用户名: 密码: 验证码:
甜高粱种质资源的遗传多样性与高光效种质生理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对72份甜高粱种质资源从表型和分子水平上进行遗传多样性评价,并对其光合生理生化特性、高光效种质的生理机制等进行研究,以期为甜高粱新品种选育和栽培生理提供理论依据和参考指标,主要结果如下:
     1、表型性状分析表明,14个质量性状中粒色的遗传多样性指数最高为1.6333,幼苗色和结实形式的遗传多样性指数最低为0,平均为0.7460;10个数量性状中穗长、茎粗、锤度、单穗粒重、单株杆重、出汁率、千粒重、株高、穗重、生育期都存在较大的变异,变异系数幅度为7.85%-53.01%,各性状多样性指数均较大,平均2.0061;穗长的多样性指数最大,为2.1383,生育期多样性指数最小,为1.7331,表明新疆现有甜高粱资源拥有丰富的表型遗传多样性。聚类分析将72份资源划分为四大类。相关分析结果表明选育高产高糖甜高粱品种时,注意选择植株高大、节数多,茎杆粗壮的品种,同时也要兼顾生育期和锤度,而籽粒性状和籽粒产量与产量关系不大,无需过多关注。
     2、从50对SSR引物中筛选20对条带清晰、重复性良好的引物。共检测到91个等位基因,每对引物可检测到的等位基因数目为2-5个,平均为3.45个。多态性信息量(PIC)的变动范围为0.2859-0.6652,平均为0.5057。72份甜高粱种质间的遗传相似系数变化范围为0.2001-1.000,平均值为0.5599。UPGMA聚类分析将72份材料划分为A、B两大群,A群包括69份材料,而A群又被分成从Ⅰ到Ⅺ共11个亚群,B群包括3份材料,农艺性状近似的大多被聚到同一类群。
     3、甜高粱生物产量与灌浆期净光合速率(Pn)达极显著相关(R=0.933),与PEP羧化酶活性(PEP)、叶面积指数(LAI)达显著相关(R=0.775,0.743),与其他性状未达到显著相关;含糖锤度与Pn、蒸腾速率(Tr)、PEP、LAI达显著相关(R=0.685,0.679,0.747,0.691),与其他性状未达到显著相关;籽粒产量与各性状间的相关性均未达到显著水平。筛选出“LT05”、“LT02”、“新高粱3号”、“MN-94”为高产、高糖、高光效甜高粱种质。可以将甜高粱灌浆期叶片Pn作为选择高光效种质的一个有效指标。
     4、甜高粱种质Pn、Tr、Gs、胞间CO2浓度(Ci)呈极显著差异,变异系数在29.98%-66.21%间;相关分析表明,生物产量与抽穗期Pn、Gs达极显著相关,与Tr达显著相关。早中晚熟高光效种质基本表现出Chla、Chlb、Chl、氮含量(LNCa)、总蛋白含量(TP)、PEP、LAI显著高于低光效对照。抽穗期净光合速率与Chl呈极显著相关,与Chla、Chlb呈显著相关。新疆甜高粱种质具有丰富的光合生理多样性。除继续将抽穗期叶片Pn作为选择指标外, Gs、Tr、Chl、Chla、Chlb、 PEP、LNCa、TP可作为甜高粱高光效育种的生理生化指标。
     5、新高粱3号与TLF-1灌浆期净光合速率的日变化均呈“双峰”曲线,具有明显的光合“午休”现象,新高粱3号Pn日均值高于TLF-1,且经历“午休”时间较短;甜高粱Pn控制因子在不同时段表现不同,上午影响Pn变化的原因主要是由非气孔因素造成,下午影响Pn降低主要原因为气孔因素影响。相对空气湿度(RH)、叶片温度(Tleaf)、Tr、Ci、Gs与Pn的日变化呈显著相关,对净光合速率起直接主要作用。新高粱3号灌浆期光合“午休”持续时间短,净光合速率高,是其高产高糖的重要原因之一。
     6、新高粱3号生育期间净光合速率的变化呈“抛物线”曲线,在抽穗期达到最高值。对新高粱3号生育期间的Pn直接影响的顺序为大气CO_2浓度(Ca)>光合有效辐射(PAR)>Ci。Ca和PAR为起直接作用的生态因子,Ci为主要生理抑制因子,通过间接作用影响生理因子Gs、Tr的变化,从而影响Pn的变化。
     7、盐碱地甜高粱生育期间Pn、Tr、Gs、Ci、水分利用效率(WUE)、叶绿素SPAD值的均值均低于正常地,差异达极显著水平,生育后期更为显著。盐碱地新高粱3号、新高粱9号的生物产量分别低于正常地57.8%和76.5%,含糖锤度分别低于正常地38.5%和100.0%。盐碱条件下,2品种的Pn与PAR、Ta、Ca达极显著和显著相关,与其它因子间相关不显著。新高粱3号耐盐碱能力强于新高粱9号。在中度盐碱地种植甜高粱,其光合性能、生物产量及品质与正常壤土地相比显著下降。利用盐碱地种植甜高粱除选择合适的耐盐碱品种外,还应注重种植效益和土地质量保护等生态效益。
Genetic diversity about phenotypic and DNA level and photosynthetic physiological characteristics,physiological mechanism of high photosynthetic efficiency were studied for72Sweet Sorghumgermplasms in this paper, in order to provide theoretical foundation and reference indexs for sweetsorghum breeding and cultivation physiology. The main results were as follows:
     1. Phenotypic characters analysis showed that genetic diversity indexes(1.6333) is the highest for graincolor among14qualitative character; the lowest one was for in leaf color of seedling and seed settingform, the average diversity indexes is0.7460. The quantitative character such as main panicle length,stem diameter, brix, grain weight per spike, stem juice extraction,1000grain weight, plant height, panicleweight and whole growth period had greater coefficient of variability, range from7.85%to53.01%, allquantitative character tested showed great diversity indexes, ranging from1.7331to2.1383with an averageof2.0061, which showed this collection of sweet sorghum germplasm had great genetic diversity. Clusteranalysis showed that all72germplasms were divided into4groups. correlation analysis result showed thatplant height, strong stem, more internode numbers and high brix and appropriate growth period which thesecharacters should be emphasis choosen, and grain characters and yield needn’t more attention duringbreeding sweet sorghum varieties.
     2. A total of20SSR primers from50SSR primers performed polymorphism and91alleles loci weredetected. The average number of alleles per SSR was3.45with a range from2to5. The value of allelicpolymorphic information content (PIC) ranged from0.2859to0.6652, on an average of0.5057per SSRmarker. The genetic similarity coefficient ranged from0.2001to1.000with a average of0.5599. Thecluster analysis grouped the72sweet sorghum cultivars and lines into2main groups. Group A included69accessions and group B included only3accessions. Group A was again sub-divided into sub-groups Ithrough XI. The accessions of sweet sorghum with similar agronomic trait was mostly clustered one group.
     3. The biological yield was highly significant correlated with net photosynthetic rate (Pn)(R=0.933), andsignificant correlated with PEP and LAI(R=0.775,0.743), there was no significant correlation with othercharacters. Brix was significant correlated with Pn, Tr, PEP and LAI(R=0.685,0.679,0.747,0.691), therewas no significant correlation with other characters.Kernel yield had no significant correlation with allcharacters.“LT05”,“LT02”,“Xingaoliang No.3”,“MN-94” was high biological yield, high brix and highphotosynthetic efficiency of Sweet Sorghum Strain. The Pn could be effectively used as a selection indexfor high photosynthetic efficiency Sweet Sorghum breeding.
     4. There was significant difference in Pn, transpiration rate(Tr), cond(Gs), Intercellular CO2concentration(Ci), Coefficient of variance was30.47%,29.98%,39.86%,66.21%respectively. correlation analysis indicated that biological yield was highly significant correlated with Pn, Gs, and significantcorrelated with Tr. There were mainly higher Chlorophyll A(Chla), Chlorophyll B(Chlb), Chl, Nitrogencontent(LNCa), Total protein content(TP), PEP, LAI in Early, middle, late high photosynthetic efficiencystrain. These sweet sorghum strain had great photosynthetic diversity. Besides Pn continue as selectionindex for high photosynthetic efficiency Sweet Sorghum breeding, Gs, Tr, Chl, Chla, Chlb, PEP, LNCa, TPbe used as a effectively selection index.
     5. The curves of diurnal variation of Pn of XinGaoLiang No.3and TLF-1had two peaks and an obviousmidday depression, Pn of XinGaoLiang No.3higher TLF-1, it had shorter depression; The control factorsof Pn had different in different time, the variation of Pn was mainly induced by non-stomatal factors in a.m.,but by stomatal factors in p.m. There were significant correlation in RH, Tleaf, Tr, Gs, Ci with Pn. It was animportant cause of that XinGaoLiang No.3had shorter photosynthetic midday depression and netphotosynthetic rate in postulation period, so its stalk sugar content higher TLF-1.
     6.The curve of the variation of Pn was “parabla” in the stage of growth of XinGaoLiang No.3, Itreached peak value in heading period. The direct influence order was ambient CO_2concentration (Ca)>photosynthetical active radiation(PAR)>Ci. Ca and PAR were direct ecological factors, Ci wasphysiological restrainable factor, It influenced the change of Gs andTr, thereby to Pn.
     7. The average value of Pn, Tr, Gs, Ci, water use efficiency (WUE) and SPAD value(SPAD) insaline-alkaline land were very significantly inferiored to control land, the difference of late growth periodturned out bigger. The biological yield of XinGaoLiang No.3and XinGaoLiang No.9was inferiored to57.8%and76.5%respectively, the sugar brix was inferiored to38.5%and100.0%respectively of twosweet sorghum varieties in saline-alkaline land. Pn was highly significant correlated with PAR, Ta, Ca insaline-alkaline land. In the post the main limiting factors is non-stomata. Salt tolerance ability of“Xingaoliang No.3” higher “Xingaoliang No.9”. In order to develop sweet sorghum in saline-alkaline land,It was primary to choose salt tolerance sweet sorghum variety, secondly, the economic benefits, ecologicalbenefits, land qulity must been considered.
引文
[1] Schaal BA,Leverich WJ,Rogstad SH.Comparison of methods for assessing genetic variation inplant conservation biology. In Falk,D.A. and K.E. Holsinger(eds.). Genetics and Conservation ofRare Plants[M]. New York:Oxford University Press,1991:123-134.
    [2]王中仁.植物等位酶分析[M].北京:科学出版社,1998:37-69.
    [3]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [4] Wilson,E.O.The Biological diversity crisis[J].BioScience,1985,35(11):700-706.
    [5]施立明.遗传多样性及其保护[J].生物科学信息,1990,2:158-164.
    [6]马克平,钱迎倩,王晨.生物多样性研究的现状和发展趋势[M].北京:中国科学技术出版社,1994:1-12.
    [7]冯夏莲,何承忠,张志毅,等.植物遗传多样性研究方法概述[J].西南林学院学报,2006,16(1):51-59.
    [8] FAO.The state of the world’s Plant genetic resources for food and agriculture[M]. New York:USAAgrieulture Press,1996:20-38.
    [9]陈灵芝.中国的生物多样性[M].北京:科学出版社,1993:31-113.
    [10]关潇.野生紫花苜蓿种质资源遗传多样性研究[D].北京:北京林业大学,2009:11-12.
    [11]陈英华,李红宇,侯昱铭,等.东北地区水稻种质资源遗传多样性分析[J].华北农学报,2009,24(3):165-173.
    [12] Marco Manzelli,Luca Pileri,Nadia Lacerenza,et al.Genetic diversity assessment in Somalisorghum(Sorghum bicolor (L.) Moench) accessions usingmicrosatellite markers[J]. BiodiversConserv,2007,16:1715-1730.
    [13]曹家树,曹寿椿,缪颖,等.中国白菜各类型的分支分析和演化关系研究[J].园艺学报,1997,24(1):35-42.
    [14] Brooks R R,Shaw S,Marfil A A.The chemical form and Physiological function of Nickel in someIberian Alyssum species Physiol[J].Planta,1981,51:161-170.
    [15] Hogbin PM,Peakall R. Evaluation of the contribution of genetic research to themanagement of the endangered plant Zieria prostrate[J]. Conservation Biology,1999,13:514-522.
    [16] Merrell D.J.黄瑞复等译.生态遗传学[M].北京:科学出版社,1991:10-13.
    [17]竺利波,顾万春,李斌.花灌木种质资源及其遗传多样性研究[J].植物遗传资源学报,2007,8(2):240-245.
    [18]张莉俊.二月兰遗传多样性研究[D].北京:北京林业大学,2007:3-6.
    [19] Jordi L P,Maria B,Joan S.Allozyme diversity in the tetraploid endemic ThymusLoscosii(Lamiaceae)[J].Ann Bot,2004,93(3):323.
    [20]李俊丽.南瓜种质资源遗传多样性与多糖多样性的研究[D].武汉:华中农业大学,2006:11-12.
    [21]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [22] Kimberley B,Ritter C,Lynne McIntyre,et al.An assessment of the genetic relationship betweensweet and grain sorghums,within Sorghum bicolor ssp. bicolor(L.) Moench,using AFLP markers[J].Euphytica,2007,157:161-176.
    [23] Wi11iam C E, Claim D A.Phenetic relationships and levels of variability detected by restrictionfragment length polymorphism and random amplified Polymorphism DNA analysis of cultivatedand wild accessions of Lycopersicon esculentum[J].Genome,1993,36(3):619-630.
    [24]张春英,戴思兰,张秀英.RAPD技术及其在花卉育种中的应用[J].中国园林,1999,15(6):36-37.
    [25] Weber J L,May P E.A bundant class of human DNA polymorphisms which can be typedusing the polymerase chain reaction[J]. Genet,1989,44:388-396.
    [26] Blair M W,Panaud O,McCouch S R,et al. Inter-simple sequence repeat (ISSR) amplication foranalysis of microsatellite motif frequence and fingerprinting in rice (Oryza sativa L.)[J]. Theor.and Appl. Genetics,1999,98:780-792.
    [27] Gilbert J E,Lewis R V,et al. Developing an appropriate strategy to assess genetic variability inplant germplasm collections [J].Theor. and Appl. Genetics,1999,98:1125-1131.
    [28] Virk P S,Zhu J,Newbury H J,et al. Effectiveness of different classes of molecular markers forclassifying and revealing variations in rice (Oryza sativa) germplasm[J]. Euphytica,2000,112:275-284.
    [29] Arcade A,Anselin F,Faivre R P,et al.Application of AFLP,RAPD and ISSR markers to geneticmapping of EuroPean and Japanses larch [J]. Theor. and Appl. Genetics,2000,100:299-307.
    [30] Ammiraju J S,Dholakia B B,Santa D K,et a1.Identification of inter-simple sequence repeat (ISSR)markers associated with size in wheat [J].Theor Appl Genet,2001,102:726-732.
    [31]王成树,李增智.分子数据的遗传多样性分析方法(综述)[J].安徽农业大学学报,2002,29(1):90.
    [32] Weir B.S.Genetic data analysis[M].Sunderland M.A:Sinauer Assoc,1990:40-50.
    [33]陈雪燕,王亚娟,雒景吾,等.陕西省小麦地方品种主要性状的遗传多样性研究[J].麦类作物学报,2007,27(3):456-460.
    [34] Hartl D L,Clark A G.Principles of Population Genetics(2ed)[M]. United States:Sinauer AssociatesInc,1989:20-28.
    [35]丁广洲,王晓为.作物种质资源的价值及其评估体系的初步构建[J].植物遗传资源学报,2008,9(1):90-95.
    [36]卢庆善.高粱学[M].北京:中国农业出版社,1999:2-5.
    [37]黎大爵.开发甜高梁产业,解决能源、粮食安全及三农问题[J].中国农业科技导报,2004,6(5):55-57.
    [38] Volodin A B,Zhukova M P.Potential possibilities of sweet sorghum[J]. Kormoproizvodstvo,2002,4:11-15.
    [39]黎大爵.甜高梁可持续农业生态系统研究[J].中国农业科学,2002,35(8):1021-1024.
    [40]黎大爵,廖馥荪.甜高粱及其利用[M].北京:科学出版社,1992:13-21.
    [41] Ture S,Uzun D,Ture I E. The potential use of sweet sorghum as a non-polluting source ofenergy[J]. Energy (Oxford),1997,22(1):17-19.
    [42]邹剑秋,宋仁本,卢庆善,等.新型绿色可再生能源作物—甜高粱及其育种策略[J].杂粮作物,2003,23(3):134-135.
    [43]王黎明,阴秀卿,焦少杰,等.利用外源DNA导入技术创新甜高粱种质[J].作物品种资源,1999,2:12-13.
    [44]卢庆善.甜高粱研究进展[J].世界农业,1998,5:21-23.
    [45]张福耀,赵威军,平俊爱.高能作物—甜高粱[J].中国农业科技导报,2006,8(1):14-17.
    [46]卢庆善.甜高梁[M].北京:中国农业科学技术出版社,2008:17-23.
    [47]张福耀,赵威军,平俊爱.高能作物一甜高梁[J].中国农业科技导报,2006,8(1):14-17.
    [48]谷卫彬,黎大爵.甜高粱一高效太阳能转化器[J].太阳能,2004(4):12-14.
    [49] Steduto P,Katerji N,Puertos-Molina H,et a1.Water-use eficiency of sweet sorghum under waterstress conditions,Gas-exchange investigations at leaf and canopy scales[J].Field Crops Res.,1997,54:221-234.
    [50] Zegada-Lizarazu W,Zatta A,Monti A.Water uptake efficiency and above-and below groundbiomass development of sweet sorghum and maize under diferent water regimes[J].Plant Soil,2011,DOI:10.1007/s11104-011-0928-2.
    [51]张志鹏,杨镇,朱凯,等.可再生能源作物—甜高粱的开发利用[J].杂粮作物,2005,25(5):334-335.
    [52]高士杰,刘晓辉,李玉发,等.中国甜高粱资源与利用[J].杂粮作物,2006,26(4):273-274.
    [53] Parvatikar S R,Manjunath T V.Alternate uses of sorghum-sweet sorghums,a new prospectus forjuicy stalks and grain yields[J]. Journal of Maharashtra Agricultural Universities,1991,16(3):352-354.
    [54]鲁巍,程哲明.甜高梁制糖大有作为[J].中国糖料,2002(1):37-39.
    [55] Gururaj Hunsigi,Yekkeli N R,Kongwad B Y. XXVI Congress,International Society of SugarCane Technologists,ICC,29July-2August,2007[C]. Durban:South Africa,2007:1257-1260.
    [56] Jadhav M M,Chougule B A,Chavan,et al. Assessment of juice quality in the improved sweetsorghum varieties[J]. Journal of Maharashtra Agricultural Universities.1994,19(2):233-235.
    [57] Kulkarni D P,Almodares A, Somani R B. Sweet sorghum-a supplementary sugar crop in Iran[J].Annals of Plant Physiology,1995(2):90-94.
    [58] Tarantino E,Perniola M,Quaglietta F,et al. Proceedings,second congress of the European Societyfor Agronomy,23-28August,1992[C].England:Warwick University Press,1992:142-143.
    [59]黎朝晖.饲糖能多用甜高粱优良品种[J].农业技术通讯,2003(2):23.
    [60]姜慧,胡瑞芳,邹剑秋,等.生物质能源甜高梁的研究进展[J].黑龙江农业科学,2012(2):139-141.
    [61]王艳秋,朱翠云,卢峰.甜高粱的用途及其发展前景[J].杂粮作物,2004,24(1):55-56.
    [62] Andrade Neto, Miranda R C,Duda N O,et al. Growth and yield of forage sorghum cv. BR601under green manure[J]. Revista Brasileira de Engenharia Agricolae Ambiental,2010,14(2):124-130.
    [63] Schmidt J,Sipocz J,Kaszas I,et al. Preservation of sugar content in ensiled sweet sorghum[J].Bioresource Technology,1997,60(1):9-13.
    [64]冯国郡.新疆能饲作物甜高粱农艺性状的研究及营养成份的分析[D].北京:中国农业大学,2007:28-30.
    [65] Prabhakar Elangovan M, Raut M S.Stability of new varieties for yield components in rabi sorghum(Sorghum bicolor)[J]. Indian Journal of Agricultural Sciences,2010,80(2):106-109.
    [66]王兆木,涂振东.调整种植业结构发展甜高粱生产[J].新疆农业科学,2004(3):156-159.
    [67] Kapocsi L,Lazanyi J. Agricultural utilization of alcohol extracted from sweet sorghum and of theby-product[J].Acta Agronomica Hungarica,1987,36(3):259-365.
    [68] Petrini C,Scozzoli A, Bazzocchi R,et al.Cultural techniques and breeding of sweet sorghum fornon-food industrial use[J].Information Agrario,1993,49(19):45-49.
    [69]马鸿图,黄瑞冬.甜高粱—欧共体未来能源所在[J].世界农业,1995(5):13-15.
    [70]黎大爵.开发甜高粱产业,解决能源、粮食安全及三农问题[J].中国农业科技导报,2004,6(5):55-57.
    [77]王艳秋,朱翠云,卢峰,等.甜高粱的用途及其发展前景[J].杂粮作物,2004,24(1):55-56.
    [78]王黎明.黑龙江省能源作物—甜高粱的研究与发展[J].黑龙江农业科学,2007(4):99-100.
    [79]卢庆善,邹剑秋,朱凯,等.高粱种质资源的多样性和利用[J].植物遗传资源学报,2010,11(6):798-801.
    [80]高士杰,刘晓辉,李玉发,等.中国甜高粱资源与利用[J].杂粮作物,2006,26(4):273-274.
    [81]曹文伯.我国甜高粱种质资源鉴定及利用概况[J].植物遗传资源学报,2001,2(1):58-62.
    [82]宋旭东,张桂香,史红梅,等.甜高梁资源的鉴定与利用评价[J].天津农业科学,2012,18(1):119-122.
    [83]周福平,张晓娟,张一中,等.120个高梁品系主要农艺性状的数量性状分析和聚类分析[J].中国农学通报,2011,27(05):204-208.
    [84]刘洋,罗萍,林希昊,等.甜高粱主要农艺性状相关性及遗传多样性初析[J].热带作物学报,2011,32(6):1004-1008.
    [85] Dean R E,Dahlberg M S,Hopkin S E,et al.Genetic redundancy and diversityamong“orange”accessions in the US.national sorghum collection as assessed with simple sequencerepeat(SSR)markers[J].Crop Sci,1999,39:1215-1221.
    [86] Ali M L,Rajewski J F,Baenziger P S,et al.Assessment of genetic diversity and relationshipamong a collection of US sweet sorghum germplasm by SSR markers[J].Mol Breeding,2008,21:497-509.
    [87]赵香娜,岳美琪,刘洋,等.国内外甜高粱种质遗传多样性的SSR分析[J].植物遗传资源学报,2010,11(4):407-412.
    [88]闫锋,陈丽,赵春雷,等.不同甜高梁种质的SSR多态性分析[J].中国糖料,2008(3):40-44.
    [89]王黎明,焦少杰,姜艳喜,等.142份甜高梁品种的分子身份证构建[J].作物学报,2011,37(11):1975-1983.
    [90]张晗,王建成,王东建,等.中国高粱地方品种遗传多样性评价及中、外高粱遗传变异水平比较[J].作物学报,2011,37(2):224-234.
    [91]李培夫.农作物高光效育种技术的研究与应用[J].种子科技,2006(6):41-44.
    [92]李万云,李韬.农作物现代育种新技术的研究与应用进展[J].中国农学通报,2005,21(12):166-169.
    [93]陈隆升,陈永忠,彭邵锋.油茶光合特性研究进展与高光效育种前景[J].湖南林业科技,2010,37(3):33-39.
    [94]程建峰,沈允钢.作物高光效之管见[J].作物学报,2010,36(8):1235-1247.
    [95] Heichel G H,Musgrave R B. Varietal differences in net photosynthesis of Zea mays L[J].Crop Science,1969,9(4):483-486.
    [96]加德纳,皮尔斯,米切尔,等.作物生理学[M].北京:农业出版社,1993:1-35.
    [97]张其德,蒋高明,朱新广,等.12个不同基因型冬小麦的光合能力[J].植物生态学报,2001,25(5):532-536.
    [98]郝乃斌,杜维广,戈巧英,等.大豆高光效育种研究进展[J].植物学报,2002,44(3):253-258.
    [99]赵永平.不同品种啤酒大麦叶片光合特性与产量和品质关系的研究[D].兰州:甘肃农业大学,2008:45-50.
    [100]韩勇,李建国,姜秀英.辽宁省水稻灌浆期光合特性及其与产量品质的相关性分析[J].吉林农业科学,2012,37(1):4-8.
    [101]朱保葛,柏惠侠,张艳,等.大豆叶片净光合速率、转化酶活性与籽粒产量的关系[J].大豆科学,2000,19(4):346-349.
    [102]郑殿君,张治安,姜丽艳,等.不同产量水平大豆叶片净光合速率的比较[J].东北农业大学学报,2010,41(9):1-5.
    [103]徐建坡,段慧敏.盘锦地区稻米品质与灌浆期光合速率相关性研究[J].北方水稻,2012,42(1):8-9,48.
    [104]胡茂龙,张迎信,孔令娜,等.水稻光合作用及相关生理性状的QTL分析[J].作物学报,2007,33(2):183-188.
    [105]余叔文.植物生理学与分子生物学[M].北京:科学出版社,1992:236-243.
    [106]王强,张其德,卢从明,等.两个超级高产水稻在不同生长阶段的色素含量、净光合速率和水分利用效率[J].植物生态学报,2002,26(6):647-651.
    [107] Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercisein molecular ecophysiology[J].Plant Cell Environ,2006,17:465-487.
    [108] Svensson P,Bl sing O E,Westhoff P. Evolution of C4phosphoenolpyruvate carboxylase[J].Arch Biochem Biophys,2003,414:180-188.
    [109]满为群,杜维广,张桂茹,等.高光效大豆几项光合生理指标的研究[J].作物学报,2003,29(5):697-700.
    [110] Mastrorilli M,Kate N, Rana G,et al. Sweet sorghum in Mediterranean climate: radiation use andbiomass water use efficiencies[J]. Industr Crops Prod,1995(3):253-260.
    [111] Mastrorilli M, Katerji N, Rana G. Productivity and water use efficiency of sweet sorghum asaffected by soil water deficit occurring at different vegetative growth stages[J]. Europ J Agron,1999(11):207-215.
    [112] Dalianis C D. Adaptation, productivity and agronomic aspects of sweet sorghum under Europeanconditions. Proceedstings1European Seminar on Sorghum for Energy and Industry[J]. EUCommission (DG XII): Toulouse France,1996:15-25.
    [113] Steduto P,Katerji N,Puertos-Molina H,et al. Water-use efficiency of sweet sorghum under waterstress conditions gas-exchange investigations at leaf and canopy scales[J]. Field Crops Res,1997,54:221-234.
    [114] Sunseri F, Palazzo D. Salt stress adaptation mechanism: effect on sweet sorghum yield. In: LiDJ,ed. Proceeding of International Sweet Sorghum Conference[C]. Beijing: Institute of Botany,Chinese Academy of Sciences,1999:36-39.
    [115]黄瑞冬,孙璐,肖木辑,等.持绿型高梁B35灌浆期对干旱的生理生化响应[J].作物学报,2009,35(3):560-565.
    [116]张秀芳.多效唑对高粱幼苗某些抗逆生理指标的影响[J].安徽农业科学,2007,35(15):4435,4453.
    [117]马纯艳,李碉莹,徐昕,等.高梁3853-1与高梁3801-2生理指标及抗性分析[J].辽宁师范大学学报(自然科学版),2006,29(2):223-225.
    [118]吕金印,郭涛.水分胁迫对不同品种甜高梁幼苗保护酶活性等生理特性的影响[J].干旱地区农业研究,2010,28(4):89-93.
    [119]刘晓辉,杨明,邓日烈,等.甜高梁若干生理性状的研究[J].杂粮作物,2008,28(5):302-304.
    [120]朱凯,王艳秋,张飞,等.不同细胞质甜高梁品种光合作用动态研究[J].江苏农业科学,2012,40(3):67-69.
    [121] Xin,Zhanguo Aiken,Rob Burke,et al. Genetic diversity of transpiration efficiency inSorghum[J].Field crops research,2009,111(1-2):74-80.
    [122]程西永,陈平,许海霞,等.不同国家小麦种质资源遗传多样性研究[J].麦类作物学报,2009,29(5):803-808.
    [123]王淑英,樊廷录,李兴茂.冬小麦抗旱种质资源遗传多样性研究[J].麦类作物学报,2008,28(3):402-409.
    [124]何海军,王晓娟,寇思荣,等.甘肃省玉米地方种质资源遗传多样性分析[J].中国种业,2010,7:45-48.
    [125]刘长友,程须珍,王素华,等.中国绿豆种质资源遗传多样性研究[J].植物遗传资源学报,2006,7(4):459-463.
    [126]梁云涛,陈成斌,梁世春,等.中日韩三国薏苡种质资源遗传多样性研究[J].广西农业科学,2006,37(4):341-344.
    [127]赵银月,保丽萍,耿智德,等.云南省大豆地方种质资源遗传多样性的初步分析[J].西南农业学报,2006,19(4):591-593.
    [128]刘长友,田静,范保杰.河北省小豆种质资源遗传多样性分析[J].植物遗传资源学报,2009,10(1):73-76.
    [129]游俊梅,陈惠查,金桃叶,等.贵州地方旱稻种质资源遗传多样性评价[J].种子,2005,24(4):80-84.
    [130]赵香娜,李桂英,刘洋,等.国内外甜高粱种质资源主要性状遗传多样性及相关性分析[J].植物遗传资源学报,2008,9(3):302-307.
    [131] Smith J SC,Kresovich S,Hopkins M S,et al. Genetic diversity among elite sorghum inbred linesassessed with Simple Sequence repeats[J].Crop Sci,2000,40:226-232.
    [132]陆平.高粱种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:2-8.
    [133]袁志发,周静宇.多元统计分析[M].北京:科学出版社,2003:188-201.
    [134]张晓杰,姜慧芳,任小平,等.中国花生核心种质的主成分分析及相关分析[J].中国油料作物学报,2009,3l(3):298-304.
    [135]刘海燕.外引矮秆玉米自交系性状综合评价[J].中国种业,2009,12:37-39.
    [136]王晓娟,祁旭升,王兴荣.蚕豆种质资源主要性状遗传多样性分析[J].农业现代化研究,2009,30(5):633-636.
    [137]谢鹏,谭晓风,袁军,等.普通油茶优良单株产量与主要性状的主成分分析[J].湖南林业科技,2009,36(2):16-22.
    [138]詹永发,姜虹,韩世玉,等.朝天椒种质材料的遗传多样性研究[J].贵州农业科学,2008,36(4):8-10.
    [139]冯国郡,王兆木,贾东海.新疆甜高梁区域试验精确度分析及品种的灰色综合评判[J].杂粮作物,2008,28(2):70-73.
    [140]杨伟光,杨福,高春福,等.甜高梁主要农艺性状相关性研究[J].吉林农业大学学报,1995,17(1):29-31,45.
    [141] Nei M. Molecular Evolution Genetic[M].New York:Columbia University Press,1987:190-191.
    [142] Smith J S C,Chin E C L,Shu H, et al. An evaluation of the utility of SSR loci as molecularmarkers in maize (Zeamays L.):comparisons with data from RFLPs and pedigree[J].Theor ApplGenet,1997,95:163-173.
    [143] Schloss S J,Mitchell S E,White G M,et al. Characterization of RFLP probe sequences for genediscovery and SSR development in Sorghum bicolor(L.)Moench[J].Theor Appl Genet,2002,105:912-920.
    [144] Smith J S C,Kresovich S,Hopkins M S,et al. Genetic diversity among elite sorghum inbred linesassessed with Simple Sequence repeats[J].Crop Sci,2000,40:226-232.
    [145] Agrama H A,Tuinstra M R.Phylogenetic diversity and Relationships among sorghum accessionsusing SSRs and RAPDs[J]. Afr J Biotechnol,2003,2:334-340.
    [146] Tams SH,Melchinger AE,Bauer E. Genetic similarity among European winter triticale elitegermplasms assessed with AFLP and comparisons with SSR and pedigree data[J]. Plant Breed,2005,124:154-160.
    [147] Zelitch I. The close relationship between net photosynthesis and crop yield [J]. BioScience,1982,32:796-802.
    [148] Fageria N K. Maximizing crop yields [M]. New York,USA:Marcel Dekker Inc,1992:55-63.
    [149]王丽妍,徐宝慧,杨成林.北方地区不同花生品种光合生理特性的比较[J].华南农业大学学报,2010,31(4):12-15.
    [150]钟岩,周吉锋,祁宏英,等.灌浆期谷子净光合速率日变化及相关影响因子的研究[J].吉林农业科学,2008,33(2):5-7.
    [151] Malik T A, Wright D,Virk D S. Inheritance of net photosynthesis and transpiration efficiency inspring wheat Triticum aestivum Lunder drought [J]. Plant Breeding,1999,118:93-95.
    [152]许可,周爽,何博文,等.三个甘薯品种光合特性与生产量关系的比较[J].中国农学通报,2008,24(6):172-175.
    [153] Zhao M.Selecting and characterizing high-photosynthesis plants of O.sativa×O.rufipogonprogenies-In:Rice Science for a Better World [C].//Manila:4th Conference of the Asian CropScience Association,2001:24-27.
    [154]崔江慧,薛薇,刘会玲,等.甜高粱与粒用高粱茎秆生长过程中糖及其代谢相关酶活性的比较[J].华北农学报,2009,24(5):150-154.
    [155] Selvi B,Palanisamy S.Character association in sorghum [J]. Indian J Agr Sci,1987,57(7):498-499.
    [156] Parvatikar S,Manjunath T.Alternate uses of sorghum-sweet sorghums,a new prospects for juicystalks and grain yields [J].Journal of Maharashtra Agricultural Universities,1991,16(3):352-354.
    [157]马鸿图,徐希德.高粱茎秆含糖量遗传研究[J].辽宁农业科学,1989(4):15-20.
    [158]李胜国,马鸿图.高粱茎秆含糖量遗传研究[J].作物杂志,1993(1):18-21.
    [159]高明超,王鹏文.甜高粱主要农艺性状遗传参数估计[J].安徽农学通报,2007,13(5):114,124.
    [160] Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis canconvert solar energy into biomass?[J]. Curr Opin Biotechnol,2008,19:153-159.
    [161]苗以农,徐克章.叶解剖不同大豆品种[J].大豆科学,1986(3):219-222.
    [162]赵秀琴,赵明,陆军,等.热带远缘杂交水稻高光效后代在温带的光合特性观察[J].中国农业大学学报,2002,7(3):1-6.
    [163] Peng S B,Khusha G S,Virka P,et al. Progress in ideotype breeding to increase rice yieldpotential[J]. Field Crops Res,2008,108:32-38.
    [164]蔡耀辉,李永辉,邱箭,等.水稻高光效育种研究进展及展望[J].江西农业学报,2009,21(12):26-29.
    [165]李万昌.小麦株型与产量结构间的协调性分析[J].江苏农业学报,2009,25(5):966-970.
    [166]张松树,马志民,刘兰服.甘薯高光效育种技术探讨[J].华北农学报,2008,23(增刊):162-165.
    [167]杜维广,张桂茹,满为群,等.大豆高光效品种(种质)选育及高光效育种再探讨[J].大豆科学,2001,20(2):110-114.
    [168]郑宝香,满为群,杜维广,等.高光效大豆光合速率与主要光合生理指标及农艺性状的关系[J].大豆科学,2008,27(3):397-401.
    [169]李霞,王超,陈晏,等. PEPC酶活性作为水稻高光效育种筛选指标的研究[J].江苏农业学报,2008,24(5):559-564.
    [170]王继安,宁海龙,罗秋香,等.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J].东北农业大学学报,2004,35(2):129-134.
    [171]何文兴,易津,李洪梅.根茎禾草乳熟期净光合速率日变化的比较研究[J].应用生态学报,2004,15(2):205-209.
    [172] VEERANA S,JORG L,PETER S.Effect of heat stress on the photosynthetic apparaIus inmaize(Zea mays L.)grown at contro1or high temperature[J].Environmental and ExperimentalBotany,2004,52(10):123-129.
    [173]陈展宇,吴磊,凌凤楼,等.旱稻叶片净光合速率日变化及其与影响因子关系的研究[J].吉林农业大学学报,2008,30(3):237-240,251.
    [174]钟岩,周吉锋,祁宏英,等.灌浆期谷子净光合速率日变化及相关影响因子的研究[J].吉林农业科学,2008,33(2):5-7.
    [175]邹学校,马艳青,刘荣云,等.辣椒净光合速率配合力分析[J].中国农业科学,2006,39(11):2300-2306.
    [176]郁继华,舒英杰,杨秀玲,等.茄子光合特性研究再探[J].兰州大学学报(自然科学版),2003,39(6):81-84.
    [177]刘振威,李新峥,杜晓华.黄瓜净光合速率时间变化及影响因子的相关分析[J].湖北农业科学,2010,49(3):605-608.
    [178]刘振威,李新峥,孙丽,等.南瓜结果期净光合速率及其影响因子日变化[J].2005,21(3):233-236,242.
    [179]王玉辉,周广胜.松嫩草地羊草叶片光合作用生理生态特征分析[J].应用生态学报,2001,12(1):75-79.
    [180]王德利,王正文,张喜军.羊草两个趋异类型的光合生理生态特性比较的初步研究[J].生态学报,1999,19(6):837-843.
    [181] CEULENMANS R,MOUSSEAU M.Effects of elevated atmospheric CO2on woodyplants[J].New Phytol,1994,127:425-446.
    [182]余渝,陈冠文,田笑明,等.新疆棉花叶光合速率的变化特点研究[J].新疆农业大学学报,2001,24(1):16-20.
    [183]王曼,朴世领,石磊,等.3个烤烟品种净光合速率与生理生态因子的关系[J].延边大学农学学报,2011,33(3):183-187.
    [184]唐建宁,康建宏,许强,等.秦艽的光合日变化研究[J].西北植物学报,2006,26(4):836-841.
    [185]黄春燕,吴卫,郑有良,等.鱼腥草的光合和蒸腾特性及其影响因子[J].西北植物学报,2006,26(5):989-994.
    [186]刘遵春,包东娥.‘金光杏梅’叶片净光合速率与生理生态因子的关系[J].西北植物学报,2008,28(3):564-568.
    [187]王静.桂花净光合作用与环境因子和生理因子的关系[J].安徽农业科学,2010,38(20):10985-10987.
    [188]闫丽.高粱耐盐碱种质资源筛选及木质素合成相关基因鉴定[D].济南:山东农业大学,2011:38-40.
    [189]孙璐.高粱耐盐品种筛选及耐盐机制研究[D].沈阳:沈阳农业大学,2012:85-92.
    [190]籍贵苏,杜瑞恒,刘国庆,等.高粱耐盐性评价方法研究及耐盐碱资源的筛选[J].植物遗传资源学报,http://www.cnki.net/kcms/detail/11.4996.S.20121214.1733.028.html.
    [191]王秀玲,程序,李桂英.甜高粱耐盐材料的筛选及芽苗期耐盐性相关分析[J].中国生态农业学报,2010,18(6):1239-1244.
    [192]戴凌燕.甜高粱苗期对苏打盐碱胁迫的适应性机制及差异基因表达分析[D].沈阳:沈阳农业大学,2012:53-55.
    [193]贝盏临,张欣,魏玉清.盐碱胁迫对M-81E甜高粱种子萌发及幼苗生长的影响[J].河南农业科学,2012,41(2):45-49.
    [194]吐尔逊·吐尔洪,再吐尼古丽·库尔班,阿扎提·阿布都古力. NaCl胁迫下3个甜高粱品种生理指标的比较研究[J].中国农学通报,2012,28(03):60-65.
    [195]葛江丽,石雷,谷卫彬,等.盐胁迫条件下甜高梁幼苗的光合特性及光系统Ⅱ功能调节[J].作物学报,2007,33(8):1272-1278.
    [196]再吐尼古丽·库尔班,朱敏,冯国郡,等.不同盐碱地对甜高粱农艺性状的影响[J].新疆农业科学,2011,48(7):1244-1248.
    [197]再吐尼古丽·库尔班,吐尔逊·吐尔洪,阿扎提·阿布都古力.盐碱地对甜高粱秸秆产量与含糖锤度的影响[J].西北农林科技大学学报(自然科学版),2012,40(9):109-113.
    [198] Greenway H,Munns R. Mechanisms of salt tolerance in non-halo-phytes[J]. Anm. Rev. PlantPhysiology,1980,31:149-190.
    [199]郭书奎,赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报,2001,27(6):461-466.
    [200]刘俊英,姚延梼.不同盐处理对胶东卫矛光合作用的影响[J].山西农业科学,2010,38(2):21-2.
    [201]马建华,郑海雷,赵中秋,等.植物抗盐机理研究进展[J].生命科学研究,2001,5(3):175-179,226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700