用户名: 密码: 验证码:
脾阴虚糖尿病认知功能障碍的发病机制及滋补脾阴方药的调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,糖尿病(Diabetes Mellitus,DM)和阿尔茨海默病(Alzheimer’s disease,AD)的发病率正以惊人的速度增加,已成为许多国家重大的公共健康问题。据报道2010年全球糖尿病患者高达2.85亿,2030年将增加到4.39亿,其中95%为T2DM。我国糖尿病的发病率更是增长迅速,据统计中国的成人糖尿病患者已达9200万,糖尿病前期患者人数高达1.48亿,位居世界第二。随着对糖尿病研究的逐步深入,人们逐渐认识到糖尿病患者可出现认知功能障碍,甚至发生AD。流行病学研究也表明糖尿病患者罹患AD的风险更高。调查发现受试者人群中糖尿病患者形成痴呆的比例是普通人群的两倍,糖尿病患者可提前3年出现痴呆。对此,科学界提出了“糖尿病相关认知下降(diabetes-associated cognitive decline,DACD)”这一概念,或称为糖尿病认知功能障碍。
     DACD的发病机制极其复杂,可能与脑胰岛素抵抗、脑血管及血管内皮功能损伤、氧化应激、非酶性蛋白糖基化、炎性反应以及钙离子稳态失衡等多种因素有关。虽然传统观念认为胰岛素的敏感器官主要是肝脏、脂肪以及骨骼肌等外周组织,但是在海马和皮质这些与学习记忆形成密切相关的部位也发现了胰岛素受体。虽然脑内胰岛素的来源尚不完全清楚,但已经证明来自外周循环的胰岛素可通过血脑屏障进入脑内,脑内也可内源性地产生胰岛素。胰岛素通过与脑内广泛分布的胰岛素受体结合激活PI3K/Akt通路,引导胰岛素信号向下传导。正常情况下,胰岛素与胰岛素受体结合后,引起胰岛素受体底物1(insulin receptor substrate1, IRS-1)的酪氨酸磷酸化增强,继而激活其下游磷脂酰肌醇3-激酶(phosphatidylinositol kinase-3, PI3K),诱导蛋白激酶B(protein kinase B, PKB/Akt)的磷酸化,这一途径中任一分子发生异常都可能阻碍胰岛素信号向下传导,引起胰岛素信号转导障碍,导致胰岛素效能下降,诱发胰岛素抵抗。
     引起胰岛素抵抗的原因是多方面的。据报道能量代谢紊乱、氧化应激等因素都可能引起胰岛素信号转导障碍,诱发胰岛素抵抗。此外,内质网应激(endoplasmicreticulum stress,ERS)也可以通过引起JNK的活化抑制胰岛素信号转导。内质网(endoplasmic reticulum,ER)是位于细胞核附近的胞质区域,是哺乳动物细胞重要的Ca2+贮存器,同时也是蛋白质合成与翻译后修饰,多肽链正确折叠与装配的重要场所。ERS是细胞的一种应激反应过程。糖饥饿、钙平衡紊乱、糖基化抑制、二硫键合成减少时,内质网微环境改变,蛋白质折叠受到影响,导致大量未折叠或错误折叠的蛋白质堆积于内质网内,引起未折叠蛋白反应(unfolded proteinresponse,UPR)。但是,关于ERS在DACD发病机制中的作用尚未见报道。
     DACD的确切病理变化尚不清楚。但已有研究表明DACD脑中病理变化与AD相似。T2DM患者脑组织存在淀粉样斑块和神经纤维缠结,淀粉样斑块的密度与T2DM病程密切相关。动物实验研究也证实糖尿病鼠不但存在学习、记忆障碍,其脑部神经元也出现了AD的特异性病理学改变: 淀粉样蛋白(β-amyloid peptide,Aβ)沉积及tau的异常磷酸化,及由其导致的神经元细胞退化。在自发性糖尿病大鼠脑组织中发现额皮质APP、β-分泌酶和Aβ蛋白表达增加,并在大鼠神经元胞浆中发现Aβ沉积增加。
     有研究表明胰岛素信号转导障碍可以影响Aβ的产生和降解。胰岛素信号通路的下游效应器之一雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)作为自噬的抑制剂,在淀粉样蛋白β(Aβ)的代谢中发挥重要作用。胰岛素降解酶(insulindegrading enzyme, IDE)是Aβ的主要降解酶之一,它在降解胰岛素的同时可降解Aβ。
     课题组前期研究发现,糖尿病大鼠及脾阴虚糖尿病大鼠海马中发生ERS,胰岛素信号通路关键分子IRS-1丝氨酸磷酸化水平增加,说明胰岛素信号转导受阻,糖尿病大鼠及脾阴虚糖尿病大鼠海马中发生了胰岛素抵抗。但是,胰岛素抵抗是否是由ERS诱导的仍需进一步研究。同时,我们发现糖尿病大鼠及脾阴虚糖尿病大鼠海马中总Aβ增加,虽然已有证据表明胰岛素与Aβ代谢之间密切相关,但是在我们的研究中Aβ增加是否与胰岛素信号转导障碍有关仍需进一步证实。因此,本研究在前期工作基础上,通过观察与学习记忆密切相关的皮质、与机体代谢密切相关的下丘脑中ERS及胰岛素信号通路的变化,结合体外实验,进一步深入探讨ERS与胰岛素信号转导障碍之间的关系,以及胰岛素信号转导障碍对Aβ代谢的影响。
     目的:以脑内质网应激激活JNK诱导脑胰岛素信号转导障碍为切入点,探讨糖尿病认知功能障碍的发病机制;通过观察ZBPYR对内质网应激、胰岛素信号转导通路关键分子及Aβ的影响探讨ZBPYR的作用机制,明确ZBPYR的作用靶点,为从脾论治糖尿病认知功能障碍提供理论依据。通过中医学理论与现代医学的交融,丰富完善脾藏象理论及脾本质研究,为糖尿病认知功能障碍的防治提供新线索和新思路。
     方法:将健康成年雄性SD大鼠随机分为空白对照组(cont)、糖尿病组(DM)、脾阴虚组(pi)、脾阴虚糖尿病组(piDM)和滋补脾阴方药组(ZBPYR),共5组。
     1.在成功建立各种模型后,首先通过western blotting方法及RT-PCR方法观察各组大鼠皮质、下丘脑中内质网应激标志分子p-PERK、p-eIF2α、eIF2α、GRP78蛋白表达变化及GRP78mRNA水平变化,以验证各组大鼠皮质和下丘脑中是否发生内质网应激。
     2.通过western blotting方法观察各组大鼠皮质、下丘脑中ERS与胰岛素信号通路桥梁分子JNK的变化及胰岛素信号转导通路关键分子p-IRS-1、IRS-1、p-Akt、Akt的变化,以验证各组大鼠皮质和下丘脑中是否发生胰岛素信号转导障碍。
     3.以SH-SY5Y细胞为研究对象,给予内质网应激诱导剂衣霉素、毒胡萝卜素刺激诱导内质网应激的发生,然后再给予JNK抑制剂SP600125,观察胰岛素信号转导通路关键分子p-IRS-1、IRS-1、p-Akt、Akt的变化,以验证内质网应激是否可通过激活JNK诱导胰岛素信号转导障碍。
     4.观察各组大鼠海马、皮质Aβ1-42及Aβ1-40的变化,及p-mTOR、mTOR、p-P70S6K、P70S6K、自噬标志分子LC3Ⅱ以及IDE的变化寻找Aβ1-42及Aβ1-40的变化的原因。
     结果:
     1. DM组、piDM组大鼠皮质、下丘脑p-PERK、p-eIF2α蛋白表达较cont组均增强(P<0.05),ZBPYR组较DM组、piDM组减弱(P<0.05);DM组、piDM组GRP78蛋白表达及mRNA表达较cont组增加(P<0.05),ZBPYR组较DM组、piDM组减弱(P<0.05),eIF2α蛋白水平各组间差异无统计学意义。
     2. DM组、piDM组大鼠皮质、下丘脑内质网应激标志分子p-IRE1α、p-JNK1、p-JNK2以及胰岛素信号转导通路关键分子p-IRS-1、p-Akt蛋白表达较cont组均增加(P<0.05),ZBPYR组较DM组、piDM组均减弱(P<0.05),IRS-1、Akt蛋白水平各组间差异无统计学意义。
     3.体外实验结果显示Tm处理4h、Tg处理12h时p-IRE1α、p-JNK1、p-JNK2表达达到峰值,给予Tm处理4h或Tg处理12h时胰岛素信号转导通路中的p-IRS-1增加、再给予JNK抑制剂SP600125处理后抑制p-IRS-1的表达,p-Akt蛋白表达增加。
     4. DM组、piDM组大鼠海马、皮质可溶性与不可溶Aβ1-42均高于cont组,ZBPYR降低了DM组和或piDM组海马、皮质可溶性与不可溶Aβ1-42的表达,DM组、pi组、piDM组大鼠皮质不可溶Aβ1-42均高于cont组,ZBPYR降低了DM组和piDM组皮质不可溶Aβ1-42的表达。各组大鼠海马、皮质p-mTOR、mTOR、p-P70S6K、P70S6K表达差异无统计学意义,但DM组、piDM组各组大鼠海马、皮质自噬标志分子LC3Ⅱ蛋白表达降低,IDE蛋白表达降低,而ZBPYR则抑制LC3Ⅱ以及IDE的降低。
     结论:
     1.内质网应激的发生是糖尿病、脾阴虚、脾阴虚糖尿病大鼠脑组织变化的特征之一,是诱导脑内胰岛素信号转导障碍的始动因素。滋补脾阴方药通过干扰PERK信号途径减轻脑内质网应激。
     2.内质网应激通过激活JNK诱导胰岛素信号转导障碍促进糖尿病大鼠及脾阴虚糖尿病组大鼠认知功能障碍的发生。滋补脾阴方药通过调节内质网应激抑制JNK活化改善胰岛素信号转导障碍提高学习记忆能力。
     3.脑组织中Aβ1-42增加可能是糖尿病大鼠、脾阴虚糖尿病大鼠认知功能障碍的主要病理变化,自噬及胰岛素降解酶可能参与调控Aβ1-42的降解。滋补脾阴方药能够减少Aβ1-42,其机制可能与调节自噬及IDE的表达有关。
At present, the incidence of Diabetes Mellitus(DM) and Alzheimer's disease (AD)is increasing. DM and AD have become major public health problems in manycountries. It was reported that the number of DM patients is up to439million in2030,which was285million to in2010, of which95%is T2DM. The incidence of DM inChina is growing rapidly, there are92million adults DM patients, the number ofpre-diabetes patients is148million, ranking second in the world. With the gradualdeepening of diabetes research, people realized that DM may be associated withcognitive impairment or AD. Epidemiological studies have shown that DM patients areeasier to suffer from AD. The survey found that the ratio of DM patients developingdementia in subjects population is doubled, compared with general population, the formof dementia of DM patients is three years in advance. In this regard, the scientificcommunity suggested a new conception termed diabetes-associated cognitive decline(DACD).
     The pathogenesis of DACD is extremely complex, it may be associated withinsulin resistance in brain, cerebrovascular and vascular endothelial dysfunction,oxidative stress, non-enzymatic protein glycosylation, inflammation and calciumhomeostasis and other factors. Although the traditional concept is that the liver,skeletalmuscle and adipose tissue are insulin-sensitive organs, but it is worth noting that, insulinreceptor are found in the hippocampus and cortex which are closely related to learningand memory formation. Although the source of brain insulin is not yet entirely clear, ithas been proven that insulin from the peripheral circulation could enter the brainthrough the blood-brain barrier, insulin may be also produced in the brain. ThePI3K/Akt pathway is activated followed by insulin binding insulin receptor and inducing the insulin signaling. Under normal circumstances, insulin and insulin receptorbinding could enhance the level of tyrosine phosphorylation of insulin receptor substrate1(IRS-1), then activate downstream phosphatidylinositol3-kinase (PI3K), induceprotein kinase B (protein kinase B, PKB/Akt) phosphorylation. Any factor of thispathway disordered will induce insulin signaling transduction abnormally, leading toinsulin resistance.
     Many reasons could induce insulin resistance. It is reported that the disorder ofenergy metabolism, oxidative stress and other factors may cause the insulin signalingtransduction abnormally, inducing insulin resistance. In addition, the endoplasmicreticulum stress (ERS) could inhibit insulin signaling by activating JNK in liver FAOcells. The endoplasmic reticulum (ER) is located in the cytoplasmic region near thenucleus, which is a organelle related with Ca2+storage, protein synthesis andpost-translational modification in mammalian cells. ERS is a cell stress responseprocess. Sugar starvation, calcium balance disorders, glycosylation inhibition, reductionof disulfide synthesis and the endoplasmic reticulum microenvironment changes couldaffect protein folding, resulting in the accumulation of unfolded or misfolded proteins inthe endoplasmic reticulum, causing unfolded protein response (UPR). However, the roleof ERS in DACD pathogenesis has not been reported.
     The pathology of DACD is unclear. Studies have shown that the pathology ofDACD in brain is similar to AD. There was amyloid plaques and neurofibrillary tanglesin brain of T2DM patients. And density of amyloid plaque is associated with T2DMduration. Animal studies also confirmed that the diabetic rats not only express learningand memory dysfunction, Aβd eposition and tau phosphorylation which are AD-specificpathological changes were observed in brain of diabetic rats. The APP in frontal cortex,β-secretion enzymes and Aβ was increased in brain tissue of spontaneous diabetic rats,and Aβ deposition was also found in neurons.
     It is reported that insulin signaling may affect the metabolism of Aβ. Mammaliantarget of rapamycin (mTOR) which is a downstream effector of insulin signalingpathway, as an inhibitor of autophagy, play important roles in the metabolism of Aβ.Insulin degrading enzyme (IDE) is a degrading enzyme for Aβ, studies have shown thatdegradation of insulin at the same time biodegradable Aβ.
     Our group has found that the presence of ERS and including IRS-1serinephosphorylation increased which is a key molecule of insulin signaling pathway inhippocampus of diabetic rats and spleen Yin deficiency diabetic rats, suggesting insulin signalling transduction has been blocked, insulin resistance was induced inhippocampus of diabetic rats and spleen Yin deficiency diabetic rats. However, whetherthe insulin resistance is induced by the ERS still need to study. We also found total Aβexpression increased in hippocampus of diabetic rats and spleen Yin deficiency diabeticrats. There are evidences that insulin is closely related with metabolism of Aβ, but inour study whether Aβ increased is related with insulin signalling transduction barriersstill need to be confirmed. Therefore, based on previous work, we will observe ERS andthe insulin signaling pathway in cortex which is related to learning and memory andhypothalamus which is closely related to the metabolism, combineing with experimentsin vitro to further explore the relationship between ERS and insulin signallingtransduction obstacles, and the effects of insulin signalling transduction barriers on Aβ.
     Objective:Using the endoplasmic reticulum stress activating JNK induced insulinsignaling transduction obstacles in brain as the starting point to explore the pathogenesisof diabetes-related cognitive decline; clearling the targets of ZBPYR through observingthe effects of ZBPYR on endoplasmic reticulum stress, key molecules of insulinsignaling pathway and Aβ, providing theoretical basis of treatment from spleen ofdiabetes-related cognitive decline. Through a blend of traditional Chinese medicinetheory and western medicine, enriched and improved the spleen theory of visceralmanifestation, providing new clues and new ideas for prevention and treatment ofdiabetes-related cognitive decline.
     Methods: Healthy adult male SD rats were randomly divided into cont group,DM group, pi group, piDM group and ZBPYR group, a total of five groups.
     1We first observed the protein expression of endoplasmic reticulum stress markersinculding p-PERK, p-eIF2α, eIF2α, GRP78and GRP78mRNA levels by westernblotting and RT-PCR in cerebral cortex, hypothalamus in a variety of models,, in orderto verify whether endoplasmic reticulum stress existed in the cortex and hypothalamusof rats.
     2Then we observed the expression of JNK which is the bridge molecule of ERSand insulin signaling pathway, and insulin signaling transduction pathway criticalmolecules p-IRS-1, IRS-1, p-Akt, Akt in cortex, the hypothalamus of rats by westernblotting, to verify whether insulin signaling transduction obstacles occers in cortex andhypothalamus.
     3The SH-SY5Y cell was treated with tunicamycin and thapsigargin which areendoplasmic reticulum stress inducer to induce endoplasmic reticulum stress. Then cell was treated with the JNK inhibitor SP600125.We observed the changes of keymolecules of insulin signaling transduction pathways including p-IRS-1, IRS-1andp-Akt, Akt to verify whether endoplasmic reticulum stress could induce insulinsignaling transduction barriers through activating JNK.
     4We detected the changes of Aβ1-42and Aβ1-40in hippocampal and cortex, thenobserved the changes of p-mTOR, mTOR, p-P70S6K, P70S6K, LC3II which is amarker of autophagy and IDE to find the reason of changes of Aβ1-42and Aβ1-40.
     Results:
     1. The protein expression of p-PERK, p-eIF2α of DM group and piDM group ratsincreased than the cont group in cortex, hypothalamus (P <0.05), ZBPYR group reducedthan DM group, piDM group (P <0.05); GRP78protein expression and mRNAexpression of the DM group and piDM group of both increased than cont group (P<0.05). ZBPYR decreased the expression of GRP78than DM group and piDM group(P<0.05), the difference of protein levels of eIF2α in each group was not statisticallysignificant.
     2. The proteins expression of the endoplasmic reticulum stress markers p-IRE1α,p-JNK1, p-JNK2, and critical molecular of insulin signaling pathway p-IRS-1increasedin DM group, piDM group than cont group (P <0.05), p-Akt decreased in DM groupand piDM group. The expression of p-IRE1α, p-JNK1, p-JNK2, p-IRS-1of ZBPYRgroup reduced than DM group, piDM group (P <0.05), the expression of p-Akt ofZBPYR group increased. The differences of protein levels of IRS-1, and Akt amonggroups was not statistically significant.
     3. The expression of p-IRE1α, p-JNK1, p-JNK2was the strongest when Tmtreatment for4h, Tg treatment for12h in vitro, when expression of p-IRS-1increased.Cells were treated with JNK inhibitor SP600125inhibited the expression of the p-IRS-1,increased expression of p-Akt.
     4. The soluble and insoluble Aβ1-42of DM group and piDM group were increasedthan cont group in hippocampus and cortex, ZBPYR reduced soluble and insolubleAβ1-42than DM group and, or piDM group in hippocampus and cortex. The corticalinsoluble Aβ1-42of DM group, pi group and piDM group were increased than cont group,ZBPYR reduced insoluble a Aβ1-42in cortical. The differences of protein levels ofp-mTOR, mTOR, p-P70S6K, P70S6K was not significant among groups inhippocampus and cortex, but the protein expression of LC3II which is autophagymarker of DM group and piDM group decreased in hippocampus and cortex, the protein expression of IDE also decreased, ZBPYR inhibited the reduction of LC3II and IDE.
     Conclusions:
     1.Endoplasmic reticulum stress in brain is one of the characteristics of diabetic rats,spleen deficiency rats and spleen Yin deficiency diabetic rats, which is initiating insulinsignaling transduction obstacles. ZBPYR could reduce endoplasmic reticulum stress byinterfering PERK signaling in brain.
     2. Endoplasmic reticulum stress induced insulin signaling transduction barriersthrough the activating JNK, which could promote cognitive decline occur in diabeticrats and spleen Yin deficiency diabetic rats, ZBPYR could improve the ability oflearning and memory by improving insulin signaling which is regulated by JNKactivated by ERS.
     3. Aβ1-42increased in brain is a major characteristic of diabetic rats and spleen Yindeficiency diabetic rats, which is degradated by autophagy and IDE. ZBPYR reducedAβ1-42through regulating the expression of autophagy and IDE.
引文
1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for2010and2030, Diabetes research and clinical practice2010Jan;87(1):4-14
    2. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L,Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men andwomen in China, New EngI J Med2010Mar;362(12):1090-101
    3. Lee AH, Scapa EF, Cohen DE, Glimcher LH.Regulation of hepatic lipogenesis by thetranscription factor XBP1, Science2008Jun;320(5882):1492–6
    4. Myers MG Jr, Münzberg H, Leinninger GM, Leshan RL.The geometry of leptin action in thebrain: more complicated than a simple ARC, Cell Metab2009Feb;9(2):117-23
    5. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmicreticulum stress plays a central role in development of leptin resistance, Cell Metab2009Jan;9(1):35-51
    6. Shi X, Lu XG, Zhan LB, Qi X, Liang LN, Hu SY, Yan Y, Zhao SY, Sui H, Zhang FL. Theeffects of the Chinese medicine ZiBu PiYin recipe on the hippocampus in a rat model ofdiabetes-associated cognitive decline: a proteomic analysis, Diabetologia2011Jul;54(7):1888-99
    7.曲明阳,战丽彬.脾阴虚证与衰老,大连医科大学学报2003;3(25):227-230
    8.战丽彬,徐枫,董玉宽,马悦,王立德.滋补脾阴方药对老龄大鼠脑线粒体ATP酶活性的影响,中药药理与临床2000;16(1):24-25
    9.战丽彬,刘莉,宫晓洋,嵇征鸿.脾阴虚痴呆证病结合模型建立及滋补脾阴方药干预的实验研究,中华中医药学刊2008;26(1):9-12
    10.战丽彬,姜婉贞,路小光,孙长凯,隋华,张建,马辉.滋补脾阴方药对大鼠树突棘保护作用的机制,北京中医药大学学报2007;30(9):597-599
    11. Zhan LB, Sui H, Lu XG, Sun CK, Zhang J, Ma H. Effects of Zibu Piyin recipe onSNK-SPAR Pathway in neuron injury induced by glutamate,Chinese Journal of IntegrativeMedicine2008Jun;14(2):117-22
    12.曲明阳,战丽彬.滋补脾阴方药对衰老大鼠学习记忆能力的影响及脑内机制,中药药理与临床2002;18(6):32-35
    13. Zhan LB, Niu XP, Sui H, Gong XY. Protective effect of spleen-yin-nourishing recipe onamyloid β-peptide-induced damage of primarily cultured rat hippocampal neurons and itsmechanism, Zhong Xi Yi Jie He Xue Bao2009Mar;7(3):242-8
    14.战丽彬,钟军华,路小光,隋华,韦巍.滋补脾阴方药含药血清对内质网应激神经元损伤的保护作用及机制研究,中西医结合学报2007;5(4):445-450
    15.梁丽娜,胡守玉,战丽彬,施翔,闫云,隋华,张福良.滋补脾阴方药对脾阴虚糖尿病大鼠海马胰岛素抵抗影响的实验研究,中国中西医结合杂志2012;32(3):356-361
    16.韩永明,张六通,邱幸凡.从“热毒”论糖尿病的病因病机初探,光明中医2010;25(4):553-556
    17.韩培海,徐海雁,唐长华.李富玉教授从痰湿论治糖尿病,北京中医药大学学报2007;14(3):36-37
    18.姚沛雨.活血化瘀法在糖尿病中的应用,河南中医2007;27(7):75
    19.郭玮.疏肝解郁法治疗糖尿病,吉林中医药2007;27(12):12
    20.翁銮坤.脾虚在糖尿病发病机制中的地位,中华中医药学刊2007;25(10):2158-2160
    21.谷浩荣,贾春华.糖尿病中医病机及治法研究进展,2011;45(1):83-84
    22. Xu G, Li Y, An W, Li S, Guan Y, Wang N, Tang C, Wang X, Zhu Y, Li X, Mulholland MW,Zhang W. Gastric mammalian target of rapamycin signaling regulates ghrelin production andfood intake, Endocrinology2009Aug;150(8):3637-44
    23. Bukau B,Horwich AL.The HSP70and HSP60chaperone machines, Cell1998Feb;92(3):351-66
    24. Schr der M.Endoplasmic reticulum stress responses, Cell Mol Life Sci,2008Mar;65(6):862-94
    1. Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, Fetita S, Tarasov AI,Guillausseau PJ, Boesgaard TW, Pedersen O, Hansen T, Polak M,Gautier JF, Froguel P,Rutter GA, Vaxillaire M. Insulin gene mutations resulting in early-onset diabetes: markeddifferences in clinical presentation, metabolic status, and pathogenic effect throughendoplasmic reticulum retention, Diabetes2010Mar;59(3):653-61
    2. Fonseca SG, Ishigaki S, Oslowski CM, Lu S, Lipson KL, Ghosh R, Hayashi E, Ishihara H,Oka Y, Permutt MA, Urano F. Wolfram syndrome1gene negatively regulates ER stresssignaling in rodent and human cells, J Clin Invest2010Mar;120(3):744-55
    3. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ.Endoplasmic reticulum stress contributes to beta cell apoptosis in type2diabetes,Diabetologia2007Apr;50(4):752-63
    4. G khan S. Hotamisligil. Role of Endoplasmic Reticulum Stress and c-Jun NH2-TerminalKinase Pathways in Inflammation and Origin of Obesity and Diabetes, Diabetes2005Dec;54(suppl2): S73-S78
    5. Ryu D, Seo WY, Yoon YS, Kim YN, Kim SS, Kim HJ, Park TS, Choi CS, Koo SH.Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance, Diabetes2011Apr;60(4):1072-81
    6. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, G rgün C,Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action,and type2diabetes, Science2004Oct;306(5695):457-61
    7.战丽彬,林海燕,宫晓洋,刘莉,梁丽娜.滋补脾阴方药对脾阴虚痴呆大鼠脑组织内质网应激影响的研究.世界科学技术-中医药现代化.2011,13(6):993-998
    8.战丽彬,钟军华,路小光,隋华,韦巍.滋补脾阴方药含药血清对内质网应激神经元损伤的保护作用及机制研究,中西医结合学报2007;5(4):445-450
    9.梁丽娜,胡守玉,战丽彬,施翔,闫云,隋华,张福良.滋补脾阴方药对脾阴虚糖尿病大鼠海马胰岛素抵抗影响的实验研究,中国中西医结合杂志2012;32(3):356-361
    10. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, Backes BJ, Oakes SA, PapaFR. IRE1α kinase activation modes control alternate endoribonuclease outputs to determinedivergent cell fates, Cell2009Aug;138(3):562-75
    11. Han D, Upton JP, Hagen A, Callahan J, Oakes SA, Papa FR. A kinase inhibitor activates theIRE1α RNase to confer cytoprotection against ER stress, Biochemical and BiophysicalResearch Communications2008Jan;365(4):777-83
    12. Luo D, He Y, Zhang H, Yu L, Chen H, Xu Z, Tang S, Urano F, Min W.AIP1is critical intransducing IRE1-mediated endoplasmic reticulum stress response, Biological Chemistry2008May;283(18):11905-12
    13. Pincus D, Chevalier MW, Aragón T, van Anken E, Vidal SE, El-Samad H, Walter P.BiPbinding to the ER-stress sensor ire1tunes the homeostatic behavior of the unfolded proteinresponse, PLoS Biology2010Jul;8(7):e1000415
    14. Ron D,Hubbard SR.How IRE1reacts to ER Stress, Cell2008Jan;132(1):24-6
    15. Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH.Induction of incomplete autophagicresponse by hepatitis C virus via the unfolded protein response,Hepatology2008Oct;48(4):1054-61
    16. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D,Diehl JA.PERK promotes cancer cell proliferation and tumor growth by limiting oxidativeDNA damage, Oncogene2010Jul;29(27):3881-95
    17. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D.Cloning of mammalianIre1reveals diversity in the ER stress responses, Embo J1998Oct;17(19):5708-17
    18. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism,Nature2001Dec;414(6865):799-806
    19. Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis, and life span, Annu RevPhysiol2008;70:191-212
    20. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R,Gerszten RE, Mootha VK. Metabolic profiling of the hum an response to a glucose challengereveals distinct axes of insulin sensitivity, Mol Syst Biol2008;4:214
    21. Sesti G. Pathophysiology of insulin resistance, Best Pract Res Clin Endocrinol Metab,2006Dec;20(4):665-79
    22. Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV.(2007) Oncogenic transformation by thesignaling adaptor protei ns insulin receptor substrate (IRS)-1and IRS-2, Cell Cycle2007Mar;6(6):705-13
    23. Hallschmid M, Schultes B. Central nervous insulin resistance: a promising target in thetreatment of metabolic and cognitive disorders? Diabetologia2009Nov;52(11):2264-9
    24. Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor, Journal ofNeurochemistry1985Jun;44(6):1771-8
    25. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream, Cell2007Jun;129(7):1261-74
    26. Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, Cantley LC, Kahn CR.Positive and negative roles of p85alpha and p85beta regulatory subunits of phosphoinositide3-kinase in insulin signaling, J Biol Chem2003Nov;278(48):48453-66
    27. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR. Positive and negative regulation ofphosphoinositide3-kinase-dependent signaling pathways by three different gene products ofthe p85alpha regulatory subunit, Mol Cell Biol2000Nov;20(21):8035-46
    28. Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B,Skolnik EY, Schlessinger J,et al. Phosphatidylinositol3’-kinase is activated by associationwith IRS-1during insulin stimulation, EMBO J1992Sep;11(9):3469-79
    29. Chagpar RB, Links PH, Pastor MC, Furber LA, Hawrysh AD, Chamberlain MD, AndersonDH. Direct positive regulation of PTEN by the p85subunit of phosphatidylinositol3-kinase,Proc Natl Acad Sci USA,2010Mar;107(12):5471-6
    30. Geering B, Cutillas PR, Vanhaesebroeck B. Regulation of class IA PI3Ks: is there a role formonomeric PI3K subunits? Biochem Soc Trans2007Apr;35(Pt2):199-203
    31. Taniguchi CM, Kondo T, Sajan M, Luo J, Bronson R, Asano T, Farese R, Cantley LC, KahnCR. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide3-kinase via Akt and PKClambda/zeta, Cell Metab2006May;3(5):343-53
    32.金敬善.老年人和脾虚患者消化系统功能的观察,中西医结合杂志1994;4(3):164
    33.王文健.现代中医药应用与研究关系.实验研究分册,上海中医药大学出版社1995178
    34. Shi X, Lu XG, Zhan LB, Qi X, Liang LN, Hu SY, Yan Y, Zhao SY, Sui H, Zhang FL. Theeffects of the Chinese medicine ZiBu PiYin recipe on the hippocampus in a rat model ofdiabetes-associated cognitive decline: a proteomic analysis, Diabetologia2011Jul;54(7):1888-99
    35. Tsiotra PC, Tsigos C. Stress,the endoplasmic reticulum,and insulin resistance, Annals of theNew York Academy of Sciences2006Nov;1083:63-76
    36. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance, Journal of ClinicalInvestigation2006Jul;116(7):1793-801
    37. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemicinsulin resistance resulting from hepatic activation of IKK-β and NF-κ B,Nature Medicine2005Feb;11(2):183-90
    38. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, G rgün CZ,Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in amouse model of type2diabetes, Science2006Aug;313(5790):1137-40
    39. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, Patterson BW, HortonJD, Mittendorfer B, Hotamisligil GS, Klein S. Tauroursodeoxycholic Acid may improve liverand muscle but not adipose tissue insulin sensitivity in obese men and women, Diabetes2010Aug;59(8):1899-905
    40. Weston CR, Lambright DG, Davis RJ. Signal transduction MAP kinase signaling specificity,Science2002Jun;296(5577):2345-7
    41. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedbackinhibition of the insulin signaling cascade, J Biol Chem2003Jan;278(5):2896-902
    42. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinasepromotes insulin resistance during association with insulin receptor substrate-1andphosphorylation of Ser(307), J Biol Chem2000Mar;275(12):9047-54
    1. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer'sdisease amyloid-beta peptides, Nature2003May;423(6938):435-9
    2. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide inAlzheimer's disease: review and hypothesis, Neurobiol Aging2006Feb;27(2):190-8
    3. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, Kurinami H,Shinohara M, Rakugi H, Morishita R. Diabetes-accelerated memory dysfunction viacerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model withdiabetes, Proc Natl Acad Sci USA2010Apr;107(15):7036-41
    4. Ryder J, Su Y, Liu F, Li B, Zhou Y, Ni B. Divergent roles of GSK3and CDK5in APPprocessing, Biochem Biophys Res Commun2003Dec;312(4):922-9
    5. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A,Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits andreduces amyloid-β levels in a mouse model of Alzheimer's disease, PLoS One2010Apr;5(4):e9979
    6. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response,Nat Rev Mol Cell Biol2007Jul;8(7):519-29
    7. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer'sdisease amyloid-beta peptides. Nature,2003May;423(6938):435-9
    8. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, MobbsCV, Hof PR, Pasinetti GM. Diet-induced insulin resistance promotes amyloidosis in atransgenic mouse model of Alzheimer's disease, FASEB J2004May;18(7):902-4
    9. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC. BACE1is themajor beta-secretase for generation of Abeta pep-tides by neurons, Nat Neurosci2001Mar;4(3):233-4
    10. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S,Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J,Jarosinski MA, Biere AL,Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta-secretasecleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic proteaseBACE, Science1999Oct;286(5440):735-41
    11. Schroeter EH, Ilagan MX, Brunkan AL, Hecimovic S, Li YM, Xu M, Lewis HD, Saxena MT,De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A,Wolfe MS, ShearmanM, Kopan R. A presenilin dimer at the core of the gamma-secretase enzyme: in-sights fromparallel analysis of Notch1and APP proteolysis, Proc Natl Acad Sci USA2003Oct;100(22):13075-80
    12. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating theresponsible protein aggregates from the innocent bystanders, Annu Rev Neurosci2003Mar;26:267-98
    13. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from theAlzheimer's amyloid beta-peptide, Nat Rev Mol Cell Biol2007Feb;8(2):101-12
    14. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease, Nat RevNeurosci2007Jul;8(7):499-509
    15. Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers: the solution to anAlzheimer's disease conundrum, Trends Neurosci2001Apr;24(4):219-24
    16. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease, Annu RevBiochem2006;75:333-66
    17. Ferreira ST, Vieira MN, De Felice FG.Soluble protein oligomers as emerging toxins inAlzheimer's and other amyloid diseases, IUBMB Life2007Apr-May;59(4-5):332-45
    18. Glabe CG.Structural classification of toxic amyloid oligomers, J Biol Chem2008Oct;283(44):29639-43
    19. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB. Amyloid beta-protein assembly andAlzheimer disease, J Biol Chem2009Feb;284(8):4749-53
    20. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE,Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA,Klein WL.Diffusible, nonfibrillar ligands derived from Abeta1-42are potent central nervous systemneurotoxins, Proc Natl Acad Sci USA1998May;95(11):6448-53
    21. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG,Yang A, Gallagher M, Ashe KH. Aspecificamyloid-beta protein assembly in the brain impairs memory, Nature2006Mar;440(7082):352-7
    22. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ,Selkoe DJ.Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-termpotentiation in vivo, Nature2002Apr;416(6880):535-9
    23. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL,Stine WB, Krafft GA, Trommer BL. Soluble oligomers of beta amyloid (1-42) inhibitlong-term potentiation but not long-term depression in rat dentate gyrus, Brain Res2002Jan;924(2):133-40
    24. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC. Increased risk of type2diabetes in Alzheimer disease,Diabetes2004Feb;53(2):474-81
    25. Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, Diamond DM. Hyperglycemianot hypoglycemia alters neuronal dendrites and impairs spatial memory, Pediatric Diabetes2008Dec;9(6):531-9
    26. Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes,Diabetes2007Jul;56(7):1817-24
    27. Moroz N, Tong M, Longato L, Xu H, de la Monte SM. Limited Alzheimer-type neurodegeneration in experimental obesity and type2diabetes mellitus, Journal of Alzheimer’sDisease2008Sep;15(1):29-44
    28. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR,translation initiation andcaneer, Oncogene2006Oct;25(48):6416-22
    29. Fingar DC, Blenis J. Target of rapamycin(TOR): an integrator of nutrient and growth factorsignals and coordinator of cell growth and cell cycle progression,Oncogeng2004Apr;23(18):3151-71
    30. Inoki K, Li Y, Xu T, Guan KL, Rheb GTPase is a direct target of TSC2GAP activity andregulates mTOR signaling, Genes Dev2003Aug;17(15):1829-34
    31. Li Y, Corradetti MN, Inoki K, Guan KL. TSC2:filling the GAP in the Mtor signaling pathway,Trends Biochem Sci2004Jan;29(1):32-8
    32. Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD, Baselga J, Ramon y Cajal S.4E-binding protein1,a cell signaling hallmark in breast cancer that correlates with pathologicgrade and prognosis, Clin Cancer Res2007Jan;13(1):81-9
    33. Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1regulates GSK3underconditions of mTOR-dependent feedback inhibition of Akt, Mol Cell2006Oct;24(2):185-97
    34. Park IH, Bachmann R, Shirazi H, Chen J. Regulation of ribosomal S6kinase2by mammaliantarget of rapamycin, J Biol Chem2002Aug;277(35):31423-9
    35. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1-and beta TRCP-mediated degradation of PDCD4promotes protein translation and cell growth,Science2006Oct;314(5798):467-71
    36. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2GAP activity andregulates mTOR signaling, Genes Dev2003Aug;17(15):1829-34
    37. Phin S, Kupferwasser D, Lam J, Lee-Fruman KK. Mutational analysis of ribosomal S6kinase2shows differential regulation of itskinase activity from that of ribosomal S6kinase1,Biochem J2003Jul;373(Pt2):583-91
    38. Boyer D, Quintanilla R, Lee-Fruman KK. Regulation of catalytic activity of S6kinase2during cell cycle, Mol Cell Bioehem2008Jan;307(1-2):59-64
    39. Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, KellyPA, Sotiropoulos A, Pende M. Atrophy of S6K1(-/-) skeletal muscle cells reveals distinctmTOR effectors for cell cycle and size control, Nat Cell Biol2005Mar;7(3):286-94
    40. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S,Kozma SC, Thomas G. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activatedprotein kinase-dependent S6kinase pathway, Mol Cell Biol2004Apr;24(8):3112-24
    41. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay betweenmammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitiveimpairments, J Biol Chem2010Apr;285(17):13107-20
    42. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A,Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits andreduces amyloid-β levels in a mouse model of Alzheimer's disease. PLoS One2010Apr;5(4):e9979
    43. Azam M, Gupta BL, Gupta G, Jain S, Baquer NZ. Rat brain insulin degrading enzyme ininsulin and thyroid hormones imbalances, Biochem Int1990;21(2):321-9
    44. Yokono K, Roth RA, Baba S. Identification of insulin-degrading enzyme on the surface ofcultured human lymphocytes, rat hepatoma cells, and primary cultures of rat hepatocytes,Endocrinology,1982Oct;111(4):1102-8
    45. Goldfine ID, Williams JA, Bailey AC, Wong KY, Iwamoto Y, Yokono K, Baba S, Roth RA.Degradation of insulin by isolated mouse pancreatic acini. Evidence for cell surface proteaseactivity, Diabetes1984Jan;33(1):64-72
    46. Morita M, Kurochkin IV, motojima K, Goto S, Takano T, Okamura S, Sato R, Yokota S,Imanaka T. Insulin-degrading enzyme exists inside of rat liver peroxisomes and degradesoxidized proteins, Cell Struct Funct2000Oct;25(5):309-15
    47. Affholter JA, Hsieh CL, Francke U, Roth RA. Insulin-degrading enzyme: stable expression ofthe human complementary DNA, characterization of its protein product, and chromosomalmapping of the human and mouse genes, Mol Endocrinol1990Aug;4(8):1125-35
    48. Bennett RG, Fawcett J, Kruer MC, Duckworth WC, Hamel FG. Insulin inhibition of theproteasome is dependent on degradation of insulin by insulin-degrading enzyme, J Endocrinol2003Jun;177(3):399-405
    49. Boussaha M, Hannequin D, Verpillat P, Brice A, Frebourg T, Campion D.Polymorphisms ofinsulin degrading enzyme gene are not associated with Alzheimer's disease, Neurosci Lett2002Aug;329(1):121-3
    50. Bian L, Yang JD, Guo TW, Sun Y, Duan SW, Chen WY, Pan YX, Feng GY, He L. Insulin-degrading enzyme and Alzheimer disease:a genetic association study in the Han Chinese,Neurology2004Jul;63(2):241-5
    51. Ozturk A, DeKosky ST, Kamboh MI. Lack of association of5SNPs in the vicinity of theinsulin-degrading enzyme (IDE) gene with late-onset Alzheimer's disease, Neurosci Lett2006Oct;406(3):265-9
    52. Sletten K, Westermark P, Natvig JB. Characterization of amyloid fibril proteins frommedullary carcinoma of the thyroid, J Exp Med1976Apr1;143(4):993-8
    53. Johansson B, Wernstedt C, Westermark P. Atrial natriuretic peptide deposited as atrialamyloid fibrils, Biochem Biophys Res Commun1987Nov;148(3):1087-92
    54. Rose K, Savoy LA, Muir AV, Davies JG, Offord RE, Turcatti G. Insulin proteinase liberatesfrom glucagon a fragment known to have enhanced activity against Ca2++Mg2+-dependentATPase, Biochem J1988Dec;256(3):847-51
    55. Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA. Presenilins arerequired for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1,Nat Cell Biol2000Jul;2(7):463-5
    56. De Strooper B.Aph-1,Pen-2,and Nicastrin with Presenilin generate an active gamma-Secretase complex, Neuron2003Apr;38(1):9-12
    57. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ.Neurons regulate extracellular levels of amyloid beta-protein via proteolysis byinsulin-degrading enzyme, J Neurosci2000Mar;20(5):1657-65
    58. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ.Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation,secondary pathology, and premature death, Neuron2003Dec;40(6):1087-93
    59. Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, ThieleDL. Amyloid-beta peptide levels in brain are inversely correlated with insulysin activitylevels in vivo, Proc Natl Acad Sci USA2003May;100(10):6221-6
    60. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, TanziRE, Selkoe DJ, Guenette S. Insulin-degrading enzyme regulates the levels of insulin,amyloidbeta-protein, and the beta-amyloid precursor protein intracellular domain in vivo, ProcNatlAcad Sci USA2003Apr;100(7):4162-7
    61. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM. Age-and region-dependentalterations in Abeta-degrading enzymes: implications for Abeta-induced disorders, NeurobiolAging2005May;26(5):645-54
    62. Saric T, Müller D, Seitz HJ, Pavelic K. Non-covalent interaction of ubiquitin withinsulin-degrading enzyme, Mol Cell Endocrinol2003Jun;204(1-2):11-20
    63. Hamel FG, Upward JL, Bennett RG. In vitro inhibition of insulin-degrading enzyme bylong-chain fatty acids and their coenzyme A thioesters, Endocrinology2003Jun;144(6):2404-8
    64. Harada S, Smith RM, Hu DQ, Jarett L. Dexamethasone inhibits insulin binding toinsulin-degrading enzyme and cytosolic insulin-binding protein p82, Biochem Biophys ResCommun1996Jan;218(1):154-8
    65. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM.Insulin-degrading enzyme as a downstream target of insulin receptor signalingcascade:implications for Alzheimer's disease intervention, J Neurosci2004Dec;24(49):11120-6
    1.柏树会.系统解剖学,.北京,人民卫生出版社.2001;139-276
    2.金敬善.老年人和脾虚患者消化系统功能的观察,中西医结合杂志1994;4(3):164
    3.王文健.现代中医药应用与研究关系,实验研究分册.上海,上海中医药大学出版社1995178
    4.陈利平,朱章志,刘梅.健脾益气方对脾气虚证2型糖尿病大鼠血清炎症因子的影响,中药新药与临床药理2009;20(1):36-37
    5.郝贤,贾春宝.健脾活血方对2型糖尿病胰岛素抵抗大鼠骨骼肌葡萄糖转运蛋白-4基因表达的影响,时珍国医国药2009;20(9):2161-2163
    6.郝贤,王星云,姜德友.健脾活血方对2型糖尿病大鼠胰岛素抵抗的影响,中医药学报2009;37(4):18-19
    7.郝贤,贾春宝.健脾活血方对2型糖尿病大鼠肝细胞膜胰岛素受体的影响,时珍国医国药2009;20(8):1972-1973
    8.许良银,郑真,程宜福.健脾法择时给药对实验性糖尿病小鼠血糖昼夜节律的影响,中医杂志2009;50(10):925-926
    9.王东,李敬林,姜良铎.从“脾虚致消”建立2型糖尿病胰岛素抵抗大鼠模型,中华中医药学刊2007;25(12):2538-2540
    10.潘秋,韩静,余俊达,郭淑珍,赵慧辉,王伟. STZ诱发性糖尿病大鼠表征及其证候特征研究,中华中医药杂志2010;25(10):1644-1647
    11.童奎骅,王兴华.117例2型糖尿病患者的中医辨证分析,浙江中医杂志2012;47(2):113-114
    12.张智龙,陈宏,吉学群,薛莉,宫军,王春梅.2型糖尿病慢性并发症中医证候特点分析,中医杂志2011;52(16):1379-1382
    13.王琳.健脾益气法治疗脾虚型消渴45例,中国民间疗法2011;19(4):35
    14.孙斌.健脾化痰汤治疗肥胖2型糖尿病临床观察,辽宁中医药大学学报2009;11(8):158-159
    15.顾新莉.健脾化痰汤治疗2型糖尿病176例,中国中医药信息杂志2006;13(10):70-71
    16.赫彤.脾虚痰湿型2型糖尿病患者微量白蛋白尿与胰岛素抵抗的关系,福建中医药2009;40(6):5-6
    17.冯玉萍.健脾化湿清热方治疗湿热型糖尿病30例临床观察,中国中医基础医学杂志2011;17(4):436-438
    18.佟晓哲.健脾化痰清热方药对湿热困脾证2型糖尿病患者血清C反应蛋白(CRP)和白细胞介素6的影响,中华中医药学刊2009;27(1):221-223
    19.冉颖卓,高瞾.清热燥湿健脾方药对早期2型糖尿病胰岛素抵抗及TNF-α的影响,中国中医药信息杂志2009;16(9):14-15
    20.柴可夫,黄晓玲,钱俊文,马纲.2型糖尿病中医湿热困脾证的基因表达研究,浙江中医药大学学报2009;33(5):688-692
    21.孙建功,刘孝梅,白永清.糖耐量低减患者血脂水平与中医辨证分型关系探究,中医临床研究2011;3(8):96-97
    22.王静,王兴娟.健脾益气方对脾气虚型更年期综合征糖脂影响的临床研究,复旦学报(医学版)2008;35(6):908-912
    23.张晓金,归绥琪,钱俏红,程明军,章浩伟,周丽蓉,邹琴娣.多囊卵巢综合征患者中医证型分布与糖脂代谢的相关性,中医杂志2010;51(12):1117-1120
    24.柴可夫,慎知,马纲,孔丽娅.151例糖耐量低减患者中医证候及聚类情况分析,中华中医药杂志2012;27(2):359-361
    25.孙远岭.健脾肥儿糖浆对脾虚幼年小鼠能量代谢及蛋白质合成,江苏中医1996;17(11):41
    26.陈芝喜,徐志伟,刘小斌,周名璐,陈津岩,李志强.强肌健力口服液影响脾虚小鼠蛋白质合成的效应,中国临床康复2006;10(35):97-99
    27.陈芝喜,徐志伟,刘小斌,陈津岩,李志强,周名璐,何赞厚.脾虚证小鼠脾肾组织核酸和蛋白质含量变化及强肌健力口服液的影响,中国组织工程研究与临床康复2007;11(8):1551-1584
    28.韦高,孙弼纲,沈鹰,刘正民,刘健,戴晓华.不同程度脾虚胃院痛患者胃粘膜血流量变化,安徽中医学院学报1998;12(2):15-17
    29.刘健,戴小华,刘春丽.脾气虚证蛋白质代谢动态变化的临床与实验研究,中国中医基础医学杂志1998; s(4):35-37
    30.孙立,郑博庆,朱秉匡.脾肾两虚、痰瘀互结与糖尿病发病机理的探讨,时珍国医国药2005;16(9):912-914
    31.李秀钧.胰岛素抵抗综合征,北京,人民卫生出版社200194
    32.胡传峰,李立明,陆美琪等.老年2型糖尿病患者易患因素的对照分析,中国糖尿病杂志2000;8(6):330-332
    33.胡伟峰,李立明.2型糖尿病体质因素流行病学研究进展,中国糖尿病杂志2001;9(1):52-54
    34.翁维良.活血化瘀治疗疑难病,北京,学苑出版社199316
    35.单书键,陈子华.古今名医临证金鉴·消渴卷,北京,中国中医药出版社199954
    36.周则卫. NIDDM发生胰岛素抵抗机理的中医探讨,天津中医2002;19(4):38-39
    37.李东,刁青蕊,武彦舒.健脾增液汤对2型糖尿病大鼠药理作用研究,中国医药指南2011;9(14):292-294
    38.齐迅,沈欣,陈马力,张维东.降糖调脂丸对脾虚痰湿型2型糖尿病胰岛素抵抗的影响实验研究,中国中医基础医学杂志2004;10(4):28,34
    39.张延群,和贵章,韩清.2080例糖尿病中医流行病学调研报告小结,中国中医基础医学杂志2004;10(12):4
    40.丁学屏,陆灏,虞芳华等.非胰岛素依赖型糖尿病中医辨证分型与胰高糖素、胰岛素敏感性相关研究,上海中医药杂志1999;33(9):18
    41.孙刚,李晓玲.痰浊证型患者糖、脂等代谢指标检测及其临床意义,贵阳中医学院学报1997;19(3):60
    42.齐迅,陈马力,罗光文.降糖调脂丸对脾虚痰湿型2型糖尿病胰岛素抵抗影响的临床研究,中国医药学报2004;19(11):680-681
    43.张永涛.论脾与2型糖尿病胰岛素抵抗的关系,河南中医2001;21(6):3-5
    44.袁肇凯,黄献平,简亚平,李跃南,贺福元,孙贵香.高脂血症痰瘀证候与胰岛素抵抗的关系,中国中医基础医学杂志2004;10(6):46-47
    45.葛振化,王若愚,王长青.脾虚证小鼠胸腺细胞周期和免疫细胞化学的实验研究,中国组织化学与细胞化学杂志1994;3(l):29
    46.史小林,王秀琴,韩秀兰等.实验性脾虚证大鼠结肠和盲肠组织化学、免疫组织化学研究,中国组织化学与细胞化学杂志1993;2(3):181
    47.胡传根,张锦铭.红细胞的免疫功能,中国免疫学杂志1988;4(1):27
    48.章梅,夏天,行利.脾虚大鼠红细胞免疫和脂质过氧化物研究,中国实验临床免疫学杂志1995;7(3):39
    49.王海滨,郭峰.红细胞参与细胞因子调控的研究进展,国外医学免疫学分册1999;22(5):263-266
    50.王文波,夏天.脾虚证小鼠脾脏淋巴细胞亚群和血清干扰素活性变化的研究,中国中西医结合杂志1996(基础理论研究特集):251-252
    51.丁洁,吴咸中,辟小平.脾虚证患者部分细胞和局部免疫功能指标的测定,中国中西医结合杂志1992;12(2):77-80
    52.张学庸,张忠兵,胡家露等.用Ia和OKT单克隆抗体研究胃癌和食管癌患者的免疫功能,中华消化杂志1988;6(3):169-171
    53.刘玉生张万岱黄添友余中逊胡石伟方国存.慢性胃肠病脾虚型患者免疫状态的探讨,新消化病学杂志.1993;1(T01):10-12
    54.徐重明,夏天,于文斌,刘宝瑞等.脾虚证模型小白鼠全血白细胞吞噬功能改变的实验研究,中华实用中西医结合杂志1992;5(4):211-212
    55.章梅,夏天,张仲海.脾虚小鼠红细胞免疫和腹腔巨噬细胞吞噬功能改变的实验研究,北京中医药大学学报1999;22(s):26-27
    56.刘玉生,徐复霖,胡石.脾虚小鼠的免疫状态及健脾益康丸对其的影响,中国实验临床免疫学杂志1991;3(6):36-38
    57.谭允育,黄守雄,弈永红.四物汤对60Co照射小鼠免疫功能影响的实验研究,中国实验临床免疫学杂志1994;6(2):40-43
    58.万幸,梁旻若,王建华,刘倩娴,陈妙欢.补中益气汤对正常及脾虚模型小鼠NKC-IL-2-1FN-Y调节网的影响,中国免疫学杂志1993;9(3):194
    59.王文波,夏天,谢湘峰.脾虚证患者血清可溶性IL-2R水平变化研究,中国实验临床免疫学杂志1995;7(4):40-42
    60.章梅,夏天,张仲海,行利,徐重明.脾虚患者SIL-2R与淋巴细胞增殖活性相关性研究,安徽中医学院学报1999,18(6):19-20
    61.章梅,夏天,颜真,崔大祥,张仲海.四君子汤对脾虚患者外周血单个核细胞白细胞介素-6mRNA表达的影响,中国中西结合杂志2000;20(9):671-672
    62.章梅,张仲海,夏天,王宗仁,孙凯,徐重明,于文彬.四君子汤对脾虚患者血清可溶性细胞粘附分子-1水平和单核细胞功能的影响,中国中西结合杂志1999;19(5):270-272
    63.刘玉生,张万岱,黄田友等.慢性胃肠病脾虚型患者免疫状态的探讨,新消化病学杂志1993;1(特刊):10-12
    64.丁洁,吴咸中,辟小平.脾虚证患者部分细胞和局部免疫功能指标的测定,中国中西医结合杂志1992;12(2):77-80
    65.金敬善.血清中胃泌素水平与脾虚证的关系,中西医结合杂志1982;2(1):25-27
    66.危北海,金敬善,赵子厚.神经介质和消化道激素对中医证型的关系分析,中医杂志1989;30(11):45-46
    67.牟德峻.消化性溃疡脾虚型患者胃泌素水平变化,中西医结合杂志1982;2(1):25-27
    68.张桂珍.脾虚患者胃窦G细胞体视学定量分析,中西医结合杂志1989;9(12):711-713
    69.张万岱,智发朝,宋于刚.脾虚证患者血浆、胃液及胃窦十二指肠粘膜胃泌素含量的研究,新消化病学杂志1993;1(特1):14-15
    70.温庆祥,张蕾,何俊仁,张声生.四君子汤对脾虚大鼠神经内分泌免疫网络功能的影响,中国中西医结合消化杂志2005;13(2):124-125
    71.魏彦明,瞿自明,郑继方.脾虚证模型家兔神经内分泌机能的变化及四君子汤对其调整作用,中国兽医学报1999;19(5):486-488
    72.陈天峨,王秀琴,曾晓蓓,李宝红,张华,孙海梅.大鼠实验性脾气虚胃溃疡证病结合模型中大脑神经内分泌免疫网络的变化,解剖学杂志2003;26(6):537-542
    73.张忠兵,夏天,邓敬兰等.脾虚泄泻患者肠粘膜中SP和vIP初步探讨,中西医结合杂志1991;11(3):144-146
    74.曾锦章,张万岱,周殿元.慢性胃炎中医辫证与血浆P物质及胃动素浓度的关系,新消化病学杂志1997;5(6):381-383
    75.陈元方.胃肠肽类激素基础与临床,北京,北京医科大学中国协和医科大学联合出版社1997;328
    76.任平,夏天,张忠兵,胡家露,李彩宁,苗继延.脾虚泄泻与血浆及肠组织中胃动素的关系,第四军医大学学报1991;12(5):391-392
    77.毛炯,伍怡和,司徒净普,杨伟明.脾阴虚证与血浆胃动素水平关系初探,中国中西医结合杂志1994;14(1):653-655
    78.张忠,张学庸,陈希陶,胡家露,张宏博,夏天,张波,邓敬兰,赵彦生.脾虚泄泻患者肠粘膜中SP和VIP初步探讨,中西医结合杂志1991;11(3):144-146
    79.马建伟,徐丽梅,郝刚.脾虚证与血浆和胃窦组织中生长抑素关系的探讨,实用中西医结合杂志.1995;8(11):644-645
    80.宋于刚,姚永莉,张万岱.脾虚证与体液胃泌素及生长抑素的实验研究,胃肠病学1998;3(3):182-183
    81.张万岱,姚永莉,宋于刚.实验脾虚证组织中胃泌素及生长抑素含量变化及其意义,胃肠病学1998;3(3):180-181
    82.凌昌全,陈喆,黄雪强,林葆城,王成海,赵小林.环磷酞胺对大鼠下丘脑、垂体及血浆精氨酸加压素和生长抑素含量的影响,放射医学杂志1993;6(6):326-327
    83.智发朝,张万岱,宋于刚.生长抑素与脾虚证关系的研究,新消化病学杂志1993;1(特1):49
    84.陈元方.胃肠肽类激素基础与临床,北京,北京医科大学中国协和医科大学联合出版社1997;379
    85.智发朝,张万岱,宋于刚.神经加压素与脾虚证关系的研究,新消化病学杂志1993;1(特1):47
    86.马建伟,徐丽梅,刘清珍,李路平.大鼠脾虚证模型血浆及及空肠组织中神经降压素含量的变化,空军总医院学报1993;9(1):32-33
    87.张万岱,智发朝,宋于刚β-内啡肽与脾应证关系的研究,新消化病学杂志1993;1(特一):33
    88.任平,夏天.脾气虚泄泻患者与非脾气虚泄泻患者胃动素和PGE_2含量的比较,中国中西医结合杂志1994;(增刊):l3-15
    89.马建伟,徐丽梅,孟如松,郝刚,夏天.脾虚证与胃窦粘膜D和G细胞关系的实验研究,辽宁中医杂志1993;(5):41-43
    90.张万岱,姚永莉,宋于刚.实验脾虚证组织中胃泌素及生长抑素含量变化及其意义,胃肠病学1998;3(3):180-181
    91.赵燕玲,夏天.鼠脾虚证与胃窦及十二指肠组织5-HT及其受体的关系,第四军医大学学报2000;21(5):87-89
    92.周奇志,宋开源,赵纪岚,余曙光,魏焦禄,扈立蓉,王宗勤,刘旭光.实验性“脾虚证”大鼠脑内单胺递质的变化及其择时治疗效应,成都中医药大学学报1998;21(3):36-37
    93.凌昌全,陈喆,黄雪强.60Co-γ射线和环磷酞胺对大鼠下丘脑单胺类神经递质含量的影响,第二军医大学学报1993;14(s):432-433
    94.危北海,金敬善,赵子厚.神经介质和消化道激素对中医证型的关系分析,中医杂志1989;30(11):45-46.
    95.胡彩钦,陈祥贵,李春梅,陈桂君,赵琪.四君子汤对利血平化小鼠脑内单胺介质的影响,中医杂志1981;22(11):63-65
    96.王秀琴,杨进,刘绍杰,韩秀兰,刘英琴,朱文胜.大鼠实验性脾虚证胃粘膜酶组织化学的研究,首都医学院学报1991;22(4):260-263
    97.尹光耀.脾虚证慢性胃病患者胃粘膜与血浆cAMP和cGMP测定及其临床意义,中西医结合杂志1995;5(1):30-32
    98.贝淑英.皮温测定对脾阴虚证诊断价值初探,中医杂志1987;28(14):54-55
    99.魏睦新.脾阴虚证植物神经机能状态初探,中西医结合杂志1988;(4):202-203
    100.高建苑,夏天,张仲海.脾虚小鼠的血浆β-内啡肽,红细胞C3b受体花环率及其相关性的研究,中国免疫学杂志1997;13(2):26-28
    101.章梅,夏天,南耘等.甲状腺素对脾虚小鼠免疫功能的影响,中国中西结合杂志1995;(基础理论特集):211-213
    102.章梅,夏天,南耘,徐重明.甲状腺素对脾虚鼠脾淋巴细胞和胸腺细胞转化的作用,中国中西结合杂志2000,(S1):104-105
    103.章梅,夏天,南耘,张仲海,徐重明.甲状腺素对脾虚小鼠肺、脾和胸腺细胞体外分泌造血细胞集落刺激因子的影响,中国中西医结合杂志1999;19(S1):89-90
    104.章梅,夏天,靳风烁,颜真,吴少华,张仲海.甲状腺素对脾虚小鼠脾细胞和胸腺细胞表达IL-3mRNA的影响,世界华人消化杂志1999;7(12):1086-1087

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700