用户名: 密码: 验证码:
水火风发电系统多周期联合优化调度模型及方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了促进能源、经济、环境的可持续发展,大力开发利用水电、风电等清洁能源已经得到了广泛关注。随着流域梯级水电站群的规模化发展,梯级上下游电站间的时空相关性更加紧密,在水电优化调度中考虑电站间水流滞时动态变化和水电机组检修计划的影响,将能够促进上下游电站统筹协调运行,充分发挥流域梯级水电节能效益。此外,随着风电并网容量的增加,风电功率的随机波动性、不可控性以及难以预测性增加了电网调峰的难度和优化调度的不确定性。为了促进风电的消纳,充分发挥梯级水电、火电的调节能力,开展多种能源的联合优化调度,已经成为当前电网调度面临的迫切需要解决的问题。基于上述背景,本文围绕水火风电力系统中的多周期优化调度问题,开展了以下的研究工作:
     在水电短期优化调度方面,提出了考虑水流滞时优化的优化调度模型。该模型建立了水流滞时和出库流量之间的非线性函数关系,从而反映了梯级水电站间水流滞时动态变化的特性。同时,针对水流滞时、水电转换和分段出力限制等复杂的非线性函数,提出了线性化建模的新方法,通过引入多组状态变量及相关约束,将短期水电优化调度问题转换为混合整数线性规划问题进行求解。仿真结果表明,在短期水电站群优化调度中考虑水流滞时的优化,能够有效提高调度方案的可行性和经济性。
     在水火发电系统中长期优化调度方面,提出了发电计划和检修计划联合优化的多场景调度模型。首先,针对中长期来水和负荷预测信息的不确定性,建立了场景树模型。然后,鉴于设备检修计划的连续性,在预测场景树的基础上,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。再者,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。最后,通过大规模实际水火电系统的实例分析,结果表明检修计划和发电计划的协调优化调度,能够更好地提升系统的节能和经济效益,使得检修计划和发电计划的制定更为合理;根据多场景模型制定的调度方案更具适用性。
     在水火风发电系统短期优化调度方面,提出了计及下一调度周期调峰约束的随机机组组合模型。首先,针对风电的随机性,利用缩减后的场景进行模拟,并建立了各个场景下的风水火耦合的运行约束。然后,针对下一调度周期高峰和低谷的调峰问题,增加了机组启停相关约束。最后,采用混合整数线性规划法对所提模型进行了求解,仿真结果表明,优化得到的机组组合方案,既能够保证各个场景下各类型机组出力的可行性,又能够满足下一调度周期的高峰负荷需求并减少了低谷时段的弃风量。
     在水火风发电系统中长期优化调度方面,提出了基于点估计的不确定性调度方法。首先,综合考虑水力、风力、热力与电力相互耦合的复杂约束,建立了水火风发电系统中长期优化调度模型。为了降低求解难度,将这一大规模、多约束、非线性的优化问题转换为线性混合整数模型予以求解。然后,针对模型中各时段水文径流与风速的随机性,利用点估计法构造随机变量的估计点,结合每一个估计点向量进行确定性的中长期优化调度模型的求解,进而得到优化调度决策变量的期望值。最后,通过算例分析,结果表明本文所提调度方法能够在确保计算精度的前提下,加快求解速度,此外通过水火风的联合优化调度,能够提高系统清洁能源消纳的能力、减少化石能源的消耗。
     论文上述研究成果可以为实际发电计划优化软件研发提供理论支撑,并在水火和水火风发电系统优化运行中具有应用的前景。
With the purpose of promoting sustainable development of energy, economy, and environment, it has been given abroad attention to make a great effort on the development of clean energy generation like hydro and wind power. Due to large-scale development of basin cascade hydropower stations, the spatial-temporal correlation between upstream and downstream hydropower plants becomes more closely. In the hydropower optimal scheduling model, the consideration of variation of water time delay and the influence of maintenance will promote coordination of dispatch between upstream and downstream stations and the improvement of energy-saving benefit. In addition, as the wind integration increases, it would become more difficult for grid to perform peak regulation and optimal operation because of the stochastic, uncontrollable and unpredictable characters of wind power. For the better consumption of wind power, it is urgent to realize combined optimal operation among various enegies in order to make full use of the regulation potential of cascade hydropower and thermal power. Based on the above backgrounds, this dissertation focuses on the multi-period optimal scheduling. The main research work is as follows:
     In aspect of short-term hydropower optimal scheduling, the model considering the optimization of water time delay is proposed. This model establishes nonlinear functions of water time delay and reservoir outflow to represent the dynamic change of water time delay among cascade hydropower stations. Meanwhile, in view of the complicated non-linear function, like cascade delay time, hydraulic-electric conversion and piecewise output limit, a novel linear modeling method is proposed. The short-term optimal scheduling problem is changed into a linear mixed integer programming problem by introducing multiple sets of state variables and constraints. Simulation results show that the feasibility and economics of scheduling can be improved by this model.
     In aspect of mid-long term hydro-themal optimal scheduling, the multi-scenario model considering joint optimization between generation and maintenance scheduling is proposed. Firstly, the scenario tree model is established to describe the uncertainty of water inflow and load prediction. Secondly, in consideration of the continuity of equipment maintenance scheduling, nodes are divided into different scenarios based on the predicting scenario tree, and equipment maintenance model of multi-scenario scheduling is founded through the scenario-node incidence matrix. Furthermore, electric power-related nodes and energy-related nodes were set respectively to coordinate generation and maintenance scheduling, in view to their different scheduling intervals. Finally, application examples of an actual large-scale hydrothermal system are tested and analyzed. Results demonstrated that coordinate optimization between generation and maintenance scheduling can improve energy and economic efficiency, which enhances the feasibility of generation schedules in return. It also indicates that the multi-scenario optimization can improve the applicable of the system scheduling scheme.
     In aspect of short-term hydro-thermal-wind optimal scheduling, the stochastic unit commitment model with the peak and valley regulation constraints in next scheduling period is proposed. Firstly, in respond to the randomness of wind power, the reduced scenarios are used to simulate wind power, and the coupling operational constraints of hydro, thermal, wind power in each scenario are formulated. Secondly, for the peak regulation issue in next scheduling period, the constraints about unit start and stop status are introduced. Finally, the proposed model is sloved by mixed integer linear programming. Simulation results show that the optimized unit commitment can ensure the output feasibility of each unit type under all scenarios, and the peak demand could be satisfied while wind curtailment during low demand time could be reduced.
     In aspect of mid-long term hydro-themal-wind optimal scheduling, the uncertain scheduling method based on point estimate is put forward. Firstly, taking into account the complex constraints, the long-term optimal scheduling model of wind-hydro-thermal system is established. In the proposed model, all of the coupled hydraulic, wind, thermal and electricity constraints are included. In order to reduce the solution difficulty, the above large-scale, multi-constrained, nonlinear optimization problem is converted into a mixed integer linear model. Secondly, the point estimation method is used and the estimation points of stochastic variables are generated. Then the model is solved on each estimation point vector and thus the expected value of decision variables could be calculated. Finally, numerical examples show that the proposed model could accelerate the calculation speed while ensuring the precision. In addition, the combined hydro-thermal-wind optimal scheduling could enhance the system capacity to integrate clean energy and reduce the consumption of fossil fuels.
     The above achievements can provide theoretical support for research and development of actural generation scheduling software, and also have the application prospect in the hydro-thermal and hydro-thermal-wind power systems.
引文
[1]马光文,刘金焕,李菊根.流域梯级水电站群联合优化运行[M].北京:中国电力出版社,2008:152-154
    [2]中电联发布2012年全国电力工业运行简况[R].北京:中国电力企业联合会,2013,http://tj.cec.org. cn/fenxiyuce/yunxingfenxi/yuedufenxi/2013-01-18/96374.html
    [3]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,35(4):70-76
    [4]潘理中,芮孝芳.水电站水库优化调度研究的若干进展[J].水文,1999,19(6):37-40
    [5]张铭,王丽萍,安有贵,等.水库调度图优化研究[J].武汉大学学报.2004,37(3): 5-7
    [6]Shan Yu, Chang-ming Ji, Wei Xie. Instructional mutation ant colony algorithm in application of reservoir operation chart optimization[C]. Knowledge Acquisition and Modeling (KAM),2011 Fourth International Symposium on,2011,1:462-465
    [7]邵琳,王丽萍,黄海涛,杨子俊,喻杉.水电站水库调度图的优化方法与应用—基于混合模拟退火遗传算法[J].电力系统保护与控制,2010,38(12):40-43+49
    [8]张智晟,樊秀娟,林涛.基于量子蚁群优化算法的梯级水电系统经济调度[J].电力自动化设备,2010,30(10):17-21
    [9]吴杰康,郭壮志,秦砺寒,等.基于连续线性规划的梯级水电站优化调度[J].电网技术,2009,33(8):24-29+40
    [10]Amjady N, Farrokhzad D, Modarres M. Optimal reliable operation of hydrothermal power systems with random unit outages[J]. IEEE Transactions on Power Systems, 2003,18(1):279-289
    [11]孔庆蓉,刘阳,袁宝招.某梯级小水电站系统的运行优化调度和经济运行研究[J].水力发电.2010,36(10):73-75
    [12]罗予如.梯级水电厂群短期经济运行的探讨[J].水力发电,2000,26(2):57-58
    [13]曾勇红,姜铁兵,张勇传.三峡梯级水电站蓄能最大长期优化调度模型及分解算法[J].电网技术,2004,28(10):5-8
    [14]蔡兴国,林士颖,马平.现货交易中梯级水电站竞价上网的研究[J].中国电机工程学报,2003,23(8):56-59
    [15]Binato S, Pereira M V. Decentralized planning of hydroelectric power systems[J]. IEEE Transactions on Power Systems,1995,10(1):492-498
    [16]葛晓琳,张粒子,王春丽.多目标短期梯级水电优化调度混合整数模型[J].电力系统保护与控制.2013,41(2):55-60
    [17]吴正佳,周建中,杨俊杰,等.调峰容量效益最大的梯级电站优化调度[J].水力发电,2007,33(1):74-76
    [18]陈洋波,胡嘉琪.隔河岩和高坝洲梯级水电站水库联合调度方案研究[J].水利学报,2004,35(3):47-52
    [19]王金文,石琦,伍永刚,等.水电系统长期发电优化调度模型及其求解[J].电力系统自动化,2002,26(24):22-26
    [20]左幸,马光文,刘高明.三角旋回算法及其在水库优化调度中的应用[J].水力发电,2006,32(12):20-22
    [21]闫敏华,邓伟,陈泮勤.三江平原气候突变分析[J].地理科学,2003,23(06):661-667
    [22]白晓民,李朝安,于尔铿.互联水火电力系统经济运行的一种新的分解协调算法[J].中国电机工程学报,1987,7(6):1-8
    [23]陈洋波,陈安勇,张文选.马尔柯夫决策在隔河岩水电站优化调度中的应用[J].葛洲坝水电工程学院学报.1995,17(04):53-60
    [24]王金文,王仁权,张勇传等.逐次逼近随机动态规划及库群优化调度研究[J].人民长江,2002,33(11):45-47
    [25]吴杰康,朱建全.机会约束规划下的梯级水电站短期优化调度策略[J].中国电机工程学报.2008,28(13):41-46
    [26]于馨华,张开平,万俊.跃河流域综合利用规划与优化调度[J].水力发电学报.1996,1(2):30-40
    [27]Rossman A L. Reliability-constrained dynamic programming and randomized release rules in reservoir management [J]. Water Resource Research,1977,13(2):247-255
    [28]刘红岭,蒋传文,张焰.基于随机规划的水电站中长期合约电量优化策略[J].中国电机工程学报,2010,30(13):101-108
    [29]郭壮志,吴杰康,孔繁镍,等.梯级水电站水库蓄能利用最大化的长期优化调度[J].中国电机工程学报,2010,30(1):20-26
    [30]Yanjia Z, Xi C, Qing-Shan J, et al. Long-Term Scheduling for Cascaded Hydro Energy Systems With Annual Water Consumption and Release Constraints[J]. IEEE Transactions on Automation Science and Engineering,2010,7(4):969-976
    [31]钟平安,唐林,张梦然.水电站长期发电优化调度方案风险分析研究[J].水力发电学报.2011,30(1):39-43
    [32]张勇传,水电站经济运行原理[M],北京:中国水利水电出版社,1998:173-175
    [33]贾江涛,管晓宏,翟桥柱.考虑水头影响的梯级水电站群短期优化调度[J].电力系统自动化,2009,33(13):13-16
    [34]马光文,刘金焕,李菊根.流域梯级水电站群联合优化运行[M].北京:电力出版社,2008:152-154
    [35]Diaz I P, Wilhelmi R J, Sanchez-Fernandez J A. Short-term operation scheduling of a hydropower plant in the day-ahead electricity market[J]. Electric Power Systems Research,2010,80(12):1535-1542
    [36]Catalo J S, Pousinho H I, Mendes V F. Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain[J]. Electric Power Systems Research,2010,80(8):935-942
    [37]Soares S, Lyra C, Tavares H. Optimal generation scheduling of hydrothermal power systems[J]. IEEE Transactions on Power Apparatus and Systems,1980,99(3): 1107-1118
    [38]Diaz I P, Wilhelmi R J, Arevalo A L. Optimal short-term operation schedule of a hydropower plant in a competitive electricity market[J]. Energy Conversion and Management,2010,51(12):2955-2966
    [39]尚金成,张勇传,岳子忠,等.梯级电站短期优化运行的新模型及其最优性条件[J].水电能源科学.1998,16(3):2-10
    [40]邓先礼.时滞对梯级水电站经济运行的影响[J].重庆大学学报(自然科学版).1982(2):91-102
    [41]赵晶.考虑梯级水电厂动态水流滞时的水火电力系统经济调度[D].南宁:广西大学,2010,33-34
    [42]Arce A, Ohishi T, Soares S. Optimal dispatch of generating units of the itaipu hydroelectric plant[J]. IEEE Transactions on Power Systems,2002,17(1):154-158
    [43]Murray D M, Yakowitz S J. Constrained differential dynamic programming and its application to multireservoir control [J]. Water Resources Research,1979,15(5): 1017-1027
    [44]张勇传,李福生,邴凤山,等.水库优化问题中的经济性与可靠性[[J].水电能源科学.1983,1(1):43-50
    [45]程春田,郜晓亚,武新宇,等.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011,31(10):26-32
    [46]Naccarino J R, Cheung R T, Briggs W, et al. Real-time monitoring, optimization and control of a hydroelectric generation complex. IEEE Transactions on Power Systems.1988,3(3):1390-1396
    [47]Wakamori F, Masui S, Morita K, et al. Layered network model approach to optimal daily hydro scheduling[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9):3310-3314
    [48]Catalao JPS, Mariano SJP, Mendes VMF, et al. Scheduling of Head-Sensitive Cascaded Hydro Systems:A Nonlinear Approach[J]. IEEE Transactions on Power Systems,2009,24(1):337-346
    [49]Finardi EC, da Silva EL. Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming[J]. IEEE Transactions on Power Systems,2006,21(2):835-844
    [50]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001:2-3
    [51]刘红岭.电力市场环境下水电系统的优化调度及风险管理研究[D].上海交通大学,2009
    [52]Yuan Xiaohui, Zhang Yongchuan, Wang Liang, et al. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling[J]. Computers & Mathematics With Applications,2008,55(11):2458-2468
    [53]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,(02):94-98
    [54]Liao X, Zhou J, Zhang R, et al. An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems[J]. International Journal of Electrical Power & Energy Systems,2012,43(1):1340-1345
    [55]贾江涛,管晓宏,翟桥柱.考虑水头影响的梯级水电站群短期优化调度[J].电力系统自动化,2009,33(13):13-16
    [56]Chang G W, Aganagic M, Waight J G, et al. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling[J]. IEEE Transactions on Power Systems,2001,16(4):743-749
    [57]吴宏宇,管晓宏,翟桥柱,等.水火电联合短期调度的混合整数规划方法[J].中国电机工程学报,2009,29(28):82-88
    [58]Conejo A J, Arroyo J M, Contreras J, et al. Self-scheduling of a hydro producer in a pool-based electricity market[J]. IEEE Transactions on Power Systems,2002, 17(4):1265-1272
    [59]Borghetti A, D'ambrosio C, Lodi A, et al. An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir[J] .IEEE Transactions on Power Systems,2008,23 (3):1115-1124
    [60]吴至复,曾鸣,刘宝华,等.电力市场中的水火电优化调度模型及其应用[J].电网技术,2006,30(15):45-49
    [61]王雁凌,张粒子,杨以涵.基于水火电置换的发电权调节市场[J].中国电机工程学报,2006,26(5):131-136
    [62]韩冬,蔡兴国.综合环境保护及峰谷电价的水火电短期优化调度[J].电网技术.2009,33(14):78-83
    [63]Sasikala J, Ramaswamy M. Optimal gamma based fixed head hydrothermal scheduling using genetic algorithm[J]. Expert Systems with Applications,2010, 37(4):3352-3357
    [64]段虞荣,田玉芳.大系统分解协调法和非线性规划法应用于电力系统经济调度[J].重庆大学学报(自然科学版).1992(6):112-118
    [65]陈刚,相年德,陈雪青.水火联合电力系统长期优化调度模型与算法[J].水电能源科学.1992,10(1):48-57
    [66]Ferrero R W, Rivera J F, Shahidehpour S M. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems[J]. IEEE Transactions on Power Systems,1998,13(4):1534-1540
    [67]Amjady N, Farrokhzad D, Modarres M. Optimal reliable operation of hydrothermal power systems with random unit outages [J]. IEEE Transactions on Power Systems, 2003,18(1):279-289
    [68]庞峰.电力电量平衡新方法[J].水力发电学报,2001(4):117-122
    [69]Medina J, Quintana V H, Conejo A J. A clipping-off interior-point technique for medium-term hydro-thermal coordination[J]. IEEE Transactions on Power Systems, 1999,14(1):266-273
    [70]Contaxis G C, Kavatza S D. Hydrothermal scheduling of a multireservoir power system with stochastic inflows[J]. IEEE Transactions on Power Systems,1990,5(3): 766-773
    [71]Farhat I A, El-Hawary M E. Interior point methods application in optimum operational scheduling of electric power systems[J]. IET Generation, Transmission & Distribution,2009,3(11):1020-1029
    [72]Baslis C G, Papadakis S E, Bakirtzis A G. Simulation of optimal medium-term hydro-thermal system operation by grid computing[J]. IEEE Transactions on Power Systems,2009,24(3):1208-1217
    [73]Heredia FJ, Nabona N. Optimum short-term hydrothermal scheduling with spinning reserve through network flows[J]. IEEE Transactions on Power Systems,1995, 10(3):1642-1651
    [74]Chao-An L, Svoboda A J, Chung-Li T, et al. Hydro unit commitment in hydro-thermal optimization[J]. IEEE Transactions on Power Systems,1997,12(2): 764-769
    [75]Neto T A, Pereira M F, Kelman J. A Risk-Constrained Stochastic Dynamic Programming Approach To The Operation Planning Of Hydrothermal Systems[J]. IEEE Transactions on Power Apparatus and Systems,1985, PAS-104(2): 273-279
    [76]Nanda J, Bijwe P R. Optimal Hydrothermal Scheduling with Cascaded Plants Using Progressive Optimality Algorithm[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(4):2093-2099
    [77]黄纯,杨毅刚.水火电力系统有功无功经济调度的新算法[J].电力系统及其自动化学报,1993,5(01):83-91
    [78]Rudolf A, Bayrleithner R. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system[J]. IEEE Transactions on Power Systems, 1999,14(4):1460-1468
    [79]Medina J, Quintana VH, Conejo AJ, et al. A comparison of interior-point codes for medium-term hydro-thermal coordination J]. IEEE Transactions on Power Systems, 1998,13(3):836-843
    [80]Franco PEC, Carvalho M F, Soares S. A network flow model for short-term hydro-dominated hydrothermal scheduling problems[J]. IEEE Transactions on Power Systems,1994,9(2):1016-1022
    [81]Wei H, Sasaki H, Kubokawa J. A decoupled solution of hydro-thermal optimal power flow problem by means of interior point method and network programming[J]. IEEE Transactions on power Systems,1998,13(2):286-293
    [82]Gil E, Bustos J, Rudnick H. Short-term hydrothermal generation scheduling model using a genetic algorithm [J]. IEEE Transactions on Power Systems,2003,18(4): 1256-1264
    [83]Jingrui Z, Jian W, Chaoyuan Y. Small Population-Based Particle Swarm Optimization for Short-Term Hydrothermal Scheduling[J]. IEEE Transactions on Power Systems,2012,27(1):142-152
    [84]Frangioni A, Gentile C, Lacalandra F. Tighter Approximated MILP Formulations for Unit Commitment Problems[J]. IEEE Transactions on Power Systems,2009,24(1): 105-113
    [85]Garcia-Gonzalez J, Dela-Muela R, Santos L M, et al. Stochastic joint optimization of wind generation and pumped-storage units in an electricity market[J]. IEEE Transactions on Power Systems,2008,23(2):460-468
    [86]Chen C L, Lee T Y, Jan R M. Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity [J]. Energy Conversion and Management,2006,47(18):3456-3472
    [87]Ronan D, Mark O. A new approach to quantify reserve demand in systems with significant installed wind capacity [J]. IEEE Transaction on Power Systems,2005, 20(2):587-595
    [88]张国强,吴文传,张伯明.考虑风电接入的有功运行备用协调优化[J].电力系统自动化,2011,35(12):15-19
    [89]周任军,姚龙华,童小娇,等.采用条件风险方法的含风电系统安全经济调度[J].中国电机工程学报,2012,32(1):56-63
    [90]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,24(6):129-137
    [91]艾欣,刘晓,孙翠英.含风电场电力系统那个机组组合的模糊机会约束决策模型[J].电网技术,2011,35(12):202-207
    [92]邱威,张建华,刘念.含大型风电场的环境经济调度模型与解法[J].中国电机工程学报,2011,31(19):8-16
    [93]Wang Q, Guan Y, Wang J. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output [J]. IEEE Transaction on Power Systems,2012,27(1):206-215
    [94]Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment [J]. IEEE Transactions on Power Systems,2007,22(2):800-811
    [95]Venkata S, Istvan E, Kurt R, etal. A stochastic model for the optimal operation of a wind-thermal power system [J]. IEEE Transactions on Power Systems,2009,24(2): 940-950
    [96]叶荣,陈皓勇,王钢,等.多风电场并网时安全约束机组组合的混合整数规划解法[J].电力系统自动化,2010,34(5):29-33
    [97]Wu L, Shahidehpour M, Li Z. Comparsion of scenario-based and interval optimization approaches to stochastic SCUC [J]. IEEE Transaction on Power Systems,2012,27(2):913-921
    [98]潘文霞,范永威,杨威.风-水电联合优化运行分析[J].太阳能学报,2008,29(1):80-84
    [99]Garcia-Gonzalez J, de la Muela RMR, Santos LM, et al. Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market[J]. IEEE Transactions on Power Systems,2008,23(2):460-468
    [100]胡泽春,丁华杰,孔涛.风电—抽水蓄能联合日运行优化调度模型[J].电力系统自动化,2012,36(02):36-41+57
    [1011黄春雷,丁杰,田国良,等.大规模消纳风电的常规水电运行方式[J].电力系统自动化,2011,35(23):37-39+111
    [102]孙春顺,王耀南,李欣然.水电-风电系统联合运行研究[J].太阳能学报,2009,30(2):232-236
    [103]静铁岩,吕泉,郭琳,李卫东.水电—风电系统日间联合调峰运行策略[J].电力系统自动化,2011,35(22):97-104
    [104]龙军,莫群芳,曾建.基于随机规划的含风电场的电力系统节能优化调度策略[J].电网技术.2011(9):133-138
    [105]Soder L. Reserve margin planning in a wind-hydro-thermal power system[J]. IEEE Transactions on Power Systems,1993,8(2):564-571
    [106]吕清洁.含风/水/火电的电力系统动态经济调度和节能调度[D].重庆:重庆大学,2012
    [107]温丽丽,刘俊勇.混合系统中、长期节能调度发电计划的蒙特卡罗模拟[J].电力系统保护与控制.2008,36(24):24-29
    [108]Lei W, Shahidehpour M, Yong F. Security-constrained generation and transmission outage scheduling with uncertainties[J]. IEEE Transactions on Power Systems,2010, 25(3):1674-1685
    [109]Sturt A, Strbac G. Efficient stochastic scheduling for simulation of wind-integrated power systems[J]. IEEE Transactions on Power Systems,2012,27(1):323-334
    [110]Rasoul A, Taher N, Alireza R, Ahmad R, Mohsen Zare. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method[J]. Energy,2012, (37):322-335
    [111]吴蓓,张焰,陈闽江.点估计法在电压稳定性分析中的应用[J].中国电机工程学报.2008,28(25):38-43
    [112]JINWEN Wang. Short-term generation scheduling model of fujian hydro system[J]. Energy Conversion and Management,2009,50(4):1085-1094
    [113]SHAWWASH Z K, SIU T K, RUSSELL S O D. The B. C. Hydro short term hydro scheduling optimization model[J]. IEEE Transactions on Power Systems,2000, 15(3):1125-1131
    [114]袁晓辉,王乘,张勇传,等.水电系统短期经济运行的新方法[J].水力发电学 报,2006,25(4):1-5
    [115]王光谦,魏加华.流域水量调控模型与应用[M],北京:科学出版社.2006,179-180
    [116]左长春,陈雪青,相年德,等.水火联合电力系统中期优化调度的模型及算法[J].中国电机工程学报,1991,11(6):57-63
    [117]张炜,何光宇,王稹,等.水火联合电力系统中期经济调度系统的研究[J].电网技术,2002,26(10):6-9
    [118]陈雪青,陈刚,张炜,等.电力系统长、中、短期能源调度管理系统的研究[J].中国电机工程学报,1994,14(6):41-48
    [119]Shrestha G B, Pokharel B K, Lie T T, et al. Medium term power planning with bilateral contracts[J]. IEEE Transactions on Power Systems,2005,20(2):627-633
    [120]Anon. On BFC-MSMIP strategies for scenario cluster partitioning and twin node family branching selection and bounding for multistage stochastic mixed integer programming[J]. Computers & Operations Research,2010,37(4):738-753
    [121]Li T, Shahidehpour M, Li Z. Risk-constrained bidding strategy with stochastic unit commitment[J]. IEEE Transactions on Power Systems,2007,22(1):449-458
    [122]中国华电集团公司安全生产部.火电机组检修全过程规范化管理[M].北京市:中国电力出版社,2008,61-62
    [123]柳瑞禹,何成江,孙月.大型火力发电机组检修工程费用管理[M].北京市:中国水利水电出版社,2008,129-130
    [124]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986,3-5
    [125]吴宏宇,管晓宏,翟桥柱,等.水火电联合短期调度的混合整数规划方法[J].中国电机工程学报,2009,29(28):82-88
    [126]张粒子,周娜,王楠.大规模风电接入电力系统调度模式的经济性比较[J].电力系统自动化.2011,35(22):105-110
    [127]Chun-Lung Chen. Optimal wind-thermal Generating Unit Commitment[J]. IEEE Transactions on Energy Conversion,2008,23(1):273-280
    [128]袁铁江,晁勤,吐尔逊·伊不拉音,等.大规模风电并网电力系统动态清洁经济优化调度的建模[J].中国电机工程学报.2010,30(31):7-13
    [129]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报.2009,24(6):129-137
    [130]Qianfan W, Yongpei G, Jianhui W. A Chance-Constrained Two-Stage Stochastic Program for Unit Commitment With Uncertain Wind Power Output[J]. IEEE Transactions on Power Systems,2012,27(1):206-215
    [131]龙军,莫群芳,曾建.基于随机规划的含风电场的电力系统节能优化调度策略 [J].电网技术.2011,35(9):133-138
    [132]尚金成,庞博,王清敏,等.节能发电调度经济补偿机制市场模型及算法[J].电网技术.2010,34(4):62-68
    [133]翟庆志.电机与新能源发电技术[M].北京:中国农业出版社,2011:236-237
    [134]尹秀英,钟宁宁.环境科学认识实习教程[M].北京:化学工业出版社,2010:37-38
    [135]吴至复.基于水火电优化配置的市场交易机制、模型及其应用研究[D].华北电力大学(北京),2007
    [136]邓英.风力发电机组设计与技术[M].北京市:化学工业出版社,2011:5-7
    [137]屠强.风电功率预测技术的应用现状及运行建议[J].电网与清洁能源,2009,25(10):4-9
    [138]袁铁江,晁勤,李义岩,等.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):23-27
    [139]Safdarian A, Fotuhi-Firuzabad M, Aminifar F. Compromising Wind and Solar Energies From the Power System Adequacy Viewpoint[J]. IEEE Transactions on Power System.2012,27(4):2368-2376
    [140]Karki R, Po H, Billinton R. A simplified wind power generation model for reliability evaluation[J]. IEEE Transactions on Energy Conversion.2006,21(2):533-540
    [141]康重庆,夏清,徐玮著.电力系统不确定性分析[J].北京市:科学出版社,2011,23-24
    [142]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化.2009,33(21):32-35
    [143]雷宇,杨明,韩学山.基于场景分析的含风电系统机组组合的两阶段随机优化[J].电力系统保护与控制.2012,40(23):58-67
    [144]Lei Wu, Mohammad Shahidehpour, Tao Li. Stochastic security-constrained unit commitment. IEEE Transactions on Power System.2007,22(2):800-811
    [145]CARRION M, ARROYO J M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems,2006,21(3):1371-1378
    [146]静铁岩,吕泉,郭琳,等.水电—风电系统日间联合调峰运行策略[J].电力系统自动化.2011,35(22):97-104
    [147]王承煦,张源.风力发电[M].北京:中国电力出版社,2002,28-29
    [148]张硕,李庚银,周明等.风电场可靠性建模[J].电网技术,2009,33(13):37-41
    [149]申建建,武新宇,程春田,李刚.大规模水电站群短期优化调度方法Ⅱ:高水头 多振动区问题[J].水利学报,2011,42(10):1168-1176+1184
    [150]葛晓琳,舒隽,张粒子.考虑检修计划的中长期水火电联合优化调度方法[J].中国电机工程学报.2012,32(13):36-43
    [151]Li W, Tai-Her Y, We-Jen L, et al. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods[J]. IEEE Transactions on Power Systems,2009,24(2):692-704
    [152]潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报.2008,28(16):28-33
    [153]Morales J M, Perez-Ruiz J. Point Estimate Schemes to Solve the Probabilistic Power Flow[J]. IEEE Transactions on Power Systems,2007,22(4):1594-1601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700