用户名: 密码: 验证码:
冻融对土壤镉吸附解吸特性影响机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤对重金属镉的吸附与解吸特征,影响着镉在土壤中的行为、在一定程度上决定着它的污染危害大小。土壤对重金属的吸附解吸特征受多种因素影响;前人已经开展了不少这方面的研究。由于冻融能直接影响到土壤中矿物、电荷种类与数量等性质,也能影响到有机物质的数量与形态,故冻融在北方寒冷地区可能是影响土壤镉吸附解吸行为的重要因素。然而,到目前为止关于冻融的影响研究尚少,而冻融影响土壤镉吸附与解吸机理的研究就更少。本文以分布于沈阳地区的棕壤作为供试土壤,采用人工控温的方法对不同水分含量条件下的供试土样做交替冻融处理,测定处理后土样对镉的静态等温吸附-解吸、动态等温吸附-解吸曲线和吸附反应后土壤中镉的赋存形态,再将镉吸附-解吸特征与土壤物理化学性质联系起来做统计分析,探讨了冻融影响土壤镉吸附解吸的机理。冻融温度为-30℃-20℃,冻融分0、1、3、6、9次不等,每次冻和融时间相同、均为24h,供试土壤水分含量分别控制在田间持水量的10%、40%、70%、100%、120%。得到的主要结果如下。
     1.冻融次数和含水量使土壤pH、游离氧化铁、无定形氧化铁、氧化铁活化度、比表面积发生明显改变,冻融次数还对土壤CEC、CECP、DOC和颗粒分形维数D产生明显影响;这些土壤理化性质大部分随冻融次数增加呈周期性增减变化,这一现象得到了土壤微结构电镜扫描观察结果和红外光谱图的证实。与含水量及其与冻融次数的交互作用相比,冻融次数对土壤理化性质的影响更为明显。
     2.冻融次数和含水量对土壤镉的吸附-解吸特点产生影响。土壤镉的吸附量随着冻融次数的增加先增加后降低,在冻融3次时有最大值,且在本试验范围内冻融后土壤镉的吸附量均较未冻融土壤增加;而含水量为田建持水量70-100%时土壤镉的吸附量较其他含水量处理时要小。冻融次数和冻融次数与土壤含水量的交互作用对土壤镉的吸附量影响极显著,而土壤含水量的影响未达显著水平。本试验中的土壤镉吸附能力较强,平均吸附率达到90.15%,且随着冻融次数的增加先增加后减小。反应过程中的吸附自由能变ΔG<0,且在-30~0kJ·mol-1范围内,故该吸附过程为可自发进行的物理化学吸附。土壤镉的初始吸附速率和平均吸附速率均随着冻融次数的增加先增加后降低,随着土壤含水量的增加先降低后增加。
     不同冻融处理土壤镉的解吸存在滞后性,滞后程度随着冻融次数的增加呈先增强后减弱的趋势。冻融影响土壤镉的解吸过程,土壤镉的解吸率随冻融次数呈先减小后增加的变化趋势。初始解吸速率和平均解吸速率均随着冻融次数和土壤含水量的增加先降低后升高。镉解吸反应过程可分为快速、慢速解吸两个阶段,两阶段的解吸速率因土壤冻融次数而异;与两个反应阶段对应的解吸速率、由快速到慢速解吸阶段的转折时间均随着冻融次数的增加呈先降低后升高的趋势。
     3.不同冻融处理土壤吸附重金属镉后,土壤中存赋的镉以交换态为主,残渣态次之,碳酸盐结合态和铁锰氧化物结合态含量较少,有机结合态更少。
     冻融次数和含水量对交换态镉、碳酸盐结合态镉、铁锰氧化物结合态镉含量的影响均达到显著或极显著水平,冻融次数还与残渣态镉含量关系密切。
     供试土壤吸附镉的生物可利用系数和迁移系数均随冻融次数增加呈先增加后降低的趋势变化,这两个系数的平均值分别达到66%和63%。
     4.冻融土壤镉的吸附-解吸过程中的吸附容量、滞后系数、快速解吸速率、慢速解吸速率和不同赋存形态镉含量与土壤pH、CE、CECp、DOC、无定形氧化铁、比表面积和分形维数D呈显著或极显著相关关系,而交换态镉则与土壤CECp的大小呈极显著正相关关系。因此,可以认为冻融是通过改变土壤理化性质来实现对土壤镉吸附解吸特性的影响的。统计分析结果表明,pH和CECp主要通过直接作用、CEC通过间接作用增加土壤镉吸附容量,DOC主要是通过直接作用降低土壤镉吸附容量的。
     综上所述,冻融处理使土壤经历冻胀-消融过程,导致土壤结构和黏土矿物的破坏、有机物质组分和土壤溶液中物质组成改变,致使土壤pH、CEC、CECp、DOC、无定形氧化铁、比表面积和土壤微团聚体的稳定性发生变化,是造成土壤对镉吸附容量大小、吸附-解吸速率快慢及土壤中镉赋存形态不同的主要原因。不同冻融处理土壤镉吸附解吸特性的变化是多个理化性质综合作用的结果。
The adsorption-desorption characteristics in soil after Cd inputed into the soils influenced the Cd behavior, and detemined the extent of Cd pollution in a way. The adsorption-desorption was affected by many factores, on which many studies have been done.Freeze/thawing may be the important factor influenced the Cd adsorption-desorption in soil in north clod area because that freeze/thawing could affected the mineral,charge type and quantity in the soil directly and also affected the organics quantity and form.However, so far the studied on effect of freeze/thawing were less,and the studied on the mechamism of effect of freeze/thawing on Cd adorption-desorption in soil were more less.In this paper,the brown soils distributing in Shenyang area were collected for tested soils, the soil samples of various water content were treated with various freeze/thawing time by artificial temperature control method. The cadmium static isothermal adsorption-desorption isotherms and kinetics isothermal adsorption-desorption isotherm, the adsorbed Cd fractionation in the soil were assayed, then contected the Cd adsorption-desorption characteristics with the soil physical and chemical properties by statistical analysis, and discussed the the mechamism of effect of freeze/thawing on Cd adorption-desorption in soil.The soil samples were incubated at-30℃and-20℃for24h, respectively. Soil samples of different water content (such as10%,40%,70%,100%and120%of the field capacity) were subsequently refrozen and thawed for0,1,3,6,9cycles. The results were as below:
     1. Freeze/thawing time (FTT) and soil water content affected the soil pH, free iron oxide, amorphous iron oxide, iron oxide activation degree, the specific surface significantly, and the FTT also affected CEC, CECp, DOC and the fractal dimension(D)significantly. Most of the soil physical and chemical characteristics were fluctuant change with the FTT, and these phenomena were demonstrated by the SEM pictures of the soil particles and the FTIR spectra when the soil water content equaled to the field capacity. Compared with soil water content and its interaction with FTT, FTT had more obvious effects on soil physical and chemical characteristics.
     2. FTT affected the Cd adsorption-desorption in the soil. The Cd adsorption quantity increased firstly and then decreased with the increase of the FTT, the max was at3FTT, and the freeze/thawing improved the Cd adsorption in the soils in the extent of this experiment. The Cd adsorption amount was less when the soil water content was70-100%of the field capacity. The effect of the interaction of the FTT and water content on Cd adsorption quantity in soil was significant, while that of the water content was not. The Cd adsorption ability of tested soils was higher, the mean Cd adsorption ratio reached90.15%increasing firstly and then decreasing with the increase of the FTT. The change in free energy ΔG<0, and ΔG value ranged from-30~0kJ·mol-1,so the adsorption progress belonged to spontaneous physical-chemical adsorption. Initial and average adsorption speed firstly increased and then decreased with the FTT increasing, and appeared adverse change with the water content.
     The Cd desorption in soils treated with the different freeze/thawing presented hysteresis quality, and the extent of which firstly enhanced and then receded with the FTT increasing. The Cd desorption rate decreased firstly and then increased with the increase of FTT. Initial and average desorption speed firstly decreased and then increased with the FTT and soil water content increasing.The Cd desorption process in soil can be divided into two sections:fast reaction and slow reaction stage, while the desorption rate of the two reaction stage was different depending on the FTT. The desorption speed of the two reaction stage and the turn time of fast reaction to slow reaction decreased firstly and then increased with the the FTT increasing.
     3. The fractionation of the absorbed Cd ordered in:exchangeable from>residual form> bound to carbonates form>bound to Fe-Mn oxides form>bound to organic matter form after adsorbing Cd of soils under various freeze/thawing treatments.
     The FTT and the soil water content affected the exchangeable from Cd, Carbonates form Cd, Fe-Mn oxides form Cd significantly, and the FTT also affected the residual Cd significantly.
     The availability index (K) and mobility index (M) of the adsorbed Cd in soils increased firstly then decreased with the freezing and thawing frequency increase,and the mean of them were66%and63%respectively.
     4.The adsorption capacity, hysteresis coefficient,fast desorption speed, slow desorption speed and the various fractionation of the Cd in soils were connected with the pH, CEC, CECp, DOC, amorphous iron oxide, the specific surface and the fractal dimension significantly at0.05or0.01level during the progress of the Cd adsorption-desorption in freeze/thawed soils, while the exchangeable Cd and CECp were significant positive correlation at0.01level. And the statistical analysis results showed that the facilitation of pH and CECp on kF was produced through the direct action, that of CEC on kF was produced through the indirect action; the inhibition of DOC on kF was produced through direct action.
     To sum up, freeze/thawing treatments made soil experience frost heave-ablation process, which lead to soil structure and mainly pure montmorillanite destruct, organic matter component and soil solution components change, caused the soil pH, CEC, CECP, DOC, amorphous iron oxide, specific surface area and D changed, so that caused the change of the soil Cd adsorption quantity,adsorption-desorption speed and the fractionation of the adsorbed Cd in the soil under different freeze/thawing treatments. The change of the Cd adsorption-desorption characteristics of soil under different freeze/thawing treatments was resulted by integrated effects of physical and chemical properties.
引文
1.崔力拓,耿世刚,李志伟.2006.我国农田土壤镉污染现状及防治对策.现代农业科技,11:184-185
    2. 陈浩,杨亚莉.2010.冬前灌溉条件下冻融作用对土壤压实的影响.农机化研究,133-135
    3. 陈怀满.1988.土壤对镉的吸附与解吸Ⅰ.土壤组份对镉的吸附和解吸的影响.土壤学报,25(1):66-74
    4.陈同斌,陈志军.1998.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,4(3):201-210
    5. 党秀丽.2008(a).冻融过程对土壤中重金属镉形态及其迁移转化影响的研究.沈阳:沈阳农业大学博士学位论文:51-54
    6. 党秀丽,张玉玲,虞娜,张玉龙.2008(b).冻融作用对土壤中重金属镉赋存形态的影响.土壤通报,39(4):826-830
    7. 戴维明.1994.长江口悬浮固体中重金属元素的形态研究.上海环境科学,13(11):7-9
    8. 丁疆华,温琰茂,舒强.2001.土壤环境中镉、锌形态转化的探讨.城市环境与城市生态,14(2):47-49
    9.郭观林,周启星.2004.中国东北北部黑土重金属污染趋势分析.中国科学院研究生院学报,21(3):386-392
    10.郭观林,周启星.2005.镉在黑土和棕壤中吸附行为比较研究.应用生态学报,16(12):2403-2408
    11.郭平,宋杨,谢忠雷,张迎新,李悦铭,张赛.2012a.冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响,吉林大学学报(地球科学版),42(1):226-232
    12.郭平,李洋,张迎新,明恋,张赛,李悦铭.2012b.冻融作用对土壤吸附重金属的影响.吉林大学学报(理学版),50(3):593-597
    13.宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究.水土保持学报,2001,15(3):112-115
    14.郝瑞军,李忠佩,车玉萍.2007.冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响.土壤通报,38(6):1052-1057
    15.郝汉舟,靳孟贵,李瑞敏,王支农,韩冰华,祖文普.2010.耕地土壤铜、镉、锌形态及生物有效性研究.生态环境学报,19(1):92-96
    16.韩晓日,王颖,杨劲峰,付时丰,刘宁.2009.长期定位施肥对土壤中镉含量的影响及其时空变异研究.水土保持学报,23(1):107-110
    17.胡小娜,南忠仁,王胜利,黄璜,胡志远.2009.干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征.生态环境学报,18(6):2183-2188
    18.金会军,于少鹏,吕兰芝,郭东信,李英武.2006.大小兴安岭多年冻土退化及其趋势初步评 估.冰川冻土,28(4):467-475
    19.景丽杰.2008.不同类型土壤对重金属的吸附特性.生态环境,17(1):245-248
    20.简放陵.1994.砷的吸附解吸及其与土壤性质的关系.热带亚热带土壤科学,3(3):138-145
    21.姜军,赵安珍,徐仁扣,程程.2010.雷州半岛玄武岩发育土壤的表面电荷性质与土壤发育程度的关系.土壤学报,47(4):776-780
    22.李朝丽,周立祥.2007.我国几种典型土壤不同粒级组分对镉吸附行为影响的研究.农业环境科学学报,26(2):516-520
    23.李朝丽,周立祥.2008.黄棕壤不同类级组分对镉的吸附动力学与热力学研究.环境科学,29(5):1406-141 1
    24.李德成,黄圣彪,王文华,彭安.2000.铈(Ⅲ)在不同土壤中的吸附、解吸动力学研究.环境科学学报,20(5):548-553
    25.李法虎.2006.土壤物理化学.北京:化学工业出版社,90
    26.黎成厚,腾应.1999.土壤pH与烤烟钾素营养关系的研究.土壤学报,36(2):276-282
    27.雷鸣,廖柏寒,秦普丰.2007(a).土壤重金属化学形态的生物可利用性评价.生态环境,2007,16(5):1551-1556
    28.雷鸣,廖柏寒,秦普丰,周细红.2007(b).矿区污染土壤Pb、Cd、Cu和Zn的形态分布及其生物活性的研究.生态环境,16(3):807-811
    29.梁重山,党志,刘丛强,黄伟林.2004.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究.土壤学报,41(3):329-336
    30.廖敏,谢正苗,黄昌勇.1998.镉在红壤中的吸附特征.浙江大学学报(农业与生命科学版)24(2):199-202
    31.林大松,徐应明,孙国红,戴晓华.2007.土壤p H、有机质和含水氧化物对镉、铅竞争吸附的影响.农业环境科学学报,26(2):510-515
    32.林玉锁,薛家骅.1991.运用Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律.土壤学报,28(4):390-395
    33.鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社,12-14,22-26
    34.卢珂,曹炜,陈卫军,尉亚辉.2006.吸附树脂吸附蜂蜜中羟甲基糠醛的热力学研究.农业工程学报,11(12):254-256
    35.刘佳,范昊明,周丽丽,武敏,柴宇,刘艳华.2009.冻融循环对黑土容重和孔隙度影响的试验研究.水土保持学报,23(6):186-189
    36.刘广深,徐冬梅,许中坚,王红宇,刘维屏,2003.用通径分析法研究土壤水解酶活性与十壤性质的关系,土壤学报,40(5):756-762
    37.刘平,徐明岗,宋正国.2007.伴随阴离子对土壤中铅和镉吸附-解吸的影响.农业环境科报,26(1):252-256
    38.刘淑霞,王宇,赵兰坡,刘景双,秦治家.2008.冻融作用下黑土有机碳数量变化的研究.农业环境科学学报,27(3):984-990
    39.刘亚红.2010.冻融作用对土壤含水率、pH值、电导率的影响.山西科技,25(2):78-79
    40.刘福强,陈金龙,李爱民,费正皓,龙超,张全兴.2002.超高交联吸附树脂对苯甲酸的吸附研究.离子交换与吸附,18(6):522-528
    41.倪吾钟,龙新宪,杨肖娥.2000.菜园土壤镉吸附2解吸特性的研究.农村生态环境,7(10):11-15
    42.倪新,张艺兵,胡萌,刘纪新,任庆明,岳宁.2008.食品和土壤重重金属镉污染及防治对策.山东农业大学学报(自然科学版),39(3):419-423
    43.秦胜金,刘景双,丁洪,张玉树.2009.冻融对沼泽湿地土壤水稳性大团聚体的影响.水土保持通报,29(6):11.5-118
    44.宋玉芳,宋雪英,张薇,周启星,孙铁珩.2004.污染土壤生物修复中存在问题的探讨.环境科学,25(2):129-133
    45.邵孝侯,胡霭堂,秦怀英.1991.镉在土壤上的吸附和解吸特性研究.环境化学,(1):76-80
    46.谭长银,吴龙华,骆永明,孙花,徐建明.2010.长期定位试验点土壤镉的吸附解吸及形态分配.水土保持学报,24(6):167-172
    47.唐益群,杨坪,沈锋,周念清.2007.上海暗绿色粉质粘土冻融前后微观形状研究.同济大学学报(自然科学版),35(1):6-9
    48.田超,王米道,司友斌.2009.外源木炭对异丙隆在土壤中吸附-解吸的影响.中国农业科学,42(11):3956-3963
    49.徐良将,张明礼,杨浩,土壤重金属镉污染的生物修复技术研究进展,南京师大学报(自然科学版),2011,34(1):102-106
    50.王代长,蒋新,贺纪正,卞永荣,郜红建.2007.酸性土壤中Cd2+的吸附与运移特性.环境化学,26(3):307-313
    51.王恩妲,赵雨森,陈祥伟.2010(a).季节性冻融对典型黑土区土壤团聚体特征的影响.应用生态学报,21(4):889-894
    52.王恩妲,赵雨森,陈祥伟.2010(b).典型黑土耕作区土壤结构对季节性冻融的响应.应用生态学报,7:1744-1750
    53.王风,韩晓增,李良皓,李克强.2009.冻融过程对黑土水稳性团聚体含量影响.冰川冻土,31(5):915-919
    54.王艮梅,周立祥,黄焕忠.2006.水溶性有机质在土壤中的吸附及对Cu沉淀的抑制作用.环境科学,27(4):754-759
    55.王恒松,熊康宁,刘云.2009.喀斯特地区冻融作用对土壤物理特性的影响.水土保持研究, 16(2):101-106
    56.王凯荣.1997.我国农田镉污染现状及其治理利用对策.农业环境保护,16(6):274-278
    57.王岚.2009.不同粒级土壤中镉铅汞的吸附特性.岩矿测试,28(2):119-124
    58.王新,梁仁禄,周启星.2001.Cd-Pb复合污染在土壤水稻系统生态效应的研究.农村生态环境,17(2):41-44
    59.王圆方,朱宁,颜丽,娄翼来,关连珠.2009.外源Cd2+在土壤各级微团聚体中的含量和形态分布.生态环境学报,18(4):1764-1766
    60.王洋,刘景双,王国平,王金达.2007.冻融频次与含水量对黑土中镉赋存形态的影响.中国环境科学,27(5):693-697
    61.王洋,刘景双,王金达,王国平.2008(a).土壤pH值对冻融黑土重金属Cd赋存形态的影响.农业环境科学学报,27(2):574-578
    62.王胜利,武文飞,南忠仁,廖琴,周婷,刘姣,晋王强,赵翠翠,王兵.2010.绿洲区土壤镍的吸附解吸特性.干旱区研究,27(6):825-830
    63.王金贵.2012.我国典型农田土壤中重金属镉的吸附-解吸特征研究,陕西杨凌,西北农林科技大学博士学位论文:25-26
    64.王新,周启星.2004.土壤重金属污染生态过程、效应及修复.生态科学,23(3):278-281
    65.汪太明,王业耀,香宝,胡钰,王金生.2010.交替冻融对东北典型土壤腐殖质的影响.生态环境学报,19(12):2870-2874
    66.汪太明,王业耀,香宝,胡钰.2011.交替冻融对黑土可溶性有机质荧光特征的影响.光谱学与光谱分析,31(8):2136-2140
    67.魏复盛,陈静生.1991.中国土壤环境背景值研究.环境科学,12(4):12-19
    68.魏丽红.2004.冻融交替对黑土有机质及氮钾养分的影响.硕士学位论文:10-18
    69.魏俊风,吴大清,彭金莲,等,广州城市水体沉积物中重金属形态分布研究,土壤与环境,1999,8(1):10-14
    70.温美丽,刘宝元,魏欣.2009.冻融作用对东北黑土容重的影响.土壤通报,492-495
    71.吴燕玉,陈涛,孔庆新,谭方,张素纯.1984.张士灌区镉污染及其改良途径.环境科学学报,4(3):275-282
    72.吴燕玉,周启星,田均良.1991.制定我国土壤环境质量标准(汞、镉、铅和砷)的探讨.应用生态学报,2(4):334-339
    73.夏汉平.1997.土壤植物系统中的镉研究进展.应用与环境生物学报,3(3):289-298
    74.肖根林,白红娟.2001.光合细菌对土壤中Cd形态分布的影响.化工技术与开发,40(3):25,43-45
    75.徐秋芳.2003.森林土壤活性有机碳库的研究.杭州:浙江大学博士学位论文,12-13,72-79
    76.熊毅.1985.土壤胶体(第二册).北京:科学出版社,399-402,249-260
    77.徐明岗,张青,李菊梅.2004a.不同pH下黄棕壤镉的吸附-解吸特征.土壤肥料,(5):3-5
    78.徐明岗,李菊梅,张青.2004b.pH对黄棕壤重金属解吸特征的影响.生态环境,13(3):312-315
    79.薛泉宏,尉庆丰,李宝安,赵翀.1997.黄土性土壤K+吸附、解吸动力学研究,土壤学报,34(2):113-122
    80.杨培岭,罗远培,石元春.1993.用粒径的重量分布表征的土壤分形特征.科学通报,38(20):1896-1899
    81.杨亚提,王旭东,张一平,翟爱华.2003.小分子有机酸对恒电荷胶体pb2+吸附-解吸的影响.应用生态学报,14(11):19-21
    82.杨金燕,杨肖娥,何振立,杨金英.土壤中铅的吸附-解吸行为研究进展.生态环境,2005,14(1):102-107
    83.余涛,杨忠芳,唐金荣,宗思锋,朱翠娟,张娇,张建新,申志军.2006.湖南洞庭湖区土壤酸化及其对土壤质量的影响.地学前缘,13(1):98-10
    84.余自力,程光磊.2004.金属离子分析技术.北京:化学工业出版社,256-257
    85.于晓菲,王国平,吕宪国,邹元春,姜明.2010.冻融交替处理下湿地土壤可溶性铁的动态变化研究.环境科学,31(5):1387-1394
    86.于天仁,季国亮,丁昌璞.1996.可变电荷土壤的电化学.北京:科学出版社,2
    87.袁志发,周静芋.2000.试验设计与分析.北京:高等教育出版社,187-188
    88.依艳丽.2009.土壤物理研究法.北京:北京大学出版社,65-67
    89.袁志发,周静芋,郭满才,雷雪芹,解小莉.2001.决策系数一通径分析中的决策指标.西北农林科技大学学报,29(5):129-133
    90.张会民,徐明岗,吕家珑,李菊梅,刘红霞.2005.pH对土壤及其组分吸附和解吸镉的影响研究进展.农业环境科学学报,24(增刊):320-324
    91.张会民,吕家珑,徐明岗,刘红霞,宫春艳.2006.土壤镉吸附的研究进展.中国土壤与肥料,(6):8-12
    92.张磊,张磊,孟湘萍.2008.不同水分条件下镉在土壤中形态转化的动态过程.安徽农业科学,36(17):7332-7334
    93.张增强,张一平.2000(a).镉在土壤中吸持的动力学特征研究.环境科学学报,20(3):370-375
    94.张增强,张一平.2000(b).镉在土壤中吸持等温线及模拟研究.西北农业大学学报,28(5):88-94
    95.张增强,张一平,朱兆华,曹翠兰.2001.镉在土壤中释放的动力学特征研究.西北农林科技大学学报(自然科学版),29(1):63-67
    96.张增强,张一平.几个吸附等温模型热力学参数的计算方法.西北农业大学学报,1998,26(2):94-98
    97.周旺明,王金达,刘景双,秦胜金,王洋.2008.冻融对湿地土壤可溶性碳、氮和氮矿化的影 响.生态于农村环境学报,24(3):1-6
    98.周萍,刘国彬,侯喜禄.黄土丘陵区不同土地利用方式土壤团粒结构分形特征.中国水土保持科学,2008,6(2):75-82
    99.朱宁,颜丽,张晓静,王圆方,关连珠.2009.有机质对Cu2+在棕壤及其各粒级微团聚体中吸附解吸特性的影响.生态环境学报,18(2):498-501
    100.朱嬿婉,沈壬水,钱钦文.1989.土壤中金属元素的五个组分的连续提取法.土壤,21(3):163-166
    101.宗良纲,徐晓炎.2003.士壤中镉的吸附解吸研究进展.生态环境,12(3):331-335
    102.邹献中,徐建民,赵安珍,季国亮.2003.离子强度和pH对可变电荷土壤与铜离子相互作用的影响.土壤学报,40(6):845-850
    103. Aderson P R,Christensen T H.1988.Distribution foefficients of Cd,Co,N and Zn in soil.Journal of Soil Science,39:15-22
    104. Ahamni C, Ungarish M.1977. Kinetics of activated chemisorption:Part3. Amount and distribution of adsorbate at varying temperatures and pressures. J. Chem. Soc., Faraday Trans.,73:1943-1950
    105. Aharoni C, Sparks D L, Levinson S, Ravina L.1991.Kinetics of soil chemical reactions:Relationships between and empirical equations and diffusion models.Soil Sci Soc,Am J,55:1307-1313
    106. Allen E.R.,Hossner L.R.,Ming D.W.,Henninger D.L.1996.Release rates of phosphorus,ammonium,and potassium in Clinoptilotite-Phosphate rock systerms.Soil Sci.Soc.Am.J.,60:1467-1472
    107. Anderson P R, Christensen T H.1988. Distribution coefficient of Cd,Co,Ni and Zn in soils. Soil Sci, 39:15-22
    108. Ashaki A R,Evert J E,Richard J R.2004.X-ray absorption spectrospic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite-water interface. Envirom Sci Technol,38:1700-1707
    109. Brummer G W, Gerth J, Tiller K G.1988.Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. Adsorption and diffusion of metals. Soil Sci,39:37-52
    110. Bryan R B.1971.The influence of frost action on soil-aggregate stability. Transactions of the Institute of British Geographers,54(12):71-88
    111. Bolton K A, Evans L J.1996. Cadmium adsorption capacity of selected Ontario soils. Can J Soil Sci, 76:183-189
    112. Beierkuhnleina C, Jentschb A.2010. Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic and Applied Ecology,11:65-75
    113. Elliott H A, Liberati M R, Huang C P.1986. Competitive adsorption of heavymetals by soils. J Environ Qual,15:214-219
    114. Hu H Q, Liu H L.2007. Effect of selected organic acids on cadmium sorption by variable-and permanent-charge Soils. Pedosphere,17(1):117-123
    115. HOODA P S, ALLOWAY B J.1998. Cadmium and lead sorption behavior of selected English and Indian soils. Geoderma,84:121-134
    116. Huang W,Weber W J.1998.A distributed reactivity model for sorption by soil and sediments:Slow concentration-dependent sorption rates.Environmental Science and Technology,33:3549-3555
    117. Koponen H T, Jaakkola T, Keinaner-Toivola M M, Kaipainen S, Tuomainen J,Servomma K, Martikainen P J.2006.Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles.Soil Biology and Biochemistry,38:861-1871
    118. Jain C.K.,Singhal D.C,Sharma M.K.2004.Adsorption of zinc on bed sediment of River Hindon:adsorption models and kinetics.Journal of Hazarous Materials, B114:231-239
    119. Kreyling J, Beierkuhnlein C, Jentsch A,2010, Effects of soils freeze-thaw cycles differ between experimental plant communities,Basic and Applied Ecology,11:65-75
    120. Kaiser K, Zech W.1998. Rates of dissolved organic matter release and sorption in forest soils. Soil Science,163(9):714-725
    121. Karl V, Maria J P, Rafaela O.2006. Spatiotemporal evolution of soil pH and zinc after the aznalcollar mine spill. Journal of Environmental Quality,35(1):13-37
    122. Lehrsch, G A, Sojka, R E, Carter, D L.1991. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal,55:1401-1406
    123. Lehrsch G A.1998. Freeze-thaw increase near-surface aggregate stability.Soil Science,163:63-70
    124. Luo L, Ma C Y.2011. New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution,159:1108-1113
    125.Lipson, D.A., Schmidt, S.K.2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied Environmental Microbiology,70:2867-2879
    126. Liao M.2006. Effects of organic acids on adsorption of cadmium onto kaolinite. goethite, and bayerite. Pedosphere,16(2):185-191
    127. LUO Q.2009. Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology[M]. Washington:IEEE Computer Society
    128. Maiz I, Arambarri I, Garcia R, Millan E.2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis.Environmental Pollution,110:3-9
    129. Mostaghimi, S, Young, R A, Wiltts, A R,.1988. Effects of frost action on soil aggregate stability. Trans ASAE,31 (2):435-439
    130. Mahara Y, Kubota T.2007. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics. Science of the Total Environment, 387:220-227
    131.Meng Z F, Zhang Y P, Zhang Z Q.2008. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials 159:492-498
    132.Nogueira T.A.R, Melo W.J, Fonseca I.M, Marcussi S.A, P. Melo G.M, Marques M.O.2010. Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere,20(5):545-556
    133. Oztas T, Fayetorbay F.2003. Effect of freezing and thawing processes on soil aggregate stability. Catena,52:1-8
    134. Perfect E, Vanloon W. K. P, Kay B. D., Groenevelt P. H.1990. Influence of ice segregation and solutes on soil structural stability. Canadian Journal of Soil Science,70:571-581
    135. Pelletier F, Prevost D, Laliberte G, Bcchove V E.1999.Seasonal response of denitrifiers to temperature in a Quebec cropped soil.Canadian Journal of Soil Science,79:551-556
    136. Pueyo M, Lopex-sanchez J F, R AURET G.2004.Assessment of CaCl2, NaNO3 and NH4NO3 Extraction Procedures for the Study of Cd, Cu, Pb and Zn Extractability in Contaminated Soils. Analytica Chimica Acta,504:217-226
    137. Quevauviller P H, Rauret Q, Lopez-Sbnchez J F.1997. Certification of trace metal extractable contents in a sediment reference material(CRM601)following a three-step sequential extraction procedure. Sci Total Environ,205(2-3):223-234
    138. Qiao X.L, Luo Y.M.2003. Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils. Chemosphere,50:823-829
    139. Qin F, Wen B, Shan X Q, Xie Y N, Liu T, Zhang S Z, Shahamat U.Khan.2006. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution 144:669-680
    140. Rieu.M, Sporito.G.1991.Fractal fragmentation,soil porosity and soil water properties:I.Theory. Application Am,55.1231-1238
    141. Roe A L,Hayes K F,Chisholm-Brause C.1991.In-situ X-ray absorption study of lead ion surface complexes at the goethite water interface..Langmuir,7:367-373
    142. Recep G, Bilal A, Mehmet H A.2004.Copper(Ⅱ)adsorption from aqueous solution by herbaceous peat. Journal of Colloid and Interface Science,269:303-309
    143. Sahin U, Angin I, Kiziloglu F. M.2008. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash.Soil & Tillage Research,99: 254-260
    144. Schadt, C.W, Martin, A.P, Lipson, D.A, Schmidt, S.K.2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science,301:1359-1361
    145. Six J, Bossuyt H, Degryse S, Denef K,2004.A history of research on the link between (micro)aggregates,soil biota, and soil organic matter dynamics. Soil Tillage Research,79:7-31
    146. Sigrun H K, Lillian (?).2006. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena,67:175-182
    147. Sjursen, H., Michelsen, A., Holmstrup, M.2005. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology,28:79-93
    148. Shirvani M, Kalbasi M, Shariatmadari, Shariatmatdari H.Nourbakhsh F,Najafi B.2006. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite and calcite suspensions:Isothermhysteresis. Chemosphere,65:2178-2184
    149. Tessier A, Calllpbell P, Bisson M..1979. Sequential extraction procedure for the Speciation of particulate trace metals. Anal Chem,51:844-851
    150. Turcotte,D L.1986, Fractal fragmentation.Journal of Geophysical Research,91(13):1921-1926
    151. Urszula K, Carinne A P, Rufus L.2004. The effect of pH on metal accumulation in two alyssum species. J Environ Qual,33:2090-2102
    152. Udovic M, Plavc Z, Lestan D.2007. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere,70:126-134
    153. Udovic M, Lestan D,2009. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere,74:1367-1373
    154. Wu F L, Llin D Y, Su D C 2011. The Efect of planting oilseed rape and compost application on heavy metal forms in soil and Cd and Pb uptake in rice. Agricultural Sciences in China,10(2):267-274
    155. Wang F L, Bettany J R.1993. Influence of freeze- thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. J.Environ.Qual,22:709-714
    156. Wan Y, Bao Y Y, Zhou Q X.2010. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil.Chemosphere,80:807-812
    157. Weber Jr W J, Huang W, Yu H.1998.Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 2.Effects of soil organic matter heterogeneity. Journal of Contaminant Hydrology,31:149-165
    158. Wan Ngah W S, Kamari A, Koay Y J.2004.Equilibrium and kinetics studied of adsorption of copper (II)on chitosan and chuitosan/PVA beads.International Journal of Biological Macromolecules, 34:155-161
    159. Xu H L, Zhou Q X..2011. Adsorption and desorption of carbendazim and cadmium in typical soils in northeastern China as affected by temperature. Geoderma,160:347-354
    160. Zantua M L, Brenmer J M.1975. Preservation of soil samples for asssay of urease avtivity. Soil Biology and Biochemistry,7:297-299
    161. Zhang L, Song F B.2005. Sorption and desorption and desorption characteristics of cadmium of by four different soils in northeast China.CHINESE GEOGRAPHICAL SCIENCE,15(4):343-347
    162. Zhou L X, Wong J WC.2003. Behavior of heavy metals in soil:Effect of dissolved organic matter// Selim I M, Kingery W L. Geochemical and hydrological reactivity of heavy metals in soils. CRC Press LLC,245-270
    163. Zhou D M, Wang,Y J Long C, Hao X Z, Luo X S.2004. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere,57:1237-1244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700