用户名: 密码: 验证码:
多级旋流空气雾化喷嘴雾化特性及光学测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油经喷嘴雾化的方式进入航空发动机燃烧室进行燃烧,为提高燃烧效率、降低污染物排放和扩宽稳定燃烧范围,新燃烧概念和技术不断被提出,新燃烧概念的提出和发展与新雾化技术是息息相关的,先进的雾化技术都毫无例外地采用了多级旋流空气雾化喷嘴。高温升和低污染燃烧室的发展对燃油雾化提出了新的要求和挑战,喷嘴的作用不仅仅是燃油雾化,还具有燃油和空气掺混及蒸发的作用,燃油雾化和油气匹配成为决定高性能燃烧室综合性能的关键。由于雾化过程的复杂性,缺乏对雾化现象和机理的认识,燃油雾化技术已经成为燃烧室发展的瓶颈。本文对多级旋流空气雾化喷嘴的雾化特性进行了实验研究,目的是加深对雾化现象和机理的认识,从而为设计先进的多级旋流空气雾化喷嘴提供支持。
     对雾化过程的理解和雾化机理的研究离不开雾化特性两相流测试技术,光学诊断技术的发展促进了对雾化现象的认识。雾化特性光学测试发展比较成熟的方法有基于单点测量的相位多普勒粒子分析仪(PDPA)和基于线测量的Fraunhofer衍射法,但只能得到局部流场的统计平均结果,限制了其对整个流场瞬态特性的研究。平面激光成像方法的提出解决了单点测量的局限性,可以用于流场结构和二维瞬态特性研究,但平面激光成像方法发展还不成熟,存在的问题例如:光源强度在测试介质中的衰减、Mie散射对液滴直径的非线性效应和液滴稠密雾锥中液滴图像的重合等急待解决。
     因此,本文工作从以下几部分展开:雾化特性平面激光测试方法和实验装置的建立,文氏管预膜式双级空气雾化喷嘴雾化特性和模化实验方法研究,中心分级多点喷射空气雾化喷嘴的雾化性能优化。主要研究内容和结论如下:
     (1)雾化特性平面激光两相流测试方法和实验装置的建立,基于平面激光成像的雾化特性二维测量方法具有空间和时间分辨率高、速度快的优点,并且对雾锥中液滴浓度要求不高,解决了单点测量方法对雾锥中液滴浓度要求高和只得到平均结果的局限性,可以用于雾锥全场瞬态特性研究,主要功能包括液滴速度、喷雾锥角、燃油空间分布、液滴尺寸及分布等。实验台控制和数据采集都采用远程操作,可以满足离心喷嘴和空气雾化喷嘴的工作条件。液滴速度采用粒子图像测速仪(PIV)技术得到;喷雾锥角和燃油空间分布特性采用燃油-平面激光诱导荧光(PLIF)方法得到,建立了激光能量在雾锥中衰减所引起燃油分布特性测量误差的校正方法,并对校正方法的有效性进行了验证,分别从轴向中心截面和垂直于轴的横截面分析燃油空间分布特性;液滴尺寸及分布分别采用基于单点测量的激光多普勒粒子分析仪(PDPA)、一维测量的Fraunhofer衍射技术、结合激光诱导荧光(LIF)和米氏(Mie)散射技术的二维粒径测试技术(LIF/Mie)得到,建立了LIF/Mie二维粒径测量中几何尺寸校正、相机拍摄位置引起的光强分布误差校正和粒径二维空间相对分布标定方法,通过比较PDPA、Fraunhofer衍射和LIF/Mie方法的粒径测量结果对LIF/Mie二维粒径分布测试方法的有效性进行了验证。另外,高速相机结合卤素光源用于喷嘴出口液膜破碎过程和液膜表面扰动特性的研究。
     (2)文氏管预膜式空气雾化喷嘴的中心离心喷嘴雾化特性实验研究,采用建立的雾化特性平面激光诊断实验装置研究了供油压差对喷雾锥角、液滴速度分布、液滴粒径及尺寸分布指数、燃油空间分布的影响。结果表明喷雾锥角随供油压差的增加存在一个最大值,然后逐渐减小,液滴的穿透深度随供油压差的增加先增加后减小,液滴粒径随供油压差的增加逐渐减小,当供油压差大于20bar时,液滴粒径及其尺寸分布基本不变。中心轴截面不同轴向位置的燃油径向分布说明供油压差小于10bar时峰值随雾锥的发展到轴向40mm时完全消失,而供油压差大于10bar时,峰值随雾锥发展到轴向50mm处一直存在并位于雾锥的外围。采用前面章节建立的燃油分布特性误差校正方法对某型航空发动机整套18个喷嘴的燃油周向分布特性进行了评估,根据垂直于雾锥中心轴线的横截面中燃油周向分布特性分析了引起燃油分布不均匀的因素,主要有各零部件的同轴度、喷嘴出口圆度和内表面的粗糙度。采用高速相机捕捉了雾锥中液膜的破碎现象,再现了液膜表面扰动波的发展及其破碎成小碎片和液滴的过程,并对液膜扰动特性进行了频谱分布,结果表明扰动主频率为100Hz左右。
     (3)为进一步深入研究离心喷嘴雾化特性规律的产生机理,采用数值方法对离心喷嘴内部流动特性进行了分析。重点分析了喷嘴内部空气心的形成、气/两相体积和速度分布、喷嘴出口液膜厚度和速度分布与液滴粒径和喷雾锥角的关系。结果表明旋流室中轴向和切向速度在液/气交界面附近最大,喷嘴内部的空气心尺寸随燃油质量流率的增加而变大,空气心在轴向位置的收缩和扩张是空气心扩张处的漩涡引起的,喷嘴内部的空气心是强漩涡,引起液/气交界面扰动,从而引起喷嘴出口液膜表面产生扰动波。喷嘴内部液相中的Gortler呙是液/气交界面上非稳定波产生的另外一个原因。由于雾锥下游受到环境中空气的影响,喷嘴出口液膜速度分布得到的近喷口处喷雾锥角比实验所得雾锥下游的锥角大;液膜厚度是液滴粒径的重要影响因素,喷嘴出口液膜厚度的变化规律解释了液滴粒径的实验结果。
     (4)文氏管预膜式双级旋流空气雾化喷嘴雾化特性及模化方法研究,主要内容包括点火工况下旋流器相对压降和初始雾化质量对旋流空气雾化喷嘴雾化特性的影响,慢车工况分别采用保持旋流空气速度、动量比和空燃比不变的方案研究旋流空气和离心喷嘴初始雾化效果对旋流空气雾化喷嘴雾化特性的影响。结果表明,液滴速度是由旋流空气速度和液滴与旋流空气的跟随性共同决定的,而液滴与旋流空气的跟随性是由离心喷嘴的初始雾化特性决定的;液滴粒径也是由旋流空气速度和初始雾化特性共同决定的,初始雾化能否在文氏管表面形成液膜和反向双级旋流空气对液膜的剪切力决定了二次雾化质量。一级旋流空气具有打开离心喷嘴初始雾化雾锥的作用,二级旋流空气通过形成低速区(回流区)影响燃油空间分布。不同模化方案下各参数对雾化特性影响的敏感性分析结果表明,旋流空气速度是雾化特性的决定因素,在雾化特性模化实验中应尽量匹配旋流空气速度。
     (5)中心分级多点喷射空气雾化喷嘴雾化性能优化,根据中心分级多点喷射低污染燃烧室的点火性能、燃烧效率和污染物排放性能初步实验结果,为扩宽稳定燃烧范围和加强油气掺混,对中心值班级离心喷嘴进行了优化设计,并对其雾化特性和点火特性进行了评估。在供油压差工作范围内值班级喷嘴喷雾锥角在75°-85°之间,液滴平均粒径在20-30μm之间,值班级喷嘴单独工作时雾化性能满足设计要求;值班级喷嘴和旋流空气共同工作时的雾化性能说明离心喷嘴初次雾化的液滴大部分能撞击在文氏管内壁上形成液膜,为保证二次雾化质量建议旋流器相对压降大于2.0%,液滴粒径沿径向分布均匀,为均匀快速实现燃油和空气掺混提供了可能;燃烧室的点火性能考核结果表明,新优化值班级喷嘴雾化性能能够和旋流器匹配,点火性能得到明显改善。
Fuel is injected into combustor in the form of spray by fuel nozzles, the new concepts of combustion are proposed and developed for high combustion efficiency, low pollution emission and wide range of operating conditions for combustion stability, which are dependent on the new technique of atomization forming the spray by multi-swirl airblast atomizer. The low emission and high temperature rise combustors propose new requirements and challenges for atomization, inspect of the role of atomization, the nozzles play the roles of fuel-air mixing and evaporation of droplet, the key in determining the performance of combustor are the performance of atomization, organization of air, and degree of matching between them. The complex of atomization leads to lack of mechanism and model of atomization, and now the atomization technique is bottleneck in the development of combustors. In order to make deeper understand of phenomena and mechanism in atomization, and providing support in designing the multi-swirl airblast atomizer, experimental investigation of characteristics of multi-swirl airblast atomizer is done in this work.
     Understanding of the physics and mechanisms associated with the formation of sprays and subsequent behavior of the two-phase flow that are normally generated in the process depends on the diagnostic methods for sprays, significant progress has been made with the benefit of developments in optical methods. Well-devoloped Phase Dopple Particle Analyzer (PDPA) method basing on point interferometry and Fraunhofer diffraction technique basing on line-of-sight measurement give the statistical results, limiting its usage in transient spray characteristics. The planar laser sheet imaging method offers several advantages over PDPA and Fraunhofer diffraction technique, having the ability of characterizing the two-dimension transient flow structure in spray. However, further effort is required to improve the accuracy of existing techniques, such as errors induced by attenuation of laser in spray, the non-linearities of Mie scattering for smaller droplets, and overlapping of the droplet interferograms in dense spray etc.
     Hence, this dissertation is organized as follows:the development of planar laser sheet diagnostic methods and experimental setup for visualizing the two-phase flow in atomization, experimental investigation of the characteristics of swirl cup airblast atomizer and scaling down method for atomization experiments, the optimization for performance of fuel staged and multi-point injection airblast atomizer. The main contents and conclusions of this dissertation are as follows,
     (1) Planar laser diagnostic methods are used to characterize the two-phase flow in spray, and the experimental setup is constructed. Planar laser imaging methods provide temporally and spatially resolved spray measurements, allow one to characterize he spray more quickly and efficiently than single point measurements of PDPA. The spray characteristics evaluated include droplet velocity, spray cone angle, patternation of spray, diameter of droplet and its distribution. The experimental facility is controlled and monitored by MCView data acquisition system and allows taking measurements of sprays generated by pressure-swirl atomizer and airblast atomizer repectively. Droplet velocity is obtained by Particle Image Velocity (PIV) technique, spray cone angle and patternation are obtained by fuel planar laser induced fluorescence (fuel-PLIF) technique, and the method for correction of fuel distribution measurement error induced by laser attenuation in spray is proposed, fuel distribution is studied in the form of axis center section plane and across-sectional plane perpendicular to the axis respectively. The droplet size are measured by PDPA, Fraunhofer diffraction method and laser sheet imaging method combining LIF and Mie scattering respectively, the geometry correction, background correction, sheet correction for detection systems are done for the spray image of LIF and Mie scattering. Furthermore, the results of droplet size are calibrated by PDPA and Fraunhofer diffraction method respectively. The comparison between results of them indicates the validation of LIF/Mie method for droplet diameter measurements. In addition, the instability of waves and breakup process of the liquid sheet are studied by combining high-speed camera and illumination techniques.
     (2) The performance of pressure-swirl atomizers used in the swirl cup was experimentally studied by the methods developed in the first part, including effects of pressure differential of fuel on the spray cone angle, droplet velocity, droplets size and spatial distribution of fuel in spray. The results indicated that there is a maximum value for spray cone angle with increasing of pressure differential, and then decreases gradually with increase of pressure differential, the penetration of droplets increases with increase of pressure differential firstly and then decreases, Investigations of Spray Characteristics and Optical Measuring Methods for Multi-swirl Air-blast Atomizer droplet size decreases quickly with increase of pressure differential, the droplet size will not vary when the pressure differential larger than20bar. The peak of radial fuel distribution at different axial position will disappear with the development of the spray when the pressure differential of fuel is less than10bar, while there still is a peak at periphery of the spray at axial position of50mm with pressure differential of fuel larger than10bar. The correction method for fuel distribution measurement error is used to evaluate the performance of circumferential fuel distribution of eighteen nozzles used in an aero engine, the results indicate that there are many factors leads to the ununiformity of fuel distribution, such as coaxialness of various parts in nozzle, roundness of orifice, and roughness of interior wall etc. The phenomena of liquid sheet breakup in spray was studied by high speed camera, the development of instable waves on the liquid sheet and process of liquid sheet disintegrates into ligaments and small droplet is obtained, the spectrum analysis of waves on liquid sheet indicates that the main frequency of instable waves is100Hz.
     (3) The internal flow field was studied by numerical simulation, including motive for formation of air core, velocity distribution in air and liquid phases, the relationship between thickness of liquid sheet at nozzle orifice and diameters of droplet in spray, the relationship between the velocity distributions in nozzle orifice and spray cone angle. The results illustrate that the axial and tangential velocity in swirl chamber reaches a maximum at the air-liquid interfaces, the size of air core increases with increase of mass flow rate, the contractions and expansions of air core in axial direction are induced by vortex in air core. The air core is a strong vortex with swirling flow, leading to instable wave on liquid sheet. The Gortler vortex in liquid phase and asymmetric vortex in gas phase are other motives for instable waves on liquid sheet. The spray cone angle based on the velocity distribution is larger than the experimental results of downstream spray, as the downstream spray interacts with the air. The results of thickness of liquid sheet explain experimental results of droplet diameter.
     (4) The characteristics of spray generated by an air blast atomizer with Venturi prefilmer was studied by laser diagnostic methods, furthermore, the strategies of scaling down the flow condition for spray experiments of air blast atomizer was proposed. The contents include the influence of pressure loss in swirler and performance of primary atomization on the characteristics of air blast atomizer for both ignition and idle condition of an engine. Results show that droplet velocity is determined by both swirling air and degree of droplets following the swirling air, while the degree of droplets following the swirling air is related to the primary atomization. Droplet diameter is also determined by both velocity of swirling air and primary atomization, the liqid sheet on prefilmer and strength of shearing on liquid sheet affects the performance of secondary atomization. The primary swirling air has the role of reopening the primary spray cone, while the secondary swirling air affects the fuel distribution by forming the recirculation zone. Scaling strategies of conserving velocity of air in swirler, fuel/air momentum flux ratio and AFR (air/fuel mass flow rate ratio) are in current use for full size atomizers, based on the results of sensitivity analysis of parameters on the characteristics of spray, the velocity of air in swirler is a key factor in determining the performance of atomizer. Hence, when the spray characteristics of an airblast fuel injector are to be measured in a rig at pressure lower than that of the engine, the velocity of air in swirler must be set such that the physical behaviours of interest are similar in the rig and engine.
     (5)The pilot nozzle of a fuel-staged and multi-point injection airblast atomizer is optimized for widening the operation range for lean combustion and enhancing fuel/air mixing by optimizing the performance of atomization. Based on the analysis of combustion performace of previous experimental results, such as ignition, lean blowout, combustion efficiency and emissions, the pilot nozzle influencing the stability of lean combustion is redesigned. The performances of the new designed pilot nozzle both working single and working with swirling air are evaluated respectively, spray cone angle of the new designed pilot nozzle varies between75°and85°, and mean droplet diameter varies between20μm and30μm in full range of working condition. The results of pilot nozzle working together woth swirling air show that most of the droplets in primary spray will impinge on the venturi prefilmer to form liquid sheet, in order to ensure the performance of seconday atomization, the relative pressure loss of swirling air should be larger than2.0%, the uniform distribution of droplet diameters in radial direction provides favorable condition for fuel/air mixing. The experimental results of ignition indicate that the new pilot nozzle can match with the multi-swirl, and the performance of ignition is greatly improved.
引文
[1]林宇震,许全宏,刘高恩.燃气轮机燃烧室.北京:国防工业出版社,2008.
    [2]航空发动机设计手册编委会.航空发动机设计手册(第九册:主燃烧室).北京:航空工业出版社,2001.
    [3]Mellor, A. M.,1990, Design of Modern Turbine Combustors, ACADEMIC PRESS INC. San Diego.
    [4]Lefebvre A H. Gas Turbine Combustion.2nd.1999 Taylor&Francis.
    [5]侯晓春侯晓春,季鹤鸣,刘庆国,等.高性能航空燃气轮机燃烧技术[M].北京:国防工业出版社,2002.
    [6]Lefebvre A H, Fuel effects on gas turbine combustion. AFWAL-TR-83-2004.
    [7]Rizk, N. K.,2004, Fuel Atomization Effects on Combustor Performance, AIAA 2004-3540, Florida.
    [8]Randal G M,Domingo S,William S, et al.The Pratt & Whitney TALON X Low Emissions Combustor-Revolutionary Results with Evolutionary Technology.AIAA paper 2007-386, 2007.
    [9]Mongia H C, TAPS-A Fourth Generation Propulsion Combustor Technology for Low Emissions.AIAA paper 2003-2657,2003.
    [10]Guin C, Trichet P, Optimisation of a two-head prevaporised premixed combustor, Aerospace Science and Technology,2004,8,2004.
    [11]Mongia H C, A triple-flame, n+3 generation mixier, The 2nd UTIAS-MITACS International Workshop on Aviation and Climate Change, Toronto, Canada, May 27-28,2010.
    [12]Kobayashi M, Ogata H, Oda T, Matsuyama R, Horikawa A, Kinoshita Y, Fujiwara H, Improvement on ignition performance for a lean staged low NOX combustor. Proceedings of ASME Turbo Expo 2011, GT2011-46187.
    [13]Bachalo W D. Spray diagnostics for the twenty-first century[J]. Atomization and Sprays, 2000,10(439-474).
    [14]Manampathy, G. Giridhara, G., Mongia, H. C., Jeng, S. M., Swirl cup modeling-part VIII: spray combustion in CFM-56 single cup flame tube, AIAA-2003-0319.
    [15]Fu, Y. Q., Cai, J., Jeng, S. M., Mongia, H. C., Characteristics of the swirling flow generated by a counter-rotating swirler, AIAA 2007-5690
    [16]Jeng S M et al., Fluid property effects on non-reacting spray characteristics issued from a counter-rotating swirler, AIAA 2005-356.
    [17]Jeng S M et al., Air temperature effects on non-reacting spray characteristics issued from a counter-rotating swirler, AIAA 2005-355.
    [18]Bhayaraju U C, Analysis of Liquid Sheet Breakup and Characterisation of Plane Prefilming and Nonprefilming Airblast Atomisers, Ph.D Dissertation, Technischen Universitat Darmstadt,2007.
    [19]Lazik, W., Doerr, Th., Bake, S., Bank, R. v. d., Rackwitz, L., Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland, ASME paper GT2008-51115.
    [20]Klinger H, Lazik W, Wunderlich T. The engine 3E core engine. ASME paper GT2008-50679.
    [21]Becker J and Hassa C, Liquid fuel placement and mixing of a generic aeroengine premix model at different operating conditions, ASME paper GT2002-30102.
    [22]M. orain, H. Verdier, F. Grisch. Equivalence ratio measurements in kerosene-fuelled LPP injectors using planar laser-induced fluorescene.13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal,26-29 June,2006, paper 1220.
    [23]Jaegle F, Large eddy simulation of evaporating sprays in complex geometries using Eulerian and Lagrangian methods, Ph.D Dissertation, Univesite de Toulouse,2009.
    [24]E. Berrocal, Multiple scattering of light in optical diagnostics of dense sprays and other complex turbid media, Ph.D Dissertation. Cranfield University,2006
    [25]Lefebvre A H, Atomization and Sprays. Hemisphere Publishing Co.,1989.
    [26]甘晓华.航空燃气轮机燃油喷射技术.北京:国防工业出版社.2006.
    [27]Yeh, Y. and Cummins, H., Localized fluid flow measurement with he-ne laser spectrometer. Applied Physics letters,1964,4:176-178.
    [28]Bachalo W D, Experimental methods in multiphase flows, Int. J. Multiphase Flow 1994, 261-295.
    [29]Bachalo,W. and Houser, M.. Spray size and velocity measurement measurements using the phase/doppler particle analyser. Proceeding of the 3rd ICLASS (International Conference on Liquid Atomization and Spray System),1985.
    [30]Durst, F. and Zare, M., Laser doppler measurements in two-phase flows. Proceeding of the Laser Doppler Anemometry Symposium,1975.
    [31]Durst, F., Brenn, G., and Xu, T.-H. A review of the developpement and characteristics of planar phase doppler anemometry. Measurements Science Technology, 1997,8:1203-1221.
    [32]Durst F, Fluid mechanics developments and advancements in the 20th century. Proceeding of the 10th International Symposium of Applications of Laser techniques to Fluid Mechanics,2000.
    [33]王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.6.
    [34]Huzarewicz S., Stewart G., and Presser C, Application of the singular value decomposition to the inverse fraunhofer diffraction problem. Proceeding of the 5th ICLASS (International Conference on Liquid Atomization and Spray System),1991.
    [35]Adrian R J, Twenty years of particle image velocimetry, Experiments in Fluids,2005,39, 159-169.
    [36]Wieneke B, Stereo-PIV using self-calibration on particle images. Experiments in Fluids, 2005,39,267-280.
    [37]Ruhnau, P., Guetter, C., Putze, T., and Schnrr, C. (2005). A variational approach for particle tracking velocimetry. Measurement Science and Technology,16:1449-1458.
    [38]Gal P L, Farrugia N, Greenhalgh D A, Laser sheet dropsizing of dense sprays, Optics&Laser Technology,1999,31,75-83
    [39]Kenneth, K. K. Recent Advances in spray combustion:spray combustion measurements and model simulation [M]. Progress in Astronautics and Aeronautics, Volume 171,1996.
    [40]Guy S R D, Allan, W D E, LaViolette M, Underhill P R, Optical patternation of gas turbine fuel sprays during simulated engine operating conditions[R], ASME paper, GT2009-59011.
    [41]Bishop K M, Effects of fuel nozzle condition upon gas turbine combustion chamber exit temperature profiles, Master Thesis, Carleton University,2009.
    [42]陈国珍,荧光分析法[M],科学出版社,1975.
    [43]汪洋,苏万华,史绍熙,用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程,燃烧科学与技术,1996,2(4)
    [45]Yeh, C., Kosada, H., and Kamimoto, T. (1993). A fluorescence/scattering imaging technique for instantaneous 2-d measurement of particle size distribution in a transient spray. Proceeding of the 3rd International Congress on Optical Particle Sizing.
    [46]Domann, R. Chracterization of Spray Unsteadiness. Ph.D Dissertation, Imperial College of Science, Technology and Medicine, University of London,2002.
    [47]Domann, R. and Hardalupas, Y. (2003). Quantitative measurement of planar droplet sauter mean diameter in sprays using planar droplet sizing. Particle and Particle Systems Characterizations,20:209-218.
    [48]M. C. Jenny, D. A. Greenhalgh, Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement. Appl. Phys. B 2000,71,703-710.
    [49]Damaschke, N., Nobash, H., Nonn, T., Semidetnov, N., and Tropea, C. (2005). Multidimensional particle sizing techniques. Experiments in Fluids,39:336-350.
    [50]Girasole, T., Ren, K., Lebrun, D., Gouesbet, G., and Grehan, G. (2000). Particle imaging sizing:Gtlm simulations. Journal of Visualization,3:195-202.
    [51]Maeda, M., Kawaguchi, T., and Hishida, K. Novel interferometric measurement of size and velocity distributions of spherical particles in fluid flows. Measurement Science and Technology,2000,11:13-18.
    [52]Lefebvre A, Fifty years of gas turbine fuel injection, Atomization and Sprays,2000, 10:251-276.
    [53]Tambe S B, Jeng S M, Mongia H, Hsiao G, Liquid jets in subsonic crossflow, AIAA 2005-731.
    [54]Wu P K, Kirkendall K A, Fuller R P, Breakup processes of liquid jets in subsonic crossflows, Journal of Propulsion and Power,1997,13(1),64-73.
    [55]李杰,TAPS燃烧室燃油喷嘴结构设计特点分析及思考,航空科学技术,2010,1,8-10.
    [56]Yamamoto T et al., Investigations of a staged fuel nozzle for aeroengines by multi-sector combustor test, ASME Paper, GT2010-23206.
    [57]方昌德.世界航空发动机手册[M],北京:航空工业出版社,1996.
    [58]Mehta J, Shin H, Wisler D, Mean velocity and turbulent flow-field characteristics inside an advanced combustor swirl cup. AIAA-89-0215.
    [59]Mongia H C, Al-Roub M, Danis A, Elliott-Lewis D, Jeng S M, Johnson A, McDonell V G, Samuelsen G S, Vise S. Swirl cup modeling part I[R]. AIAA 2001-3576,2001.
    [60]Giridharan M G, Mongia H C, Jeng S M, Swirl cup modeling-Part VIII:Spray combustion in CFM-56 single cup flame tube[R]. AIAA 2003-0319,2003.
    [61]Fu Y Q, Cai J, Jeng S M, Mongia H C, Characteristics of the swirling flow generated by a counter-rotating swirler[R]. AIAA 2007-5690,2007.
    [62]McDonell V G, Seay J E, Samuelsen S. Characterization of the non-reacting two-phase flow downstream of an aero engine combustor dome operation at realistic conditions[R]. ASME Paper,94-GT-263,1994.
    [63]Wang H Y, McDonell V G, Samuelsen S. Experimental study of a model gas turbine combustor swirl cup, Part I:two-phase characterization[J]. Journal of Engineering for gas turbines and power,1994,10(4),441-445.
    [64]林宇震,刘高恩,王华芳.反向与同向双旋流器流场的试验研究[J].航空动力学报,1995,10(4):423-425.
    [65]Lang HJ, Huang Y, Guo ZH, The flow fields in a model combustor with primary holes after different swirl cups[R]. ASME Paper, GT2006-90489.
    [66]徐榕,程明,赵坚行,刘勇,党新宪,王锁芳.旋流杯燃烧室流场的数值与试验研究[J].工程热物理学报,2010,31(4):701-704.
    [67]徐华胜,黄义勇,王秀兰.喷嘴供油特性对双涡流器头部气动雾化效果的影响研究[J]. 燃气涡轮试验与研究,2004,17(2):14-17.
    [68]张弛,张荣伟,徐国强,林宇震.直射式双旋流空气雾化喷嘴的雾化效果.航空动力学报,2006,21(5):805-809.
    [69]Jeng S M, Flohre N M, Mongia H, Swirl cup modeling---atomization, AIAA2004-137.
    [70]Becker J, Hassa C, Experimental investigation of spatial and temporal aspects of the liquid fuel placement in a swirl cup at elevated pressure. ASME Paper, GT2004-53524.
    [71]Orain M, Grisch F, Jourdanneau E, Rossow B, Guin C, Tretut B, Simualtaneous measurements of equivalence ratio and flame structure in multipoint injectors using PLIF[J]. C. R. Mecanique 2009,337,373-384.
    [72]Fujiwara H et al., Suppression of NOx emission of a lean staged combustor for an aircraft engine, ASME Paper, GT2011-46256.
    [73]Mosbach T et al., Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques. ASME Paper, GT2010-22625.
    [74]Chen S, Lefebvre A H, Rollbuhler J. Factors Influencing the circumferential liquid distribution from pressure-swirl atomizers [J]. Journal of Engineering for Gas Turbines and Power,1993,115(447-452)
    [75]Underhill R et al., Optical patternation for quality control of a gas turbine fuel injectors. 19th Annual Conference on Liquid Atomization and Spray Systems, ILASS America,2006.
    [76]Bachalo W D, Spray characterization:a critical review, ILASS-Europe,2010,23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010.
    [77]Orain M, Grisch F, Jourdanneau E, Rossow B, Guin C, Tretout B, Simultaneous measurements of equivalence ratio and flame structure in multipoint injector using PLIF. C. R. Macanique,2009,337,373-384.
    [78]Arnold A, Bombach R, hubschmid W, Inauen A, kappeli B, Fuel-oil concentration in a gas turbine burner measured with laser-induced fluorescene, Exp. Fluids,2000,29,468-477.
    [79]Grisch F et al., Simultaneous equivalence ratio and flame srtructure measurements in multipoint injector using PLIF, AIAA 2008-4868.
    [80]Hicks Y.R., Locke R.J., Anderson R.C., Optical measurement and visualization in high-Pressure, high-Temperature, aviation gas turbine combustors. NASA/TM-2000-210377,2000.
    [81]Bishop C K, Allan W. Effects of fuel nozzle condition on gas turbine combustion chamber exit temperature distributions[J]. ASME Paper, GT2010-23441,2010.
    [82]Guy S R D, Allan W, LaViolette M, Underhill P R. Optical patternation of gas turbine fuel sprays during simulated engine operating conditions[R]. ASME Paper, GT2009-59011, 2009.
    [83]王高峰,马承飚,王宝源,林其钊,激波诱导甲烷点火化学反应区的可视化实验研究,科学通报,2008,53(19),2371-2378.
    [84]Hoinhaus K K et al., Combustion at the focus:laser diagnostics and control, Proceedings of the Combustion Institute,2005,20,89-123.
    [85]Alden M et al., Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proceedings of the Combustion Institute,2011,33,69-97.
    [86]T. Reveille, A study of fuel injection and mixture formation for a gasoline direct injection engine, Ph.D Dissertation, Cranfield University,2005.
    [87]P. Baranger, M, Orain, F. Grisch. Fluorescence spectroscopy of kerosene vapour: application to gas turbines[R]. AIAA 2005-828.
    [88]房爱兵,燃气轮机合成气燃烧室燃烧稳定性的实验研究,中国科学院研究生院博士论文,2007
    [89]X.F. Wang and A.H. Lefebvre. Mean drop sizes from pressure-swirl nozzles. Journal of Propulsion, Vol.3, No. 1,pp.11-18,1987.
    [90]Lofstrom C, Engstrom J, Richter M, Kaminski C F, Johansson P, Nyholm K, Hult J, Nygren J, Alden M, Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor, ASME paper, 2000-GT-0124.
    [91]Tacina R, Wey C, Laing P, Mansour A, A low NOx lean-direct injection, multipoint integrated module combustor concept for advanced aircraft gas turbines, NASA: TM211347,2002.
    [92]Ma Z H, investigation on the internal flow characteristics of pressure-swirl atomizer. Ph.D Dissertation, University of Cincinnati,2001.
    [93]Marchione, T., Allouis, C., Amoresano, A., Beretta, F.,2007, "Experimental Investigation of a Pressure Swirl Atomizer Spray", J. Prop. and Power 23(5),1096-1101.
    [94]Rizk N K and Lefebvre A H. Internal flow characteristics of simplex swirl atomizers[J]. Journal of Propulsion and Power,1985,1:193-199.
    [95]Xue J. Computational simulation of flow inside pressure-swirl atomizers. Ph.D Dissertation, University of Cincinnati,2004.
    [96]Ibrahim A. Comprehensive study of internal flow and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer. Ph.D Dissertation, University of Cincinnati,2006.
    [97]Copper D. and Yule A J. Waves on the air/liquid interface of a pressure swirl atomizer. ILASS-Europe,2001.
    [98]J. Madsen, Computational and experimental study of sprays from the breakup of water sheets, Ph. D. Thesis, Aalborg University,2006.
    [99]K. G Hanson, J. Madsen, C. M. Trinh, C. H. Ibsen, T. Solberg, B. H. Hjertager, A computational and experimental study of the internal flow in a scaled pressure-swirl atomizer, ILASS-Europe 2002, Zaragoza.
    [100]岳明,徐行,杨茂林,离心式喷嘴内气液两相流动的数值模拟,工程热物理学报,2003,24(5),888-890.
    [101]孔德英,雷勇,任庆丰.发动机燃烧室离心喷嘴喷雾角的数值仿真,计算机仿真,2007,24(10),45-52.
    [102]Fluent 6.3 User's Guide. Fluent Inc., Lebanon, NH.
    [103]Launder, B. E., Reece, G J. and Rodi, W., Progress in the Development of a Reynolds-Stress Turbulence Closure, J. Fluid Mech.1975,68(3),537-566.
    [104]Brackbill, J U, Kothe D B, Zemach C, A continuum method for modeling surface tension, J. Comput. Phys,1992:335-354.
    [105]Cooper, D., Chinn, J. J., and Yule, A. J.,1999, Experimental Measurements and Computational Predictions of the Internal Flow Field in a Pressure Swirl Atomizer, Proc. 15th Conf. ILASS-Europe, Toulouse.
    [106]Cooper, D. and Yule, A. J.,2001, Waves on the Air Core/Liquid Interface of a Pressure Swirl Atomizer, Proc.17th Conf. ILASS-Europe, Zurich.
    [107]Senecal P K, Schmidit D P, Nouar I, Rutland, C J, Reitz R D, Corradin M L, Modeling high-speed viscous liquid sheet atomization, International Journal of Multiphase Flow, 1999,25,1073-1097.
    [108]Han Z, Perrish S, Farrell P V, et al.Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays [C].Atomization and Sprays,1997:663-684.
    [109]Benjamin M A, Mansour A, Samant U G, Jha S, Liao Y, Harris T, Jeng S M. Film thickness, droplet size measurements and correlation for large pressure-swirl atomizer, International Gas Turbine & Aeroengine Congress & exhibition, Stockholm, Sweden,1998.
    [110]Simmons H C, The prediction of sauter mean diameter for gas turbine fuel nozzles of different types, Journal of Engineering for Power,1980,102(3):646-652.
    [111]Jenny M C, Hussain M, Greenhalgh, D A. Operating liquid-fuel airblast injectors in low-pressure test rigs:strategies for scaling down the flow conditions, Meas. Sci. Technol., 2003,14,1151-1158.
    [112]焦树建.燃气轮机燃烧室(修订本).北京:机械工业出版社,1988.
    [113]Lefebvre A H. Energy considerations in twin-fluid atomization[J]. J. Eng. Gas Turbines Power,1992,114,89-95.
    [114]Caines B N, Hicks R A, Wilson C W, Influence of sub-atmospheric conditions on the performance of an airblast atomizer[R]. AIAA2001-3573,2001.
    [115]Jasuja A K, Behaviour of aero-engine airblast sprays in practical environments[R]. ICLASS-2006, Aug.27-Sept.1,2006, Kyoto, Janpan. Paper ID ICLASS06-287.
    [116]Wilfert G, Sieber J, Rolt A, Baker N, Touyeras A, Colantuoni S, New environment friendly aero engine core concepts, ISABE-2007-1120.
    [117]Bank R, Schilling T, Development of an ultra-low NOx LP(P) burner, ASME Paper, GT2004-53341.
    [118]Guin C, Trichet P, Optimisation of a two-head lean prevaporised premixed combustor, Aerospace Science and Technology 2004,8,35-46.
    [119]李锋,程明,尚守堂,刘殿春,张珊珊,宋博,双级预混旋流与单、双环腔燃烧室性能对比,航空动力学报,2012,27(8):1681-1687.
    [120]李杰,LEAP-X发动机的创新性技术,航空科学技术,2011,4,12-14.
    [121]Penanhoat O, Low emissions combustor technology development in the European programmes LOPOCOTEP and TLC,25th International Congress of the aeronautical sciences,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700