYS的内啮合齿轮泵壳体有限元分析及优化[J].液压与气动.2011(002):32-35.
    [106]杨国来,刘志刚,杨长安,等.内啮合齿轮泵齿轮变位系数对流量脉动的影响[J].机床与液压.2008,36(11):60-61.
    [107]杨国来,朱佳斌,陈亮,等.阻尼孔在内啮合齿轮泵浮动侧板中的应用研究[J].机床与液压.2010,38(022):68-70.
    [108]杨国来,朱佳斌,张守印,等.对内啮合齿轮泵浮动侧板中缓冲槽作用的分析[J].机床与液压.2010,38(013):163-165.
    [109]徐学忠.内啮合摆线齿轮泵的理论研究与仿真[D].南京:东南大学,2005.
    [110]罗骥,蔡盈,吴盛林,等.内啮合齿轮泵油/水介质对比试验与研究[J].机床与液压.2003(2):57-58.
    [111]罗骥,蔡盈,吴盛林,等.水液压内啮合齿轮泵的制造技术分析[J].机床与液压.2003(006):43-44.
    [112]罗骥,袁子荣,吴盛林.水液压内啮合齿轮泵的设计与研究[J].中国机械工程.2003,14(11):912-914.
    [113]罗骥,吴盛林,袁子荣.水液压内啮合齿轮泵的设计与制造[J].南京理工大学学报(自然科学版).2006,30(6).
    [114]杨兰春.渐开线内啮合齿轮副的设计与计算[M].机械工业出版社,1995.
    [115]Kang S K, Ehmann K F, Lin C. A CAD approach to helical groove machining-Ⅰ. mathematical model and model solution[J]. International Journal of Machine Tools and Manufacture.1996,36(1):141-153.
    [116]Chyan H C, Ehmann K F. Tapered-web helical groove machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.1999,213(8):779-785.
    [117]Litvin F L, Krylov N N, Erikhov M L. Generation of tooth surfaces by two-parameter enveloping[J]. Mechanism and Machine Theory.1975,10(5):365-373.
    [118]Litvin F L, Seol I H. Computerized determination of gear tooth surface as envelope to two parameter family of surfaces[J]. Computer Methods in Applied Mechanics and Engineering.1996,138(1):213-225.
    [119]Litvin F L, Fuentes A, Zanzi C, et al. Design, generation, and stress analysis of two versions of geometry of face-gear drives[J]. Mechanism and Machine Theory.2002,37(10):1179-1211.
    [120]Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Design, generation and stress analysis of face-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics and Engineering.2005,194(36):3870-3901.
    [121]Litvin F L, Fuentes A, Zanzi C, et al. Face-gear drive with spur involute pinion:geometry, generation by a worm, stress analysis[J]. Computer Methods in Applied Mechanics and Engineering.2002,191(25): 2785-2813.
    [122]Litvin F L, Fan Q, Vecchiato D, et al. Computerized generation and simulation of meshing of modified spur and helical gears manufactured by shaving[J]. Computer Methods in Applied Mechanics and Engineering. 2001,190(39):5037-5055.
    [123]Yang S C, Chen C K, Li K Y. A geometric model of a spherical gear with a double degree of freedom[J]. Journal of Materials Processing Technology.2002,123(2):219-224.
    [124]Yang S C. A rack-cutter surface used to generate a spherical gear with discrete ring-involute teeth[J]. The International Journal of Advanced Manufacturing Technology.2005,27(1):14-20.
    [125]Yang S C. Study on an internal gear with asymmetric involute teeth[J]. Mechanism and Machine Theory.2007,42(8):977-994.
    [126]Litvin F L. Theory of gearing[R]. DTIC Document,1989.
    [127]Dudley D W. Handbook of practical gear design[M]. CRC,1994.
    [128]Manring N D, Kasaragadda S B. The theoretical flow ripple of an external gear pump[J]. Transactions-ASME Journal of Dynamic Systems Measurement and Control.2003,125(3):396-404.
    [129]Huang K J, Lian W C. Kinematic flowrate characteristics of external spur gear pumps using an exact closed solution[J]. Mechanism and Machine Theory.2009,44(6):1121-1131.
    [130]Huang K J, Chen C C, Chang Y Y. Geometric displacement optimization of external helical gear pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2009,223(9):2191-2199.
    [131]Ichikawa T. Characteristic of Internal Gear Pump[J]. Bulletin of JSME.1959,2(5):35-39.
    [132]何存兴.液压元件[M].北京:机械工业出版社,1982.
    [133]盛敬超.液压流体力学[M].机械工业出版社,1980.
    [134]余祖耀,李壮云,杨曙东,等.水液压柱塞泵中静压支承设计方法的理论研究[J].机械工程师.2002,12.
    [135]余祖耀,李壮云.水液压柱塞泵滑靴球铰副存在的问题和改进设计[J].工程设计学报.2002,9(3):116-118.
    [136]陈远玲,周华.纯水轴向柱塞泵滑履的静压支承设计[J].工程设计学报.2002,9(003):168-170.
    [137]赵连春,许贤良,孙长敬.三惰轮复合齿轮泵密封块瞬态径向力分析[J].重庆大学学报(自然科学版).2001.
    [138]李宏伟,高绍站.内啮合齿轮泵齿轮轴的受力分析[J].液压与气动.2007(5):70-72.
    [139]陈燕生.液体静压支承原理和设计[M].国防工业出版社,1980.
    [140]刘志刚.内啮合齿轮泵浮动侧板对泵寿命及效率的影响[D].兰州理工大学,2009.
    [141]PEEK高性能VICTREX聚合物材料特性手册[Z].
    [142]蓝伟明.异材界面应力奇异性问题及其有限元分析[D].浙江大学,2002.
    [143]张欣,张耀东.论硬齿面齿轮的应用[J].承钢技术.2006,2(3).
    [144]薛进才.硬齿面的滚削加工[M].机械工业出版社,1987.
    [145]金聪.水液压泵金属材料抗蚀性能研究[D].浙江大学,2012.
    [146]成大先.机械传动[Z].北京:化学工业出版社,2004.
    [147]刘巽尔,中国机械工程学会,机械工程基础与通用标准实用丛书编委会.渐开线圆柱齿轮[M].中国计划出版社,2004.
    [148]张人佶,冯显灿.聚醚醚酮及其复合材料的摩擦学研究进展[J].材料研究学报.2009,16(1):5-8.
    [149]田爱国,郭强.聚醚醚酮及其复合材料的特性与应用研究进展[J].工程塑料应用.2002,30(2):47-49.
    [150]焦素娟,周华,杨华勇,等.填充聚醚醚酮复合材料在水润滑下的摩擦学特性研究[J].摩擦学学报.2003,23(5):385-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700