用户名: 密码: 验证码:
风电规模化并网条件下供热机组优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电机组大规模并网后,其发电负荷不确定性将会给电网造成很大的扰动,区域电网内发电机组整体调峰调频能力将在很大程度上决定着电网接纳风电负荷的能力。当前我国电网中,火电机组是补偿风电负荷的必然选择,但主流正压直吹式制粉系统的亚临界或超临界机组,其调峰调频能力仍不能达到要求。经过比较不同类型火力发电机组的特性发现,循环流化床机组具有优良的调峰能力但调频能力差;而供热机组调峰能力差但可能具有优良的调频能力。循环流化床机组同供热机组相互配合,能够较好解决这一问题。
     煤在火电机组内完成由化学能向电能转变的动态过程非常缓慢,为了提高机组负荷响应速率,必须利用机组蓄能。供热机组为一定区域提供热负荷,其热网管道具有巨大的蓄能容量,供热机组可以利用这部分蓄能响应电网小时间尺度上的负荷扰动,围绕这一思路开展以下研究工作。
     (1)在分析纯凝机组燃料量-汽轮机高调门开度与发电功率-机前压力双入双出模型基础上,对其汽轮机能量平衡环节进行改进,增加供热调节蝶阀开度输入和供热抽汽压力输出,建立典型供热机组微分方程形式的简化非线性动态模型。针对一典型300MW供热机组确定模型参数,通过扰动实验验证了模型的准确性。并且对非线性模型进行工作点线性化,用传递函数阵描述其输入输出关系。
     (2)对不同工况下供热机组控制系统进行仿真,解释了供热机组通过控制供热抽汽压力维持供热抽汽流量稳定的内在原因。对系统存在工作点非线性、供热负荷扰动、蓄热系数不确定及煤发热量不稳定的问题展开分析,比较其对控制品质的影响程度,有针对性地设计供热抽汽流量补偿、热量信号导前微分及煤发热量补偿方案,能够为现有供热机组投入电网自动发电控制及一次调频功能提供关键技术支持。
     (3)提出一种风电规模化并网条件下风电火电联合调度方案。设计非线性滤波器将电网自动发电负荷指令分解,构造出适合于供热机组的负荷指令。在比较多种控制方案优缺点基础上,选择在常规协调控制方案中增加前馈加补偿的环节的设计方案。该方案能够在保证汽轮机前压力和供热负荷基本稳定前提下,适应不同供热负荷下对象特性的变化,有效利用热网蓄能,大幅度提高机组发电负荷指令响应速率,同时能够实现供热工况和非供热工况控制系统的无扰切换。
     研究中还开发仿真实验平台对其工程应用特性进行系统分析,针对典型电网环境并在具体机组上初步试验方案可行性。课题研究能够为实现供热机组高速率变负荷运行大规模应用提供理论及基础性技术支持。
Because of the large-scale integration of the wind power units, the uncertainty of wind power generation load can cause lots of fluctuations in the grid. The ability of peak regulation and frequency regulation of the units in the regional power grid determines the capacity of the wind power integrated into the grid. The thermal power units are the inevitable choice for compensating wind power load in the current Chinese grid. The ability of peak regulation and frequency regulation of the dominant subcritical units and supercritical units with positive pressure direct blowing pulverizing system can not satisfied the requirement of the grid. By comparing the characteristics of different types of thermal power units, it was discovered that the circulating fluidized bed units have high ability of peak regulation and low ability of frequency regulation; moreover, the heating units have high ability of frequency regulation and low ability of peak regulation. The circulating fluidized bed units coordinating with the heating units can resolve this problem.
     The chemical energy of coal was transformed to electrical energy in the thermal power units. The transforming process is very slow. For improving the load response rate of the units, the energy storage of the units must be fully used. The heating units supply the heat load for a certain area, and the pipeline of the heating network has the huge capacity of energy storage. By using the energy storage of the pipeline, the heating units can response the load disturbance of the grid in the small time scale. Directed by above train of thought, the researches were carried out as follows:
     1. Based on the analysis on the double inputs and double outputs model of power generation load-throttle pressure versus boiler fuel flow-turbine governor valve opening for pure condensation unit, by improving the energy balance link in turbine, and by adding the output of extraction steam pressure and the input of extraction control butterfly valve opening, the simplified nonlinear dynamic model of typical heating units was constructed with the differential equation. For a typical300MW heating unit with certain model parameters, the accuracy of the model was confirmed by the disturbance experiments. The nonlinear model was linearized over specified operation point, and the transfer function matrix was gained to describe the relation between inputs and outputs.
     2. The control systems of existing heating units under different operation conditions were simulated. The inner reason why the extraction steam flow can be maintained stable by controlling the extraction steam pressure in heating units was explained. The problems such as operation point nonlinearity, heating demand disturbance, uncertainty of heat storage coefficient and instability of coal calorific value were analyzed. Comparing the influence degree on control quality, designing suitable extraction steam flow compensation, designing heat released signal guidance differential control structure and coal calorific value compensation scheme, the result can provide the critical technical support for automatic generation control (AGC) of the heating units integrated in grid and primary frequency regulation.
     3. A union scheduling scheme for wind power and thermal power under the condition of large-scale integration of wind power was presented. The nonlinear filter was designed to decomposing the load instruction of AGC. And the load instruction appropriated for heating units was constructed. By comparing the advantages and disadvantages of different control schemes, the traditional coordinated control scheme with feedforward and compensation was adopted. The scheme can adapt to the changes of object characteristics under different heating demands and can also ensure the stability of the throttle pressure and heating demands. So the heating network energy storage can be used effectively and the load response rate of the units can be improved greatly. And the undisturbed switching between the heating operation condition and non-heating operation condition was realized.
     The engineering application characteristics were analyzed by exploiting the simulation experiment platform. According to the typical grid environment, the feasibility of the scheme was verified in a real unit. The research results can provide theoretical and fundamental technology support for the large-scale application on high-speed and varying load operation in heating units.
引文
[1]中电联.2012年中国电力工业运行简况[OL].www.cec.org.cn,2013年1月18.
    [2]中国发电.《中国能源发展报告(2008)》蓝皮书[R].2008年.
    [3]刘鑫屏.热力发电过程建模与状态参数检测研究[D].华北电力大学博士学位论文,北京:2010.
    [4]郁刚.热电联产应更大贡献节能减排[N].中国能源报2011年6月13日.
    [5]王振铭.热电联产在结构调整中大发展[EB/OL]中国电机工程学会热电专委会www.chinaeec.org/uploads/soft/120704/8_1155107841.doc,2011.8.
    [6]2月份煤炭市场分析及3月份走势预测[J/OL]. http://www.tfcoal.com/Article/ShowArticle.asp?ArticleID=61451,《中国煤炭》,2011.3.16.
    [7]火力发电厂的发展历程概述[J/OL]. http://www.ccer21cbh.com/plus/view.php?aid=5969,中国经济评论,2011.11.25.
    [8]华北电网.华北区域发电厂并网运行管理实施细则(试行)[Z].2010.
    [9]华北电网.华北区域并网发电厂辅助服务管理实施细则(试行)[Z].2010.
    [10]肖创英,汪宁渤,陟晶,等.甘肃酒泉风电出力特性分析[J].电力系统自动化,2010,34(17):64-67.
    [11]中国电力行业信息网.”十二五”脱硝装机达100%千亿级火电排污市场呼之欲出[J/OL]. http://www.cndlhy.com/news/11084440.html,2011.5.20.
    [12]“风电三峡”并网受限用电低谷大量弃风[N/OL]. http://stock.jrj.com.cn/invest/2010/06/0307317572048.shtml,中国证券报,2010.6.30
    [13]内蒙古西部电网风电装机容量630万千瓦[J/OL]. http://news.cntv.cn/20110730/100704.shtml,中国网络电视台,2011.7.30.
    [14]蒙西电网送出通道不畅大量弃风停机[J/OL]. http://finance.qq.com/a/20100622/000459.htm腾讯财经,2010.6.22
    [15]孙辉.配电网络电能扰动辨识与电能质量调节研究[D].大连理工大学博士学位论文,大连:2002.
    [16]H.Aki. Energy Strorage Research and Development Activities in Japan[C]//Power and Energy Society General Meeting,2011:1-3.
    [17]中国能源网.云贵等地水电持续满发报告显示总体偏枯[Z]. http://www.china5e.com/show.php?contentid=241185,2012年8月24日.
    [18]国家能源局.世界最大装机抽水蓄能电站拟月底开建[Z]. http://www.nea.gov.cn/2012-09/24/c_131869909.htm,2012年9月24日.
    [19]孙勇,刘殿海.实现我国抽水蓄能健康有序发展[J].中国电力企业管理,2012,(9):42-43.
    [20]苏学灵.混合式蓄能水电站优化调度与风险[D].华北电力大学博士学位论文,北京:2010.
    [21]M. Kapsali, J.K. Kaldellis. Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms[J]. Applied Energy,2010, 87(11):3475-3485.
    [22]Perez-Diaz, J.I.; Perea, A.; Wilhelmi, J.R.. Optimal short-term operation and sizing of pumped-storage power plants in systems with high penetration of wind energy[C]//Proceedings of the 7th International Conference on the European Energy Market(EEM), June 23-25:1-6,2010, Madrid, Spain.
    [23]Garcia-Gonzalez, J.; de la Muela, R.M.R.; Santos, L.M, et al. Stochastic joint optimization of wind generation and pumped-storage units in an electricity market[J]. IEEE Trans on Power Systems,2008,23(2):460-468.
    [24]TUOHY A, O'MALIEY M. Impact of pumped storage on power systems with increasing wind penetration[C]//Proceedings of the IEEE Power & Energy Society General Meeting, July 26-30,2009:1-8,Calgary,AB, Canada.
    [25]Ummels, B.C., Pelgrum, E., Kling, W.L. Integration of large-scale wind power and use of energy storage in the Netherlands'electricity supply [J]. Renewable Power Generation, IET, 2008,2(1):34-46.
    [26]赵相宾.基于静止变频调速系统的抽水蓄能机组起动研究[D].天津大学博士学位论文,天津:2007.
    [27]孙薇.市场条件下抽水蓄能电站效益综合评价及运营模式研究[D].华北电力大学博士学位论文,河北保定:2008.
    [28]齐志刚.抽水蓄能电厂在电力市场中的购电策略研究[D].华中科技大学博士学位论文,武汉:2004.
    [29]颜志敏.智能电网中蓄能电池储能的价值评估研究[D].上海交通大学硕士学位论文.上海:2012.
    [30]Baoming Gea, c,Wenliang Wanga, Daqiang Bib, et al. Energy storage system-based power control for grid-connected wind power farm[J]. Electrical Power and Energy Systems, 2012,44(8):115-122.
    [31]张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术,2006,30(15):54-58.
    [32]Faizur Rahman, Shafiqur Rehman, Mohammed Arif Abdul-Majeed. Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia[J]. Renewable and Sustainable Energy Reviews,2012,16:274-283.
    [33]汪南方.全钒液流储能电池非氟隔膜的制备与性能研究[D].中南大学博士学位论文,长沙:2012.
    [34]Alexandre Ouddalov, Tilo Buehler, Daniel Chartouni, et al. Utility Scale Applications of Energy Storage[C]. Energy 2030 Conference, Energy 2008,34(2):1-7.
    [35]Mercier, P.; Cherkaoui, R.; Oudalov, A. Optimizing a Battery Energy Storage System for Frequency Control Application in an Isolated Power System[J]. Power Systems,2009,24(3): 1469-1477.
    [36]杨水丽,惠东,李建林,等.适用于风电场的最佳电池容量选取的方法[J].电力建设,2010,31(9):1-4.
    [37]Skyllas-Kazacos M., Kazacos G, Poon G., et al. Recent advance with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research,2010,34(2):182-189.
    [38]刘文毅,杨勇平.压缩空气储能电站综合效益评价研究[J].工程热物理学报,2007,28(3):373-375.
    [39]刘文毅,杨勇平,张昔国,等.压缩空气储能(CAES)电站及其现状和发展趋势[J].山东电力技术,2007,(2):10-14.
    [40]张新敬.压缩空气储能系统若干问题的研究[D].中国科学院博士学位论文,北京:2011.
    [41]Grazzini,G., Milazzo,A. A Thermodynamic Analysis of Multistage Adiabatic CAES[J]. Proceedings of the IEEE,2012,100(2):461-472.
    [42]谭靖,李国杰,唐志伟.基于压缩空气储能的风电场功率调节及效益分析[J].电力系统自动化,2011,35(8):373-375.
    [43]Vongmanee,V. The Renewable Energy Applications for Uninterruptible Power Supply Based on Compressed Air Energy Storage System[C]//2009 IEEE Symposium on Industrial Electronics and applications(ISIEA2009),,Malaysia,2009, v2:827-830.
    [44]Hanif Sedighnejad, Tariq Iqbal, John Quaicoe. Performance Evaluation of a Hybrid Wind-diesel-compressed Air energy Storage System[C]//Electrical and Computer Engineering(IEEE CCECE) 24th,2011,:270-273.
    [45]Rodica Loisel. Power system flexibility with electricity storage technologies:A technical-economic assessment of a large-scale storage facility[J]. Electrical Power and Energy Systems,2012,42:542-552.
    [46]于雅莉.储能飞轮动发一体机电磁关键问题及温度场的研究[D].哈尔滨工程大学博士学位论文,哈尔滨:2012.
    [47]李雪松.飞轮储能系统电动发电运行控制技术的研究[D].华北电力大学硕士学位论文,2006.
    [48]王争光.飞轮驱动装置的被控系统设计.电子科技大学硕士学位论文,2008.
    [49]Hardan F, BleijsJ A M, Bromley P, et al. Fast-response bi-directional power electronic converter for a flywheel energy storage system[C]//Proceedings of the 1997 32nd Universities Power Engineering Conference, Manchester UK,1997:419-422.
    [50]戴兴建,邓占峰,刘刚,等.大容量先进飞轮储能电源技术发展状况[J].电工技 术学报,2011,26(7):133-140.
    [51]张松,张维煜.飞轮储能工程应用现状[J].电源技术,36(3):435-439.
    [52]Werfel F N,Floegel-delor U, Riedel T, et al. Towards high-capacity HTS flywheel systems[J]. IEEE Transactions on Applied Superconductivity,2010,(99):1-4
    [53]张维煜,朱烷秋.飞轮储能关键技术及其发展现状[J].电工技术学报,2011,26(7):141-146.
    [54]史林军,张磊,陈少哺,等.飞轮储能系统在抑制电力系统多模式振荡中的应用[J].东南大学学报:自然科学版,2012,42(2):323-327.
    [55]向荣,王晓茹,谭谨.基于飞轮储能的并网风电场有功功率及频率控制方法研究[J].系统科学与数学,2012,32(4):438-449.
    [56]张晓民,赵军.自动发电控制在调度和机组设计中的问题探讨[J].山西电力,2007,(4):11-13.
    [57]郎澄宇,史昱,廖大鹏.机组运行方式对一次调频的影响与对策[J].电站系统工程,2012,28(2):63-64,66.
    [58]马鸿杰,苏凡,沈从奇,等.发电机组一次调频性能在线测试功能的开发与实施[J].华东电力,2012,40(8):1420-1423.
    [59]华北电网.华北区域并网发电厂辅助服务管理实施细则(试行)[Z].2010.
    [60]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,35(4):70-76.
    [61]张宏宇,印永华,申洪.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31.
    [62]张宏宇,印永华,申洪,等.基于序贯蒙特卡洛方法的风电并网系统调峰裕度评估[J].电力系统自动化,2012,36(1):32-37.
    [63]黎孟岩,朱涛,王达达,等.电力市场环境下云南电网AGC辅助服务问题[J].南方电网技术,2011,5(6):60-63.
    [64]李滨,韦化,农蔚涛,等.满足互联电网CPS标准的AGC最小调节容量研究[J].中国电机工程学报,2009,29(13):59-64.
    [65]张艳军,高凯,曲祖义.基于发电机组出力曲线特征的一次调频性能评价方法[J].电力系统自动化,2012,36(7):99-103.
    [66]李端超,江山立,陈家庚,等.AGC机组调节效能定量评估与补偿方式研究[J].电网技术,2001,25(8):15-19,44.
    [67]林万菁,刘娆,李卫东,等.发电侧电力市场下的AGC容量确定与机组选择[J].电力系统自动化,2004,28(19):17-21.
    [68]凡鹏飞.风电并网电力系统充裕性决策模型和方法研究[D].华北电力大学博士学位论文,北京:2012.
    [69]Sheikh, M.R.I. Mondol, N. Application of self-tuning FPIC to AGC for Load Frequency Control in wind farm interconnected large power system[C].//2012 International Conference on Informatics, Electronics & Vision(ICIEV),2012,:812-816.
    [70]Bevrani, H.; Daneshfar, F.; Hiyama, T. A New Intelligent Agent-Based AGC Design With Real-Time Application[J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on,2012,42(6):994-1002.
    [71]Egido, I.; Fernandez-Bernal, F.; Rouco, L. The Spanish AGC System:Description and Analysis[J]. Power Systems, IEEE Transactions on,2009,24(1):271-278.
    [72]伍宇忠,叶向前,朱亚清.一种火力发电机组协调控制方法及协调控制系统,中国,CN200910040862.6[P].2009-07-06.
    [73]伍宇忠.台山电厂600MW机组低负荷经济运行协调控制系统优化研究[J].广东电力,2009,22(12):56-59.
    [74]谢谢.基于电网AGC性能指标的单元机组协调控制系统研究[D].华北电力大学博士学位论文,北京:2012.
    [75]郭伯春.“两个细则”下广安电厂AGC控制策略优化[J].四川电力技术,2012,35(2):91-94.
    [76]梁景源.300MW火电机组协调控制优化的研究和应用[J].科技情报开发与经济,2012,22(16):147-149.
    [77]翁莎莎,云天吉.海南电网AGC超前控制[J].南方电网技术,2011,5(6):64-68.
    [75]镐俊杰,戴飞,王红印,等.河南电网节能发电调度技术支持系统[J].中国电力,2010,43(9):6-10.
    [76]汪蓓,王卫涛,周程放,等.湖北电网发电机组调频性能优化研究[J].武汉大学学报:工学版,2011,44(3):388-393,403.
    [77]余涛,王宇名,刘前进.互联电网CPS调节指令动态最优分配Q-学习算法[J].中国电机工程学报,2010,30(7):62-393,403.
    [78]黄卫剑,张曦,朱亚清,等.火电机组燃料品质自适应性优化控制策略研究[J].中国电力,2012,45(6):62-393,403.
    [79]吴云亮,孙元章,徐箭,等.基于多变量广义预测理论的互联电力系统负荷-频率协调控制体系[J].电工技术学报,2012,27(9):91-94.
    [80]李淼.电力系统机网协调优化若干问题研究[D].武汉大学博士学位论文,武汉:2012.
    [81]叶钟海.江西电网AGC控制方案探讨[J].江西电力,2011,35(4):1-4.
    [82]赵旋宇,李鹏,汪皓,等.新型控制性能评价方法及相应的自动发电控制模式[J].中国电机工程学报,2010,30(6):93-94.
    [83]范寻理,马志鸿.如何通过运行调整降低循环流化床锅炉磨损[J].硅谷,2012,(17):143-144.
    [84]周一工.中国循环流化床锅炉的发展:从低压到超临界[J].锅炉技术,2009,40(2):22-27.
    [85]韩振波.中倍率循环流化床锅炉的设计与应用[J].工业锅炉,2012,(5):15-20.
    [86]王俊生,王艳,白红亮.浅谈循环流化床锅炉技术的国内外现状[J].内蒙古石油化工,2012,(6):122-123.
    [87]田亮,苏保光,刘吉臻.超临界循环流化床锅炉水煤比控制[J].山东电力高等专科学校学报,2012,15(4):42-45.
    [88]王秀兰,赵立虎,牛雪峰.440t/h循环流化床锅炉经济运行研究[J].东北电力技术,2012,(9):50-52.
    [89]尹刚.白马电厂1025t/h CFB锅炉热平衡和物料平衡的试验研究[D].重庆大学博士学位论文,重庆:2007.
    [90]黄湘,徐敏.白马电厂300MW循环流化床锅炉热控系统评述[J].电力建设,2009,(8):102-105.
    [91]孟洛伟.循环流化床锅炉燃用义马劣质烟煤的运行调整[J].电力建设,2007,8(10):80-82.
    [92]蒋国平.掺烧生物质燃料对燃煤锅炉效率的影响分析[J].华中电力,2010,(3):39-42,45.
    [93]苗洪祥,韩涛,丁强,等.220t/h掺烧生物质燃料循环流化床锅炉的开发设计[J].能源技术,2008,29(5):299-301.
    [94]李丰顺.煤矸石热电厂节能减排技改方案研究[J].煤炭工程,2012,(8):66-67.
    [95]王蕾,刘桂建,康或.硒元素在低热值电厂燃烧残余物中的分布与环境贡献[J].中国科学技术大学学报,2012,42(6):488-493.
    [96]钱振明.低热值燃煤对电厂经济运行的影响与对策[J].中小企业管理与科技,2011,(27):320-320.
    [97]丹宇.燃用低热值煤气锅炉给水温度对排烟温度及电厂热经济性能的影响[J].冶金动力,2009,(3):9-11.
    [98]曹旭东,江洪涛,王振宇,等.循环流化床锅炉燃烧劣质煤的运行分析[J].热电技术,2004,(2):20-22.
    [99]张林仙,夏国宏,刘远鹏.循环流化床锅炉的发展现状及黄电公司劣质煤项目前景初探[J].黄石理工学院学报,2006,22(3):47-49.
    [100]师永福.窑街劣质煤热电厂130t/h循环流化床锅炉安装工艺简介[J].甘肃电力技术,2003,(2):42-44.
    [101]阿迪力江·依米提.循环流化床锅炉的节能特点[J].中国质量技术监督,2012,(8):70-70.
    [102]WU Haibo, ZHANG Man, LU Qinggang. The Heat Transfer Coefficients of the Heating Surface of 300 MWe CFB Boiler[J].热科学学报:英文版,2012,21(4):368-376.
    [103]李昌海,张海彬,白运通,等.465t/h循环流化床锅炉甩负荷试验分析[J].热电技术,2011,(4):15-18.
    [104]湛志钢,邵景涛,方健,等.300MW循环流化床锅炉机组甩负荷试验研究[J].锅炉技术,2012,43(3):28-32,39.
    [105]冀树春,冀树芳,闫普,等.大型循环流化床锅炉发电机组协调控制系统研究与设计[J].自动化博览,2012,(7):84-88,100.
    [106]孔垂茂,赵斌,王松岭,等.循环流化床锅炉燃烧系统参数关系特性分析[J].华北电力大学学报,2011,38(3):78-82.
    [107]杨新,成岭,尹猛,等.内循环流化床循环流率的试验研究与模型预测[J].锅炉技术,2012,43(5):30-34.
    [108]温山,阎维平,吴威,等.循环流化床锅炉炉内传热研究[J].电站系统工程,2012,(5):5-7.
    [109]靳姗姗,赵斌,孔垂茂,等.某电厂循环流化床锅炉热力学分析[J].节能,2012,31(7):40-43.
    [110]金小华.大型循环流化床锅炉炉膛仿真模型[J].东北电力技术,2012,(3):29-32.
    [111]田亮,苏保光,刘吉臻.超临界循环流化床锅炉水煤比控制[J].山东电力高等专科学校学报,2012,15(4):42-45.
    [112]邓拓宇,田亮,王琪,等.协调控制系统线性解耦方案机理分析[J].华东电力,2011,39(5):807-811.
    [113]田亮.单元机组非线性动态模型的研究[D].华北电力大学博士学位论文,河北保定:2005.
    [114]邓拓宇,田亮,刘吉臻.超超临界直流锅炉蓄热能力的定量分析[J].动力工程学报,2012,32(1):10-14,20.
    [115]付恩狄,田亮,张锷,等.过量空气系数对锅炉热量分配的影响分析[J].华东电力,2010,38(7):1081-1083.
    [116]朱红路,刘吉臻,常太华,等.LMS算法构造电站燃料增益信号及热量信号[J].热能动力工程,2010,25(5):552-556.
    [117]王学栋,魏东,孙书耀,等.不同类型供热机组的电热负荷优化分配和调峰性能[J].汽轮机技术,2010,52(5):387-390,328.
    [118]张宇,刘卫平,鄂志君,等.供热机组发电调度的研究及应用[J].资源节约与环保,2012,(3):45-47.
    [119]王凯,田昊明,贾静.采用蓄热技术扩大供热机组调峰裕度的研究[J].节能技术,2012,30(4):339-341.
    [120]朱剑英.330MW供热机组AGC和一次调频控制策略分析及优化[J].电力与能源,2012,33(3):227-231.
    [121]吴龙,袁奇,丁俊齐,等.基于变工况分析的供热机组负荷特性研究[J].热能动力工程,2012,27(4):424-428.
    [122]王军飞,杜之正.利用计算机软件进行供热机组间的负荷优化分配[J].山东电力高等专科学校学报,2012,15(3):32-36.
    [123]刘吉臻,王琪,田亮,等.供热机组负荷-压力简化模型及特性分析[J].动力工程学报,2012,32(3):192-196,228.
    [124]唐家裕,付林,狄洪发.不同类型供热机组负荷优化的研究[J].东北电力技术,2007,28(8):10-13.
    [125]温志刚,王勇,骆贵兵,等.模拟退火算法在供热机组负荷分配中的应用研究[J].热力发电,2003,32(7):18-20.
    [126]王兴国,何燕玲,张海良.供热机组调峰运行中的最小出力分析[J].河北电力技术,2006,25(6):46-48.
    [127]杨建国.200mw空冷供热机组一次调频能力分析与方案确定[J].电力学报,2012,27(2):173-176.
    [128]葛雨今,黄元生.200MW燃煤供热机组参与一次调频的技术解决方案[J].内蒙古科技与经济,2008,(4):172-173.
    [129]李洪滨.300MW供热机组利用循环水余热供热技术应用[J].黑龙江科技信息,2012,(7):104-104.
    [130]乔旭,姚炜.300MW空冷机组供热改造运行[J].中国电力教育:下,2011,(11):148-149.
    [131]王佩璋.300MW改空冷供热机组节能与空冷运行特点经验[J].华北电力技术,2010,(7):46-50.
    [132]杨勇.600MW供热机组选型分析[J].中国科技信息,2010,(12):171-172.
    [133]孙即红,林伟,张明强.600MW空冷供热汽轮机可行性和可靠性分析[J].中国科技信息,2009,z(4):13-15,75.
    [134]胡思科.背压式供热机组发电能力提高的探讨[J].煤气与动力,2000,20(2):105-108.
    [135]林海滨.浅谈热电厂背压式和抽汽式热机组的应用[J].中国科技博览,2011,(31):596-596.
    [136]唐丽.抽汽式汽轮机热电牵连解耦控制的研究与应用[J].电站系统工程,2009,25(1):61-63.
    [137]曾德良.基于速率优化的智能协调控制系统的研究和应用[D].华北电力大学博士学位论文,河北保定:2000.
    [138]田亮.单元机组非线性动态模型的研究[D].华北电力大学博士学位论文,河北保定:2005.
    [139]刘吉臻,田亮,曾德良,等.660MW机组负荷-压力非线性特性的分析[J].动力工程,2005,25(4):533-536,540.
    [140]刘鑫屏,田亮,赵征,等.汽包锅炉蓄热系数的定量分析[J].动力工程,2008,28(2):216-220.
    [141]刘鑫屏,田亮,刘吉臻.锅炉汽包虚假水位特性研究[J].中国电机工程学报,2009,29(32):1-5.
    [142]田亮,邓拓宇,刘吉臻.基于风量氧量热量信号导前微分协调控制系统[J].动力工程学报,2011,31(10):739-744.
    [143]田亮,刘鑫屏,王琪,等.基于多尺度相关和机理建模的炉膛压力分析[J].动力工程学报,2012,32(11):853-858.
    [144]于达仁,翁一武,王仲奇.火电单元机组的柔性控制[J].中国电机工程学报,2002,22(7):129-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700