用户名: 密码: 验证码:
基于整坝全过程仿真的特高拱坝施工期工作性态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱坝设计中控制指标主要针对运行期,而特高拱坝施工期工作性态与运行期工作性态存在明显差别,如坝体温度场、应力场、变形以及横缝状态等均存在明显不同,且施工期结构工作性态会直接影响运行期结构性态,另外施工期可能出现的裂缝以及结构横缝也会带来影响,因此要判断和评价特高拱坝的安全性,对特高拱坝施工期工作性态的研究意义重大。
     本文基于整坝全过程仿真分析理论,考虑跳仓浇筑、材料硬化、温度控制、封拱灌浆、蓄水过程和环境量变化等六个过程。以溪洛渡特高拱坝为工程依托,针对目前特高拱坝施工期工作性态研究中的薄弱环节,如施工期基岩变形模量的选取、考虑真实全面施工过程的坝体工作性态、特高拱坝施工期裂缝的扩展稳定性及对坝体工作性态的影响、结构横缝状态及对坝体工作性态的影响等方面,进行了细致研究,主要工作内容如下:
     1.进行了基于整坝全过程仿真的施工期力学参数反演分析研究。①总结了特高拱坝施工期坝体弹性模量和基岩变形模量的反演分析现状,归纳了影响施工期变形的力学参数的回归分析方法。在此基础上,提出了一种基于施工期仿真应力的坝体弹模及基础变模的混合反演模型。②基于施工期精密水准仪、多点位移计和垂线观测结果,对其坝体弹性模量和基岩变形模量进行了反演分析工作,结果表明:基于三种仪器的基岩变形模量反演结果基本一致,可以相互校核,所提出混合模型是可行可靠的。③研究了库盆水压对坝体变形和基岩变形模量反演结果的影响,结果表明:按照面力来施加库盆水压时,与不施加库盆水压的反演结果有一定差别,应尽量采用渗透体积力来模拟库盆水压。
     2.进行了整坝全过程仿真分析理论阐述和溪洛渡特高拱坝施工期工作性态研究。阐述考虑跳仓浇筑、材料硬化、温度控制、封拱灌浆、蓄水过程和环境量变化等六个过程的整坝全过程仿真理论和方法,并将其应用于溪洛渡特高拱坝施工期工作性态的研究中。在分析中:①研究了自重施加方式和封拱灌浆过程对整体应力和变形的影响;②对施工期温度、应力和变形的实际观测成果和仿真计算结果进行对比分析,结果表明:计算温度和应力变化规律与观测成果基本一致,施工期温度和应力控制总体较好,但由于未考虑90天以后混凝土的绝热温升,计算温度值偏低;大坝竖向应力分布规律与实测吻合良好,但个别坝段实测偏小;施工前期大坝由于自重倒悬作用,引起大坝向上游变形,随着大坝浇筑高程的增加及上游蓄水位的升高,大坝逐渐转为向下游变形;③对横缝状态观测成果和计算成果进行对比分析,并研究了不同灌浆高程和水位下横缝面的应力和开合状态,结果表明:大坝完成二冷的区域平均缝开度在0.8~1.6mm左右,不同坝段和高程的横缝开度因浇筑进度、浇筑季节、相邻高差、侧面暴露时间等因素影响而有所不同,横缝状态整体正常,但个别部位开度偏大,如最大开度值出现在12#横缝,达到5.70mm,超出温度收缩可能引起的一般开度,需要进行深入的核查研究。
     3.进行了特高拱坝施工期裂缝稳定性及对结构的工作性态影响研究。包括:①归纳了特高拱坝施工期裂缝成因、扩展稳定性及对大坝工作性态影响的研究现状;②介绍了特高拱坝施工期较新型的层间裂缝和止水区域表面裂缝;③对施工期水力渗透破坏引起的层间裂缝的扩展稳定性及对大坝工作性态的影响进行了分析,结果表明:初始粘结强度对裂缝处理后的扩展稳定性影响较大,混凝土断裂韧度对其影响较小;在粘结强度较小时,裂缝向上游侧扩展可能性较大,而向下游侧扩展的动力不足;层间裂缝对拱坝整体应力和变形影响不大。④对止水区域表面裂缝成因进行了分析,结果表明:横缝的突然张开会造成止水铜片与混凝土接触面的薄弱部位产生损伤,随后在水力挤压和劈裂作用下进一步向坝面方向扩展形成贯通裂缝。
     4.进行了特高拱坝横缝状态及对结构工作性态的影响研究。包括:①归纳了横缝状态对大坝工作性态影响的研究现状;②提出了一种模拟球形键槽的等效力学模型,可以模拟键槽的张开、闭合以及错动等力学行为,并将该模型加入到仿真分析程序Saptis中;③研究了溪洛渡高拱坝蓄水进度对横缝开度的影响,结果表明:水位过高,导致横缝被压紧,会影响大坝的封拱灌浆进度,因此溪洛渡特高拱坝2013年夏季蓄水控制水位应在540m高程以下;④研究了上游两道止水片之间横缝不灌浆对大坝工作性态的影响,结果表明:横缝上游两道止水片之间横缝不灌浆对结构整体变形和应力影响很小,主要影响横缝上游不灌浆区域的缝端应力。
The design of arch dam is mainly based on the control index during operation period, the working performance of construction period and operation period of super-high arch dam are different obviously, such as temperature field, stress field, deformation feild, transverse joints state, etc., and the working performance of operation period will be directly affected by construction period, in addition, cracks occured during construction, and open-close performance of transverse joints will also have a direct impact on the working performance of structure. Therefore, in order to evaluate the safety of super-high arch dam, it is of great significance to conduct the study of working performance of super-high arch dam during construction period.
     The simulation of entire dam and whole process is given, which consider six process, including:pouring of bulky concrete with separate spacing, material hardening, temperature control, arch closure grouting, impounding and the variation of environmental parameters. As an example, Xiluodu super-high arch dam is studied carefully, and there are many problems to be solved, such as selection of rock deformation modulus during construction, real working performance considering whole construction process, stability of crack extension occurred in super-high arch dam during construction and its impact on the working performance of dam, work state of transverse joints and its impact on the working performance of dam, the main works are listed as follows:
     1. Back analysis method of mechanical parameters of high arch dam during construction period is studied based on simulation theory of entire dam and whole process.①The back analysis method of concrete elastic modulus and rock deformation modulus of super-high arch dam during construction period are summarized, regression analysis methods of the dam deformation of construction are reviewed. A new hybrid model, which is appled to carry on the back analysis of dam elastic modulus and rock deformation modulus, is proposed based on the construction simulation stress;②Based on the observed results achieved by precise leveling instruments, multiple position borehole extensometer and plumb line monitoring, back analysis is applied to obtain the concrete elastic modulus and rock deformation modulus of Xiluodu arch dam, and the results show that:the back analysis results of bedrock deformation modulus based on three instruments are basically identical, they can be checked with each other, and the new hybrid model of back analysis based on the construction simulation stress is verified to be feasible and raliabe;③The influence of back analysis results of rock deformation modulus and dam deformation, is studied considering the water pressure of reservoir basin, the results show that:If surface force is applied to simulate the basin water pressure, there are of certain differences on the back analysis of rock deformation modulus and dam deformation, permeate volume strength should be used to simulate the water pressure of reservoir basin.
     2. Research of construction working performance of Xiluodu super-high arch dam is carried on based on the simulation theory of entire dam and whole process. The theory and method of the entire dam and whole process, which consider six process, including pouring of bulky concrete with separate spacing, material hardening, temperature control, arch closure grouting, impounding and the variation of environmental parameters are summarized and it is applied to study the working performance of Xiluodu super-high arch dam during construction. In this analysis:①The overall infuence of stress and deformation according to different weight applied methods and arch closure grouting process is studied;②Based on the actual monitoring results and simulation results of temperature, stress and deformation, the temperature, stress and deformation of construction period are compared, the results show that:the calculation overall rules of the temperature and stress are basically identical with the observing results, temperature and stress control during construction overall is good, however, because of not considering the adiabatic temperature rise of concrete after90days, temperature calculation value is lower than observations; Vertical stress distribution based on caculations agree well with observation, except for measured value of individual dam section is lower than simulation; The overhang effect of arch dam lead to the deformation upstream, with the increase of the dam height and pouring water level upstream, dam deformation gradually turned to downstream;③According to monitoring results based on the transverse joint meter and calculation results, the analysis on the working performance of transverse joints is studied, stress and open-close working performance during different grouting elevation and water level, are also investigated, the studies show as follows: transverse joints aperture are of average of1.0-1.5mm after second-stage cooling, the transverse joints aperture in different dam sections and elevations are also varied due to the process of concrete pouring, pouring season, adjacent height difference, side exposure time and other factors, transverse joints state are normal overal, however, the individual parts of the aperture is higher than normal, such as the maximum value of5.70mm appears in the12#transverse joint, which go to far beyond the temperature shrinkage and need further verification studies.
     3. Study of Cracks stability and its impact on the structure working performance during constrction of super-high arch dam is conducted, content are included as follows:①The research of crack cause, expansion stability and its impact on dam working performance of super-high arch dam during construction period are summarized;②New interlayer crack, and surface crack in watestop region of super-high arch dam during construction are introduced;③The stability of crack expansion due to the water infiltration and sabotage during construction period, and its effect on dam working performance is analyzed, it shows that:crack propagation is of low sensitivity for the fracture toughness of concrete, however, showing high sensitive for intial bond strength after treatment; the crack is likely to extend upstream and it is difficult to extend downstream; the crack has little effort on the state of stresses and displacements in arch dam;④The new surface crack in watestop region are analyzed, the study shows:Abrupt open of transverse joints at the construction stage is easily to cause the concrete damage in surrounding area beside the waterstop, and the water-pressure tests before the transverse joints grouting lead to the further expansion from local damage to surface crack.
     4. The state of transverse joints of super-high arch dam and its impact on the structural working performance are studied. It is listed as follows:①The research of transverse joints status impacted on dam are summarized;②An equivalent mechanical model to simulate the spherical keyway is proposed to simulate the mechanical behavior of open, close and slide, which is added to the simulation procedure of Saptis;③The impounding process impacted on transverse joints aperture were analyzed based on Xiluodu high arch dam, the study shows:the transverse joints are pressed due to high water level, which will affect the schedule of arch closure grouting, therefore, the summer water level of Xiluodu arch dam in2013should be controlled at540m;④Analysis is conducted to study the issue of non-grouted transverse joints between two waterstops upstream for the impact on dam, the study shows that:Non-grouted transverse joints between two waterstops upstream have slight effect on the overall deformation and stress of the whole dam, however, it has very significant effect on the end stress of non-grouted transverse joints upstream.
引文
[1]周建平,杨泽艳,陈观福.我国高坝建设的现状和面临的挑战,水利学报[J].2006,12:1433-1438
    [2]贾金生主编.中国大坝建设60年[M].北京:中国水利水电出版社,2013
    [3]张国新,朱伯芳,金峰.高拱坝真实工作性态研究及工程应用成果汇总报告[R].中国水利水电科学研究院,清华大学等.2013.2
    [4]刘毅,张国新,王继敏,周钟.特高拱坝施工期数字监控方法、系统与工程应用[J].水利水电技术.2012,43(3):33-37
    [5]任青文.高拱坝安全性研究现状及存在问题分析[J].水利学报.2007,38(9):1023~1031
    [6]张国新,朱伯芳,杨波,朱银邦.水工混凝土结构研究的回顾与展望[J].中国水利水电科学研究院学报[J].2008,6(4):269-278
    [7]马洪琪.我国建坝技术的发展与创新[R].南方十三省(区、市)水力发电学会秘书长会议论文集.2012:3-10
    [8]周建平,杜效鹄.中国特高拱坝建设特点与关键技术问题[J].水力发电.2012,(8):29~32
    [9]朱伯芳,厉易生.高拱坝新型合理体型的研究和应用[J].水力发电.2001,(8):60-62
    [10]傅少君,张石虎,解敏等.混凝土拱坝温控的动态分析理论与实践[J].岩石力学与工程学报,2012,31(1):113-121
    [11]周华,傅少君,王国进等.小湾拱坝施工期温度场动态跟踪仿真[J].武汉大学学报:工学版,2009,42(1):77-81
    [12]邱焕峰,蒋媛媛,傅少君等.小湾拱坝施工过程温度场仿真分析[J].武汉大学学报:工学版,2010,43(6):723-726.
    [13]葛劭卿,张国新,喻建清.自重与初次蓄水对特高拱坝应力的影响[J].水力发电:设计与施工,2006,32(9):25-27
    [14]张国新,周秋景.高拱坝坝踵应力实测与计算结果差异原因分析[J].2012.12.15
    [15]金峰 胡卫 张楚汉 王进廷.基于工程类比的小湾拱坝安全评价[J].岩石力学与工程学报.2008,(10):2027-2033
    [16]Lombardi, G. Kolnbrein dam:an unusual solution for an unusual problem[J]. WaterPower & Dam Construction,1991,(6)
    [17]E.Wagner, H.Gaisbauer,H.P.Rossmanith. Effect of inclined planar fractures on borehole performance [J]. Engineering fracture mechanics.1993,44(3):481-489
    [18]E.K.Alekandrovskaya. State of the Sayano-Shushenskoe dam during four fold rise of the upper pool level to the elevation of the normal pool level[J] Hydrotechnical construction,1995,28(10):630-634.
    [19]Li Zan. Study on cracks at the heel of the arch dam of Shimen project[J]. Journal of Hydraulic Engineering,1999 (11):61-65
    [20]张国新,刘毅,朱伯芳,王仁坤.高拱坝真实工作性态仿真的理论与方法[J].大坝技术及长效性能研究进展.2008:24-29
    [21]张国新,朱伯芳,刘毅,胡平.高拱坝真实工作性态研究及工程应用[R].中国水科院科学技术 奖2011年度获奖成果汇编.2011:84-92
    [22]中国水利水电科学研究院.云南澜沧江小湾水电站施工详图阶段-蓄水至1181-1200m拱坝工作性态研究报告[R].2011.11
    [23]丁宝瑛,王国秉,黄淑萍等.国内外混凝土坝裂缝成因综述与防治措施[J].水利水电技术.1994(4):49-55
    [24]王再芳,刘正兴,金永才.李家峡水电站混凝土裂缝处理[J].西北水电.2004,(4):77-81
    [25]韩晓凤.锦屏高拱坝施工期性态分析及整体安全度研究[D].广西大学.2003.6
    [26]Zhang GuoXin, Liu Yi, Zheng CuiYing & Feng Fan. Simulation of influence of multi-defects on long-term working performance of high arch dam. Science China, Technological Science.2011,54 (Suppll):1-8
    [27]张国新,朱伯芳,金峰.高拱坝真实工作性态研究及工程应用成果汇总报告[R].中国水利水电科学研究院,清华大学等.2013.2
    [28]上海勘测设计研究院,长江水利委员会长江勘测规划设计研究院.SL282—-2003混凝土拱坝设计规范[S].北京:中国电力出版社,2003
    [29]钟登华,任炳昱,李明超等.高拱坝施工质量与进度实时控制理论及应用[J].中国科学:技术科学,2010,40(12):1389-1397
    [30]张国新,刘有志,刘毅等.特高拱坝施工期裂缝成因分析与温控防裂措施讨论[J].水力发电学报,2010,29(5):45-51
    [31]张国新,艾永平,刘有志等.特高拱坝施工期温控防裂问题的探讨[J].水力发电学报,2010,29(5):125-131
    [32]朱伯芳,董福品.高拱坝应力控制标准研究[J].水力发电.2001(8):57-59
    [33]董福品,朱伯芳,沈之良,葛楠.国内外高拱坝应力分析概况[J].中国水利水电科学研究院院报.2003,1(4):292-299
    [34]柴军瑞,刘浩吾.高拱坝研究新进展[J].水利水电科技进展.2001,21(6):1-4
    [35]朱伯芳.混凝土坝安全评估的有限元全程仿真与强度递减法[J].水利水电技术.2007,38(1):1-6
    [36]任青文.混凝土拱坝坝踵开裂研究述评[J].水利水电科技进展.2004,24(3):62-64
    [37]钟登华.高混凝土坝施工仿真与实时控制[M].中国水利水电出版社,2008
    [38]张国新,赵文光等.特高拱坝温度应力仿真与温度控制的几个问题探讨[J].水利水电技术.2008,39(10):36-42
    [39]朱伯芳,杨萍.混凝土的半熟龄期——改善混凝土抗裂能力的新途径[J].水利水电技术,2008,39(5):30-35
    [40]朱伯芳,张国新,许平等.混凝土高坝施工期温度与应力控制决策支持系统[J].水利学报,2008,39(1):1-6
    [41]朱伯芳,吴龙坤,杨萍等.混凝土坝后期水管冷却的规划[J].水利水电技术,2008(7):27-31
    [42]朱伯芳.论混凝土坝的水管冷却[J].水利学报,2010,41(5):505-513
    [43]李庆斌,林鹏,胡昱等.在建大坝混凝土智能温度控制方法及系统:中国,201210289192[P]. 2013-01-02
    [44]李庆斌,林鹏,胡昱等.大体积混凝土实时在线个性化换热智能温度控制系统:中国,201210298994P].2013-01-02
    [45]傅少君,张石虎,解敏,陈胜宏.混凝土拱坝温控的动态分析理论与实践[J].岩石力学与工程学报.2012,31(1):113~121
    [46]杜珍波,匡益兵.双曲拱坝4.5m升层混凝土内部温度控制难点分析及控制措施[J].技术与市场,2010,17(11):28-29
    [47]朱伯芳,张国新.应用氧化镁混凝土筑坝的两种指导思想和两种实践结果[J]水利水电技术.2005,36(6)
    [48]朱伯芳,张超然.高拱坝结构安全关键技术[M].水利水电出版社.2010.2.1
    [49]李占超,候会静.基于改进粒子群优化算法的施工期拱坝结构性态反演分析[J].水利水电科技进展,2011,31(4):24-28
    [50]杨梅,常晓林,周伟.施工过程对小湾高拱坝运行期应力状态的影响[J].水电能源科学,2006,24(1):34-36
    [51]朱文锋.考虑提前蓄水发电的高拱坝封拱灌浆若干问题研究[D].宜昌:三峡大学,2010.
    [52]郑克红,郑炳寅。高拱坝施工期温度徐变应力分析[J].三峡大学学报:自然科学版,2010,32(4):25-28
    [53]段寅,周伟,陈晓年等.考虑施工过程影响的拱坝体形优化分析方法及应用[J].武汉大学学报:工学版,2010(3):24-28
    [54]任青文,钱向东,赵引,王柏乐.高拱坝沿建基面的破坏和安全度研究[J].水力发电2002,(10):10-13
    [55]周维垣,杨若琼,刘耀儒,林鹏.高拱坝整体稳定地质力学模型试验研究[J].水力发电学报,2005,(1):2086-2092
    [56]解凌飞,常晓林,杨丽.小湾高拱坝温度场及温度应力仿真研究[J].中国农村水利水电,2008(10):99-102
    [57]黄玮,万福磊,郑家祥等.溪洛渡拱坝陡坡坝段施工期温度应力仿真分析[J].水电站设计,2007(4):10-15
    [58]张锐,冯国一,周伟.高温季节浇筑陡坡坝段温度应力仿真研究[J].中国农村水利水电,2009(9):128-132
    [59]韩燕,李翔,刘心庭等.锦屏高拱坝施工期温度场仿真分析[J].水电站设计,2004(4):21-25
    [60]黎满林,常晓林,周伟.大岗山拱坝温度场及温度应力全过程仿真研究[J].水电站设计,2008(2):22-26
    [61]朱伯芳.大体积混凝土温度应力与温度控制(第二版)[M].中国水利水电出版社.2011
    [62]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000(6):155-158
    [63]向衍,苏怀智,顾冲时.基于遗传算法的物理力学参数反演[J].长江科学院院报,2003(6):56-59
    [64]向衍,苏怀智,吴中如.基于大坝安全观测资料的物理力学参数反演[J].水利学报,2004 (8):100-104
    [65]王刚,马震岳.基于遗传算法的带缝重力坝弹性模量反分析[J].大连理工大学学报,2009(2):110-115
    [66]李波,徐宝松,武金坤.基于最小二乘支持向量机的大坝力学参数反演[J].岩土工程学报,2008(11):147-150
    [67]王松林,秦栋.基于偏最小二乘法的综合弹性模量反演分析[J].水电能源科学,2012(2):79-81
    [68]徐洪钟,吴中如.应用模糊神经网络反演大坝弹性模量[J].河海大学学报:自然科学版,2002(2):17-20
    [69]邓凤铭,田斌,徐卫超.清江隔河岩大坝混凝土弹性模量的智能反演[J].大坝与安全,2005(4):55-57
    [70]朱国金,胡灵芝,顾冲时等.基于神经网络模型的某大坝混凝土弹性模量时变规律反演分析[J].水电自动化与大坝观测,2005(4):36-38
    [71]刘健,练继建.李家峡拱坝坝体弹性模量及基岩变形模量的反演[J].岩石力学与工程学报,2005(24):68-73
    [72]强天驰,周维垣,杨若琼.拱坝多参数优化反演分析法及其应用[J].岩石力学与工程学报,2000(6):173-176
    [73]冯新,周晶,陈健云.一种混凝土重力坝分区弹模反演新方法[J].大连理工大学学报,2002(4):100-104
    [74]彭友文,郑东健,吴中如.碾压混凝土坝层面弹性模量和厚度反演[J].水力发电,2005(8):30-32
    [75]宋志宇,李俊杰.重力坝弹性参数反演的灵敏度分析及一种新的反演算法[J].四川大学学报:工程科学版,2006(4):37-41
    [76]张强勇,张建国,杨文东.软弱岩体蠕变模型辨识与参数反演[J].水利学报,2008(1):68-74
    [77]苏怀智,雷鹏,顾冲时.混凝土坝材料参数区间反演分析方法[J].河海大学学报:自然科学版,2008(5):82-86
    [78]孙萍.应用自动测值反演坝体弹模和拟定位移监控指标[J].水利水文自动化,2008(4):50-53
    [79]徐飞,徐卫亚,梁桂兰等.基于连续蚁群算法和小波支持向量机的位移反分析[J].水利水电科技进展,2009(1):20-23
    [80]刘贝贝,张岚,金秋.基于位移场混合模型的棉花滩大坝弹性模量反演分析[J].水力发电,2010(3):59-62
    [81]冯威,张伟.基于混合模型的混凝土坝物理力学参数反演分析[J].水电能源科学,2011(5):73-75
    [82]徐卫超,邓凤铭,李科.隔河岩大坝混凝土弹性模量反演分析[J].东北水利水电,2006(6):1-2
    [83]黄耀英,黄光明,吴中如等.基于变形观测资料的混凝土坝时变参数优化反演[J].岩石力学与工程学报,2007(S1):2941-2945
    [84]张进平,黎利兵,卢正超.大坝安全观测研究的回顾与展望[J].中国水利水电科学研究院院报,2008,6(4):317-322
    [85]Toini, D Observed Behavior of Several Italian Arch Dams[J]. Proc, ASCE Journal of the Power division.1956.(82):356-362
    [86]吴中如等.重大水工混凝土结构病害观测与健康诊断[M].北京:高等教育出版社,2005
    [87]吴中如,顾冲时.水工建筑物安全监控理论及其应用[M].南京:河海大学出版社,1990
    [88]顾冲时等.大坝与坝基安全监控理论和方法及其应用[M].南京:河海大学出版社,2006
    [89]李珍照.大坝安全观测[M].北京:中国电力出版社,1997
    [90]张进平等.大坝安全观测的位移分布数学模型[J].水利学报,1991,5:28-35
    [91]赵春,张进平等.包含首蓄因子的心墙土石坝水平位移统计模型研究[A].中国水利学会第三届青年科技论坛论文集[c],郑州:黄河水利出版社,2007
    [92]赵春.大坝位移监控预报模型和病险水库除险加固重要性排序[D].中国水利水电科学研究院,2010
    [93]王仁坤,林鹏,周维垣.复杂地基上高拱坝开裂与稳定研究.岩石力学与工程学报[J].2007,26(10),1951-1958
    [94]张冲,王仁坤,赵文光,尤林,赵艳.高拱坝开裂危险性分析[J].水电站设计.2011,27(4):1-8
    [95]李同春,王仁坤,游启升,周秋景.高拱坝安全度评价方法研究.水利学报[J].2007,(supl):78-83
    [96]贾金生,李新宇.高拱坝坝踵开裂问题和新的解决措施[J].水利学报.2008,39(10):11 83-1188
    [97]Choi S, Cha SW, Oh BH, Kim IH. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 1:temperature and relative humidity. Materials and structures,2011,44:1325-1346.
    [98]AlyT, Sanjayan JG. Shrinkage-cracking behavior of OPC-fiber concrete at early-age. Materials and Structures,2010,43:755-764.
    [99]高原,张君,侯东伟.早龄期混凝土湿度应力计算与开裂风险评估[J].工程力学,2012,29:121-129.
    [100]杜修力,金浏,黄景琦.基于扩展有限元法的混凝土细观断裂破坏过程模拟[J].计算力学学报,2012,29:940-947.
    [101]Wetzel A, Herwegh M, Zurbriggen R, et al. Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars[J]. Cement and Concrete Research, 2012,42(1):39-50.
    [102]张国新,艾永平,刘有志,等.特高拱坝施工期温控防裂问题的探讨[J].水力发电学报,2010,29(5):125-131.
    [103]朱伯芳,张超然.高拱坝结构安全关键技术研究[M].中国水利水电出版社,2010
    [104]张国新,刘有志,刘毅,等.特高拱坝施工期裂缝成因分析与温控防裂措施讨论[J].水力发电学报,2010,5:45-45.
    [105]朱伯芳.关于混凝土坝的几个新理念[J].水利学报,2008,39(10):1151-1157.
    [106]Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and concrete research,1976,6(6): 773-781.
    [107]Bazant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984,110(4):518-535.
    [108]Bazant ZP, Kim JK. Consequences of diffusion theory for shrinkage of concrete. Materials and structures,1991,24:232-326
    [109]徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则[J].土木工程学报,1992,25(2):32-38.
    [110]徐世烺,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能[J].水利学报,2009,40(9):1055-1063.
    [111]Reinhardt H W, Sosoro M, Zhu X. Cracked and repaired concrete subject to fluid penetration[J]. Materials and Structures,1998,31(2):74-83.
    [112]Li QB, Zhang FD, Zhang WC, et al. Fracture and tension properties of roller compacted concrete cores in uniaxial tension. Journal of materials in civil engineering,2002,14:366-373
    [113]Ghaemmaghami A, Ghaemian M. Large-scale testing on specific fracture energy determination of dam concrete[J]. International journal of fracture,2006,141(1-2):247-254.
    [114]Shi Z. Numerical analysis of mixed-mode fracture in concrete using extended fictitious crack model[J]. Journal of Structural Engineering,2004,130(11):1738-1747.
    [115]A.R.Lohrasbi.R.Attarnejad. Crack growth in concrete gravity dams based on discrete crack method[J]. 2009,1(4):339-343
    [116]Rene de Borst, Joris J.C.Remmers, Alan Needleman, Marie Angele Abellan. Discrete vs smeared crack models for concrete fracture:bridging the gap[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(78):583-607
    [117]Theiner Y, Hofstetter G Numerical prediction of crack propagation and crack widths in concrete structures[J]. Engineering Structures,2009,31(8):1832-1840.
    [118]Labibzadeh M, Sadrnejad S A. Crack analysis of concrete arch dams using micro-planes damage based constitutive relations[J]. American Journal of Applied Sciences,2007,4(4):197-202.
    [119]Cundall PA, Hart RD. Development of generalized 2-D and 3-D distinct element programs for modelingjoint rock, Itasca consulting group; U.S. Army Corps of Engineers, Paper SL-85-1,1985
    [120]Gerstle WH, Ingraffea AR, Perucchio R. Three dimensional fatigue crack propagation analysis using the boundary element method. Int. J. Fatigue,1988,10:187-192
    [121]Krysl P, Belytschko T. The element free Galerkin method for dynamic prop-agation of arbitrary 3-D cracks. International Journal of Numerical method in Engineering,1999,44:767-800.
    [122]Lin P, Wang RK, Zhou WY. The 3D-Crack Growth Mechanism of Brittle Material under 3D Compression,2006 Asian Pacific Conference for Fracture and Strength (APCFS06), Sanya.
    [123]Belytschko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin methods[J]. Engineering Fracture Mechanics,1995,51(2):295-315.
    [124]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. Int. J. Numer. Meth. Engng,1999,46:131-150.
    [125]Stolarska M, Chopp D L, Moes N, et al. Modelling crack growth by level sets in the extended finite element method[J]. International journal for numerical methods in Engineering,2001,51(8): 943-960.
    [126]董玉文,任青文.重力坝水力劈裂分析的扩展有限元法[J].水利学报,2011,42(011):1361-1367.
    [127]郑东健,雷霆.基于突变理论的高拱坝失稳判据研究[J].岩土工程学报,2011,33(1):23-27.
    [128]Carpinteri A, Valente S, Ferrara G, et al. Experimental and Numerical Fracture Modeling of a gravity dam. Fracture Mechanics of Concrete Structures. Elsevier Science,1992:351-360.
    [129]Browning B, Cook G and Timbrell C. Predicting large scale crack growth in 3D finite element models, ABAQUS user's conference,2001.
    [130]韦未,姚纬明.混凝土裂缝扩展模拟研究进展[J].水利水电科技进展,2004,24(4):53-56.
    [131]Bayraktar A, Sevim B, Altunisik A. Finite element model updating effects on nonlinear seismic response of arch dam-reservoir-foundation systems. Finite Elements in Analysis and Design,2011, 47:85-97.
    [132]张国新,金峰,王光纶.用基于流形元的子域奇异边界元法模拟重力坝的地震破坏[J].工程力学.2001,18(4):18-27
    [133]张国新,黄涛,赵妍,彭校初.基于流形元群缝追踪的钢筋混凝土结构破坏模拟[J].2009,7(4):257-263
    [134]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering,1999,46:131-150.
    [135]杨强,陈英儒,刘耀儒.基于变形加固理论的高拱坝坝踵开裂分析[J].水利学报.2008,39(1):20-26
    [136]周秋景,张国新,杨波.高坝混凝土裂缝问题研究综述[J].南水北调与水利科技.2012,10(1):129~133
    [137]丁红强.浅议水工混凝土裂缝的预防与控制[J].浅议水工混凝土裂缝的预防与控制.2010,(7):194~197
    [138]梁月英.混凝土坝裂缝危害性分析方法研究[D].河海大学硕士论文.2007.3
    [139]Borst R, Remmers J J C, Needleman A, et al. Discrete vs smeared crack models for concrete fracture: bridging the gap[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28(7-8):583-607.
    [140]Lohrasbi A R, Attarnejad R. Crack growth in concrete gravity dams based on discrete crack method[J]. American Journal of Engineering and Applied Sciences,2008,1(4):318-323.
    [141]Oritz M, Leroy Y, Needleman A. A finite element method for localization failure analysis [J]. Computer Methods in Applied Mechanics and Engineering.1987,61(2):189-214
    [142]Belytschko T, Fish J, Engelmann B.E. A finite element with embedded localization zones [J]. Computer Methods in Applied Mechanics and Engineering,1988,70(1):59-89
    [143]Fish J, Belytschko T. Elements with embedded localization zones for large deformation problems[J]. Computers Structures.1988,30:247-256
    [144]杜效鹄,段云岭.准脆性材料中强不连续问题的数值方法若干应用及其研究进展[J].力学进展,2006,36(2):247-264.
    [145]朱万成,赵启林,唐春安,等.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-598.
    [146]李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20.
    [147]Kim VT, Nele DB, Willem DM, et al. Use of bacteria to repair cracks in concrete. Cement and Concrete Research.2010,40:1,157-166
    [148]Lahmer T. Crack identification in hydro-mechanical systems with applications to gravity water dams. Inverse Problems in Science and Engineering,2010,18:1083-1101.
    [149]TGPS011-1998,中国长江三峡工程开发总公司标准-三峡工程混凝土裂缝评判和处理规定.1998
    [150]Kentaro Ohno. Massyasu Ohtsu. Crack Classification in Concrete based on Acoustic Emission[J]. Construction and Building Materials,2010, (24):2339-2346
    [151]李建新,王光纶,金峰.横缝结合质量对拱坝结构受力的影响[J].水力发电,2001,10:45-50.
    [152]孙林松,王德信,谢能刚.横缝间隙对拱坝应力状态的影响分析[J].河海大学学报(自然科学版),2005,33(1):76-80.
    [153]孙林松,王德信.坝体接缝的线性互补模型及横缝对拱坝工作性态的影响[J].水利学报,2003,7:74-79.
    [154]韩晓凤,张仲卿.高碾压混凝土拱坝横缝开度对拱坝安全的影响[J].红水河,2002,1:16-18.
    [155]高拱坝蓄水水位对横缝开度的影响研究.水电国际2006研讨会.2006:281-284
    [156]盛志刚,张楚汉,王光纶,等.横缝引起的非整体性对小湾拱坝温度应力的影响研究[J].水力发电学报,2003,83(4):23-30.
    [157]徐艳杰,张楚汉,王光纶,金峰.小湾拱坝模拟实际横缝间距的非线性地震反应分析[J].水利学报.No.4.2001,(4):68~74
    [158]Fenves, G. L., Mojtahedi, S. and Reimer, R. B., ADAP-88:A computer program for nonlinear earthquake analysis of concrete arch dam[M]. University of California at Berkeley:Report No. UCB/EERC-89/02, Earthquake Engineering Research Center,1989
    [159]古泉,王光纶,徐艳杰.强震作用下高拱坝横缝张开非线性反应的研究[J].水利水电技术,2001,32(9):1-47.
    [160]郭永刚,侯顺载,陈厚群等.高拱坝伸缩横缝的开合对拱座岩体稳定的影响研究[J].水利学报,2000,12:38-43.
    [161]罗秉艳,徐艳杰,王光纶.大岗山拱坝考虑阻尼器抗震措施的非线性动力反应分析[J].水力发电学报.Vo1.26,No.1.2007,(2):67-70
    [162]赵小莲,张仲卿,夏雨.水平层缝和横缝对锦屏高拱坝破坏机理研究[J].中国农村水利水电,2008,12(2):103-107.
    [163]韩晓凤.高拱坝蓄水水位对横缝开度的影响研究[J].水电能源科学,2005,23(4):38-40.
    [164]解凌飞,常晓林,周伟.采用球面键槽的高拱坝横缝开度仿真分析[J].武汉大学学报(工学版),2005,38(6):72-76.
    [165]赵兰浩,李同春,牛志伟.不同库水模型对拱坝横缝开度的影响[J].水力发电学报,2010,29(3):154-158.
    [166]郑璀莹.混凝土坝中各种接触面的数值模拟方法研究及工程应用[D].中国水利水电科学研究院.2006.7
    [167]汝乃华,姜忠胜.大坝事故与安全:拱坝[M].北京:中国水利水电出版社,1995.
    [168]Zhu Bofang, Gao Jizhang, Chen Zuyu, Li Yisheng. Design and Research For Concrete Arch Dams. China Waterpower Press.2002.
    [169]Li Zan, Chen Fei, Zheng Jianbo. Analysis and Study on Project and Major Technical Issues of Super-High Arch dam, China Electric Power Publishing House.2004.
    [170]章惠冬.ANSYS单元生死技术软件在结构设计及施工中的应用[J].建筑施工,2008,30(9):824-833.
    [171]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [172]张国新,刘有志,刘毅,杨萍,白迎,马晓芳,刘玉.特高拱坝施工期裂缝成因分析与温控防裂措施讨论[J].水力发电学报.2010,29(10):45-51
    [173]中国水电顾问集团成都院.金沙江溪洛渡水电站大坝施工技术要求(Ⅱ版)-5拱坝混凝土温度控制施工技术要求[R].2009.8
    [174]朱伯芳.考虑水管冷却效果的混凝土等效热传导方程[J].水利学报,1991,3:28-34.
    [175]Ren Qing-wen. Status quo and problems on safety analysis of high arch dam, Shuili Xuebao,2007, 37(sup):1023-1031
    [176]Ren QingWen, Xu LanYu, Wan YunHui. Research advance in safety analysis methods for high concrete dam. Science in China Series E:Technological Sciences.2007,50(sup):62-78
    [177]Ngo D.A. Network-Topological approach to the finite element analysis of progressive crack growth in concrete members. University of California, Berkeley,1975:845-862
    [178]Hillerborg A, Modeer M.A nalysis of crack formation crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research.1976,6(6):773-782
    [179]Bazant Z.P, Cedolin L.F. Fracture mechanics of reinforced concrete[J]. Journal of Eng Mesh Division, ASCE.1980,106(EM6):1287-1306
    [180]Bao TengFei, Yu Hong. Detection of subcritical crack propagation for concrete dams. Science China (Technological Sciences).2009,52(12):3654-3660
    [181]Goodman R.E, Taylor R.L. A Model for the Mechanics of Jointed Rock. Proc. ASCE,1968,94(3): 637-659
    [182]Yan ShiLin, Wu Daihua, Huang Yuying.3-D Equivalent model of jointed Rock Masses Considering the Effects of joint Face Dilatancy. Journal of Wuhan University of technology.2000,22(05): 100-103
    [183]石根华.数值流形方法与非连续变形分析[M].裴觉民译.清华大学出版社.1997
    [184]朱伯芳.有限厚度带键槽接缝单元及接缝对混凝土坝应力的影响[J].水利学报,2001,31(02):1-7
    [185]李雪春,陈重华,徐听.非整体拱坝结构分析研究[J].水利学报,2002,33(06):47-52
    [186]李建新,王光纶,金峰.横缝结合质量对拱坝结构受力的影响[J].水力发电,2001,27(10),45-48
    [187]Zhang GuoXin, Liu Yi, Zhou QiuJing. Study on real working performance and overload safety factor of high arch dam. Science in China(Series E:Technological Sciences).2008,51(sup):50-61
    [188]龙渝川,周元德,张楚汉.基于两类横缝接触模型的拱坝非线性动力响应研究.水利学报,2005,36(09):80-85
    [189]张伯艳,陈厚群,涂劲.基于动接触法的拱坝坝肩抗震稳定有限元分析.水利学报,2004,35(10):9-14
    [190]张国新SAPTIS:结构多场仿真与非线性分析软件开发及应用(之一)[J].水利水电技术,2013,44(1):31-35.
    [191]朱伯芳.大坝数字监控的作用和设想[J].大坝与安全.2009,(6):8-11
    [192]七维高科.lstOpt使用手册.2009.5.1
    [193]四川中水成勘院工程勘察有限责任公司.金沙江溪洛渡水电站河床-13#-19#坝段固结灌浆物探和水文地质资料分析报告[R].2010.5
    [194]张志沛,王芝银,彭惠.陕南泥岩三轴压缩蠕变试验及其数值模拟研究[J].水文地质工程地质.2011,38(1):53-58
    [195]万玲,彭向和,杨春和等.泥岩蠕变行为的试验研究及其描述[J].岩土力学.2005,26(6):924-928
    [196]范庆忠,李术才,高延法等.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报.2007,26(7):1381-1385
    [197]傅自义,赵葳,王剑等.三峡大体积混凝土裂缝处理施工技术[J].水利水电科技进展.2003,(3):240-245
    [198]张雄,汪卫明,陈胜宏.小湾拱坝坝体裂缝加固措施研究[J].岩石力学与工程学报.2011,30(4):657-665
    [199]李桂胜,张银峰.拉西瓦拱坝坝基混凝土浇筑初期裂缝分析[J].水力发电.2007,33(11):66-67
    [200]马以超.中低拱坝裂缝成因及危害性浅析[J].中国农村水利水电.2009,(5):122-126
    [201]朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望[J].水利学报,2006,37(12):1424-1432.
    [202]黄云,金峰,王光伦,等.高拱坝上游坝踵裂缝稳定性及其扩展[J].清华大学学报(自然科学版),2002,42(3):555-559.
    [203]张国新,刘有志,刘毅,等.特高拱坝施工期裂缝成因分析与温控防裂措施讨论[J].水力发电学报,2010,29(5):45-51.
    [204]刘耀儒,王峻,杨强,等.小湾拱坝坝体裂缝对拱坝受力和稳定的影响研究[J].岩石力学与工程学报,2010,29(6):1132-1139.
    [205]邢林生.运行工况对二座拱坝上游面竖向裂缝的影响[J].水力发电学报,1999,2:21-30.
    [206]朱伯芳.建设高质量永不裂缝拱坝的可行性及实现策略[J].水利学报,2006,37(10):1155-1162.
    [207]朱伯芳.论混凝土坝的使用寿命及实现混凝土坝超长期服役的可能性[J].水利学报.2012,43(1):1-9
    [208]冯帆,张国新,刘有志,李仁江.层间水力渗透破坏对拱坝工作性态的影响[J].水利学报.2012,43(13):1334-1340
    [209]DL/T5205-2005.水工建筑物止水带技术规范[S].中华人民共和国国家发展和改革委员会.2005.
    [210]李庆斌,林鹏,胡昱,管俊峰,等.溪洛渡大坝混凝土断裂韧度研究[R].清华大学水利水电工程系,北京:清华大学,2011.
    [211]于骁中.岩石和混凝土断裂力学[M].中南大学工业出版社.1991
    [212]中国水利水电第八工程局.裂缝处理施工报告[R].云南,中国水利水电第八工程局溪洛渡大坝施工局,2010.
    [213]解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700