用户名: 密码: 验证码:
地黄活性物质与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地黄Rehmannia glutinosa Libosch系玄参科地黄属植物,又名地髓,芑等。块根入药,现人工种植,现主产区在山西、河南等省。地黄由于加工炮制方式的不同分为鲜地黄、生地黄和熟地黄,具有清热、抗贫血和滋补等功效。现代科学研究证明地黄主要化学成分为糖类、环烯醚萜类、倍半萜类和苯乙醇苷类,具有降血糖、神经保护等多种生物活性。
     本论文运用多种色谱技术和波谱技术,并结合化学方法,对鲜地黄进行了系统的化学成分研究,并对其粗提物及单体成分进行了药理活性筛选。
     从鲜地黄的95%乙醇提取物中共分离鉴(测)定了110个化合物,结构分别为:地黄新苷A-K(1*-11*),jioglutin F (12*),也黄新萜A-F(13*-18*),1,4,5,6-四氢-1-甲基-6-氧代-3-吡啶乙酸(19*),梓醇(20),益母草苷A(21),myopor oside (22),桃叶珊瑚甙(23),单蜜力特苷24),5-deoxyantirrhinoside (25),二氢梓醇(26),myobontioside A (27),3'-O-β-D-glucopyranosyl-catalpol (28),蜜力特苷(29),地黄苷C(30),地黄苷A(31),5-deoxylamiol (32),去乙酰野芝麻苷(33),栀子新苷(34),8-表番木鳖酸(35),栀子酸(36),mussaenosidic acid(37),栀子新苷甲酯(38),栀子苷(39),8-表番木鳖碱(40),jioglutoside B(41),京尼平龙胆双糖苷(42),genipin1-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (43), genameside C (44),6-O-E-feruloyl ajugol (45),6-0-vanillate ajugol (46),6-O-p-hydroxybenzoyl ajugol (47),6-O-(4"-O-α-L-rhamn opyranosyl)vanilloyl ajugol (48),6-oxo-4'-(3-methoxyl-4-hydroxyphenylglycol-8")-feruloyl-ajugol (49-50),6-O-E-caffeoyl ajugol (51),6-0-.sec-hydroxyaeginetoy1ajugol (52), aeginetoyl ajugol5"-O-β-D-quinovoside (53),京尼平(54), jiogl utins D (55),6β-hydroxy-2-oxabicyclo[4.3.0]△8-9-nonen-l-one (56), jioglutins E (57),野菰酸(58), dihydroxy-β-ionone (59), rehmapicrogenin (60), trihydroxy-β-iononem (61), sec-hydroxyaeginetic acid (62), aeginetic acid5-O-β-D-quinov oside (63), neo-rehmannioside (64), dihydrophaseic acid4'-O-β-D-glucopyranosi de (65), rehmaionoside C (66),黑蒴苷(67), rehmaionoside A (68), rehmaion oside B (69), oxyrehmaionoside B (70),地黄苷(71), sculponiside (72),2-phe nylethyl-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (73),阿克替甙(74),红景天苷(75),leucosceptoside A (76), jionoside D (77), deacyl-martynoside (78), jionosides A1(79), jionosidesB1(80),3,4-dihydroxy-β-phenethyl-O-α-L-rha mnopyranosyl-(1→3)-O-β-D-galacopyranosyl-(1→6)-4-O-caffeoyl-β-D-glucopyrano side (81),香草醛(82),1-(4-methy-2-furanyl)-2-(5-methyl-5-ethenyl-2-tetrahydrof uranyl)-propan-l-one (83),顺式细辛醚(84),丁香酚(85),异丁香酚甲酯(86),阿魏酸(87),苯甲酸(88),丁香酸(89),β-谷甾醇(90),腺苷(91),腺嘌呤(92), rhamnopyranosyl vanilloyl (93), syringicacid-4-O-a-L-rhamnopyranoside (94),2-methoxy-4-methylphenyl-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (95),葡萄糖(96),半乳糖(97),水苏糖(98),蔗糖(99),甘露三糖(100),棉子糖(101), yemuoside YM1(102-103),(7R,8S,7'R,8'S)-4,9,4',9'-tetrahydroxy-3,3'-dime thoxy-7,7'-epoxylignan9-O-β-D-glucopyranoside (104),1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (105), tachioside (106), isotachioside (107),丙烯酸(108),邻苯二甲酸二丁酯(109)。另外,首次分离得到梓醇苷元(110)。
     分离得到的110个化合物中,包括51个环烯醚萜(1*-12*,20-57,110),19个单萜、倍半萜和降倍半萜(13*-18*,58-70),10个苯乙醇苷(71-72,74-81)和30个其它类型化合物(19*,73,82-109)。其中化合物1*-19*为19个新化合物。
     抗肿瘤方面,采用MTT法测定了地黄提取物各部位(图2-4-1)和97个单体化合物对五种人肿瘤细胞的抑制作用。结果显示地黄提取物各部位均无明显的抗肿瘤活性,单体化合物均没有表现出细胞毒活性(IC50>10μM)。
     保肝和抗肝损伤方面,采用Fe2+-半胱氨酸诱导的肝微粒体脂质过氧化模型,测定地黄部分97个化合物的抗氧化活性。结果显示新化合物5在10-5M时表现一定的抗氧化活性(抑制率=23%);同时,化合物51,76-77在10-5M也表现一定的抗氧化活性。采用扑热息痛(APAP)引起体外肝细胞损伤的保护模型,测定地黄部分97个化合物的肝保护活性。化合物71-72,74-75,79-80,100在10μM浓度下有一定的保护作用,活性与相同浓度的阳性对照药双环醇相当。以MTT法观察地黄提取物各部位对人肝细胞HL-7702细胞成活率的影响,结果显示,部位1,3,5,10-14有较明显的保肝活性,进一步考察显示化合物11,23,30,34,58,62,68,73,75,90,93,95有明显的保肝活性。
     抗炎方面,采用给巴豆油致耳部炎症小鼠皮下注射相应受试物(100mg/kg)的方法,显示地黄提取物部位5,10,13,14可较明显的抑制小鼠耳肿胀,显示出一定的抗炎活性。单体化合物可以一定程度上抑制LPS诱导的细胞对NO的生成,与阳性对照地塞米松(浓度10-6M)相比,部分化合物在浓度10-5M显示出一定的活性
     抗流感病毒方面,与阳性对照扎那米韦相比,地黄部分化合物对抗流感病毒神经氨酸酶均没有显示出活性。
     镇静催眠和抗溃疡方面,采用戊巴比妥钠协同睡眠模型,小鼠腹腔注射给药测定地黄提取物各部位的镇静催眠作用,以入睡率为评价指标,地黄各部位均显示出一定的镇静催眠作用,但不强,与阳性对照安定相比差太多。采用测定H+-K+-ATP酶活性对地黄提取物各部位的抗溃疡活性进行评价,结果各部位均无明显抑制活性。
     降血脂方面,地黄提取物各部位对降低甘油三酯活性均无较明显抑制活性。
     神经保护方面,地黄提取物部位7在1、10μg/ml剂量下对去血清损伤PC12细胞均具有保护作用;部位13在10μg/ml下对鱼藤酮损伤具有保护作用;部位8,12对缺糖缺氧损伤的PC12细胞具有加重损伤作用。进一步测试显示化合物74,77,81和98在10μM浓度下对鱼藤酮损伤细胞具有保护作用。
     调节钾通道作用方面,利用荧光膜电位法筛选出潜在钾通道阻断剂22个。
     降血糖方面(体外),地黄提取物各部位对PTP1B酶均无较明显抑制活性。地黄提取物部位1有较明显的醛糖还原酶抑制活性,IC50在3.5μg/ml,化合物74有明显的醛糖还原酶抑制活性,IC50在2.68×10-7μM,其它化合物在浓度10-5μM抑制率均<69.4%。各部位在10μg/ml浓度下对FBPase1均无显著抑制作用,进一步显示各化合物在10μM浓度下对FBPase1均无显著抑制作用。地黄提取物各部位在40μg/ml浓度下对α-葡萄糖苷酶无显著抑制作用,化合物在浓度40μM对α-葡萄糖苷酶抑制率均<32.4%,无明显抑制活性。化合物51,74,77,81在浓度10μM对脂肪酶有明显的抑制活性。地黄提取物各部位对DPP-IV抑制活性均<13.0%,无较明显抑制活性。地黄提取物部位3和部位12对GK激活倍数接近阳性化合物。地黄提取物各部位对PPARy受体的激活倍数均<1.10,无较明显抑制PPARy转录活性。
     降血糖方面(体内),梓醇在剂量50mg/kg和200mg/kg灌胃给药(每天一次,连续给药)对四氧嘧啶高血糖小鼠血糖在一定程度上有降低作用;腹腔注射(一次给药)对四氧嘧啶高血糖小鼠血糖无明显降低作用(50、200、300mg/kg);在50mg/kg和200mg/kg灌胃给药(每天一次,连续给药)对自发性2型糖尿病KKay小鼠血糖未见明显降低作用。
Rehmarnnia glutinosa Libosch (Scrophulariaceae) is indigenous to Mainland China, and the roots of this plant have been used in oriental medicine as an antianemic, an antipyretic, and a tonic. Due to the different processing methods, R. glutinosa is classified into three categories namely, fresh roots, dried roots, and steamed roots, which are used in different ways in traditional Chinese medicine. Previous phytochemical studies on the dried and steamed roots of R. glutinosa have led to the isolation and identification of iridoid glycosides, ionone glycosides, phenethyl alcohol glycosides, and several other components.
     The roots of R. glutinosa were investigated on their chemical constituents systematically by various kinds of chromatographic methods. The sructures of isolates were elucidated on the basis of spectroscopic analysis and chemical evidence. Some of them were assayed for their bioactivities.
     110compounds were obtained from ethanolic extract of theair-dried roots of R. glutinosa. These compounds were identified as follows:rehmaglutoside A-K (1*-11*), jioglutin F (12*), frehmaglutoside A-F (13*-18*),1,4,5,6-tetrahydro-1-methyl-6-oxo-3-pyridineacetic acid (19*), catalpol (20), ajugol (21), myoporoside (22), aucubin (23), monomelittoside (24),5-deoxyantirrhinoside (25), dihydro catalpol (26), myobontioside A (27),3'-O-β-D-glucopyranosyl-catalpol (28), melittoside (29), rehmannioside C (30), rehmannioside A (31),5-deoxylamiol (32), lamiol (33), gardoside (34),8-epiloganic acid (35), geniposidic acid (36), mussaenosidic acid (37), gardoside methyl ester (38), geniposide (39),8-epiloganin (40), jioglutoside B (41), genipin-gentiobioside (42), genipin1-O-α-L-rhamnopyran-osyl (1→6)-β-D-glucopyranoside (43), genameside C (44),6-O-E-feruloyl ajugol (45),6-O-vanillate ajugol (46),6-O-p-hydroxybenzoyl ajugol (47),6-O-(4"-O-α-L-rhamnopyranosyl) vanilloyl ajugol (48),6-oxo-4'-(3-methoxyl-4-hydroxyphenylgly-col-8")-feruloyl ajugol (49-50),6-O-E-caffeoyl ajugol (51),6-O-sec-hydroxy-aeginetoyl ajugol (52), aeginetoyl ajugol5"-O-β-D-quinovoside (53), genipin (54), jioglutins D (55),6β-hydroxy-2-oxabicyclo[4.3.0]△"9-nonen-l-one (56), jioglutins E (57), aeginetic acid (58), dihydroxy-β-ionone (59), rehmapicrogenin (60), trihydroxy-β-iononem (61), sec-hydroxyaeginetic acid (62), aeginetic acid5-O-β-D-quinovoside (63), neo-rehmannioside (64), dihydrophaseic acid4'-O-β-D-glucopyranoside (65), rehmaionoside C (66), melasmoside (67), rehmaionoside A (68), rehmaionoside B (69), oxyrehmaionoside B (70), martynoside (71), sculponiside (72),2-phenylethyl-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (73), acteoside,(74), salidroside (75), leucosceptoside A (76), jionoside D (77), deacyl-martynoside (78), jionoside A1(79), jionoside B1(80),3,4-dihydroxy-β-phenethyl-O-α-L-rhamnopyranosyl-(1→3)-O-β-D-galacopyranosyl-(1→6)-4-O-caffeoyl-β-D-glucopyra noside (81), vanillin (82),1-(4-methy-2-furanyl)-2-(5-methyl-5-ethenyl-2-tetrahydro-furanyl)-propan-l-one (83), cis-asarone (84), eugenol (85), isoeugenol methyl ether (86), ferulic acid (87), benzoic acid (88), syringic acid (89), β-sitosterol (90), adenosine (91), adenine (92), rhamnopyranosyl vanilloyl (93), syringicacid-4-O-a-L-rhamnopyranoside (94),2-methoxy-4-methylphenyl-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (95), glucose (96), galactopyranose (97), stachyose (98), sucrose (99), manninotriose (100), raffinose (101), yemuoside YM1(102-103),(7R,8S,7'R,8'S)-4,9,4',9'-tetrahydroxy-3,3'-dimethoxy-7,7'-epoxylignan9-O-β-D-gluc-opyranoside (104),1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (105), tachioside (106), isotachioside (107), acrylic acid (108), dibutyl phthalate (109), besides, the aglycone of catalpol (110) was also obtained.
     Among the isolated one hundred and ten compounds, there were fifty-one iridoid and iridoid glycosides (1*-12*,20-57,110), nineteen monoterpene and sesquiterpenes and nor sesquiterpenes (13*-18*,58-70), ten phen ethyl alcohol glycosides (71-72,74-81) and thirty other components (19*,73,82-109). Nineteen compounds (1*-19*) were new compounds.
     The crude extracts and ninety-seven compounds obtained from the roots of R. glutinosa were tested for their cytotoxicity against five human tumor cell lines by MTT method. However, all were inactive for all cell lines used (IC50>10μM is defined as "inactive").
     By the model of inhibiting the production of lipid peroxide induced by Fe2+-Cys system in the liver microsomal, ninety-seven compounds were evaluated for their antioxidant activities and compounds5,51,76-77exhibited weak activities. Compounds71-72,74-75,79-80and100exhibited moderate hepatoprotecti-ve activities against APAP-induced HepG2cell damage. They were also bioassayed for their hepatoprotective activities against D-galactosamine induced toxicity in HL-7702cells, using the hepatoprotective activity drug bicyclol as the positive control, fractions1,3,5,10-14exhibited moderated hepatoprotective activities, and compounds11,23,30,34,58,62,68,73,75,90,93and95exhibited pronounced hepatoprotective activities.
     Fractions5,10,13and14exhibited anti-inflammatory activities in vivo. Th e inhibitory effects of the isolates against nitric oxide (NO) production in mou seperitoneal macrophages were examined. Some compounds inhibited NO elevat ion at a concentration of10μM.
     All ninety-seven compounds were inactive for anti influenza virus NA (neuramidinase) tested model.
     All crude extracts exhibited weak sedative-hypnotic activites and were inactive in inhibiting H+-K+-ATPase activity.
     All crude extracts were inactive in decreasing triglyceride level.
     The protective activities of the crude extracts and compounds against neuroto xicity induced by serum deprivation in PC12cells were investigated by the M TT method. The results showed that serum deprivation induced significant inhi-bition of MTT reduction. Fraction7increased cell viability at a concentration of1μg/ml and10μg/ml, respectively. Furthermore, compounds74,77,81and98exhibited protective activity on cell damage induced by nicouline at a conc-entration of10μM, indicating that they may be effective in neurodegenerative disorders.
     It has been found22possible potassium channel inhibitors by detecting fluorescent membrane potential in PC12cells.
     For antidiabetic bioactivities, all crude extracts exhibited weak activities in inhibiting PTP1B (protein-tyrosine phosphatase-1B) and FBPasel. Fraction1and compound74possesed obvious inhibition agaist aldose reductase, with IC50values of3.5μg/ml and2.68×10-7μM, respectively, and other compounds showed inhibitory rates less than69.4%at a concentration of10μM. All crude extracts exhibited weak activities in inhibiting a-glucosidase at a concentration of40μg/ml and all compounds tested showed inhibitory rates less than32.4%at a concentration of40μM. Compounds51,74,77and81exhibited pronounced activities in inhibiting lipidase on a concentration of10μM. All crude extracts exhibited weak activities in inhibiting DPP-IV and PPARγ transcription. Fractions3and12exhibited significant GK (glucokinase) enzymatic activity, which was comparative to the positive control. Further more, in vivo, compound20exhibited weak antihyperglycemic activity at a concentration of200mg/kg on hyperglycemic mice induced by alloxan by intragastric administration, but no significant activity at a concentration of300mg/kg by intraperitoneal injection. In T2DM Kkay mice model, compound20exhibited no significant activity at a concentration of200mg/kg by intragastric administration.
引文
[1]Kitagawa, I.; Nishimura, T.; Furubayashi, A.; et al. On the Constituents of Rhizome of Rehmannia Glutinosa Libosch. Forma hueichingensis Hsiao [J]. Yakugaku Zasshi,1971,91 (5):593-596.
    [2]Oshio, H.; Naruse, Y.; Inouye, H. Quantitative analysis of Iridoid Glycosides of Rehmanniae Radix [J]. Shoyakugaku Zasshi,1981,35 (4):291-294.
    [3]Oshio, H.; Inouye, H. Iridoid glycosides of Rehmannia Glutinosa [J]. Phytochemistry,1981,21 (1):133-138.
    [4]Hasegawa, T.; Koike, K.; Takahashi, S.; et al. constituents of Leaves and Roots of Kaikei Jio (Rehmannia glutinosa Libosch. forma hueichingensis Hsiao) [J]. Shoyakugaku Zasshi,1982,36 (1):1-5.
    [5]Shoyama, Y.; Matsumoto, M.; Nishioka, I. Four caffeoyl glycosides from callus tissues of Rehmannia Glutinosa [J]. Phytochemistry,1986,25 (7):1633-1636.
    [6]Kitagawa, I.; Fukuda, Y.; Taniyama, T.; et al. Abosolute Stereostructures of rehmaglutins A, B, and D. three new iridoids isolated from Chinese Rehmanniae Radix [J]. Chem. Pharm. Bull.,1986,34 (3):1399-1402.
    [7]Yoshikawa, M.; Fukuda, Y.; Taniyama, T.; et al. Abosolute configurations of rehmaionosides A, B, and C and rehmapicroside. three new ionone glucosides and a new momoterpene glucoside from Rehmanniae Radix [J]. Chem. Pharm. Bull.,1986,34 (5):2294-2297.
    [8]Shoyama, Y.; Matsumoto, M.; Nishioka, I. Pennolic glycosides from diseased roots of Rehmannia Glutinosa Ver. Purpurea [J]. Phytochemistry,1987,26 (4): 983-986.
    [9]Sasaki, H.; Nishimura, H.; Chin, M.; et al. Hydroxycinnamic acid esters of phenethylalcohol Glycosides from Rehmannia Glutinosa Ver. Purpurea [J]. Phytochemistry,1989,28 (3):875-879.
    [10]Nishimura, H.; Sasaki, H.; Morota, T.; et al. Six iridoid glycosides from Rehmannia Glutinosa [J]. Phytochemistry,1989,28 (10):2705-2709.
    [11]Sasaki, H.; Nishimura, H.; Morota, T.; et al. Immunosuppressive Principles of Rehmannia Glutinosa Var. hueichingensis [J]. Planta Med,1989,55:458-462.
    [12]Morota, T.; Sasaki, H.; Nishimura, H.; et al. Two iridoid glycosides from Rehmannia Glutinosa [J]. Phytochemistry,1989,28 (8):2149-2153.
    [13]Yoshikawa, M.; Fukuda, Y.; Taniyama, T.; et al. Chemical studies on crude drug processing.Ⅸ. On the constituents of Rehmanniae Radix.(3). Absolute stereostructures of rehmaionosides A, B, and C, and rehmapicroside, biologically active ionone glucosides and a monoterpene isolated from Chinese Rehmanniae Radix [J]. Chem. Pharm. Bull.,1996,44 (1):41-47.
    [14]Morota, T.; Nishimura, H.; Sasaki, H.; et al. Five cyclopentanoid monoterpenes from Rehmannia Glutinosa [J]. Phytochemistry,1989,28 (9):2385-2391.
    [15]Morota, T.; Sasaki, H.; Sugama, K.; et al. Two non-glycosidic iridoids from Rehmannia Glutinosa [J]. Phytochemistry,1990,29 (2):523-526.
    [16]Sasaki, H.; Nishimura, H.; Morota, T.; et al. Norcarotenoids Glycosides of Rehmannia Glutinosa Ver.Purpurea [J]. Phytochemistry,1991,30 (5):1639-1644.
    [17]Sasaki, H.; Morota, T.; Nishimura, H.; et al. Norcarotenoids of Rehmannia glutinosa Ver. Hueichingensis [J]. Phytochemistry,1991,30 (6):1997-2001.
    [18]Kitagawa, I.; Fukuda, Y.; Taniyama, T.; et al. Chemical Studies on Crude Drug Processing. Ⅶ. On the constituents of Rehmanniae Radix.(1):Absolute stereostructures of rehmaglutins A, B, and D isolated from Chinese Rehmanniae Radix, the dried root of Rehmannia glutinosa Libosch [J]. Chem. Pharm.Bull., 1991,39(5):1171-1176.
    [19]Oshima, Y.; Tanaka, K.; Hikino, H. Sesquiterpenoid from Rehmannia Glutinosa Roots [J]. Phytochemistry,1993,33 (1):233-234.
    [20]Kitagawa, I.; Fukuda, Y.; Taniyama, T.; et al. Chemical Studies on Crude Drug Processing. Ⅷ. On the Constituents of Rehmanniae R-adix.(2):Absolute Stereostructures of Rehmaglutin C and Glutinoside isolated from Chinese Rehmanniae Radix, the Dried Root of Rehmannia glutinosa Libosch [J]. Chem. Pharm. Bull.,1995,43 (7):1096-1100.
    [21]Kitagawa, I.; Fukuda, Y.; Taniyama, T.; et al. Chemcal Studies on Crude Drug Processing. Ⅹ. On the Constituents of Rhmanniae Radix (4):Comparison of the Constituens of Rhmanniae Radixes Originating in China, Korea, and Japan [J]. Yakugaku Zasshi,1995,115 (12):992-1003.
    [22]Nishimura, H.; Sasaki, H.; Morota, T.; et al. Six Glycosides from Rehmannia Glutinosa Var. Purpurea [J]. Phytochemistry,1990,29 (10):3303-3306.
    [23]Kitagawa, I.; Hori, K.; Kawanishi, T.; et al. On the constituents of the root of fukuchiyama-jio, the hybrid of Rehmannia glutinosa var. purpurea and R glutinosa forma hueichingensis [J]. Yakugaku Zasshi,1998,118 (10):464-475.
    [24]Tomoda, M.; Miyamoto, H.; Shimizu, N.; et al. Characterization of two polysaccharides having activity on the reticuloendothelial system from the root of Rehmannia glutinosa [J]. Chem. Pharm. Bull.,1994,42 (3):625-629.
    [25]周燕生,倪慕云.鲜地黄叶化学成分研究[J].中国中药杂志,1994,19(3):162-163.
    [26]Yoshikawa, M.; Fukuda, Y.; Taniyama, T.; et al. Absolute Stereostrutures of Rehmaglutin C and Glutinoside A new Lactone and A new Chlorinated iridoid Glucoside from Chinese Rehmanniae Radix [J]. Chem. Pharm. Bull,1986,34 (3):1403-1406.
    [27]Kubo, M.; Asano, T.; Matsuda, H.; et al. Studies on Radix:Rehmanniae III.The relation between Changes of constituents and improvable effects on hemorheology with the processing of roots of Rehmannia glutinosa [J]. Yakugaku Zasshi,1996,116(2):158-168.
    [28]温学森,杨世林,马小军,等.地黄在加工炮制过程中HPLC谱图的变化[J].中草药,2004,35(2):153-156.
    [29]边宝林,倪慕云,王宏洁.地黄及其炮制品石油醚提取物中酸性成分的分离、鉴定和比较[J].中国中药杂志,1991,16(6):339-341.
    [30]Oh, H. C. Remophilanetriol:A new eremophilane from the roots of Rehmannia Glutinosa [J]. Bulletin of the korean chemical society,2005,26 (8):1303-1305.
    [31]Li, Y S.; Chen, Z. J.; Zhu, D. Y. A novel bis-furan derivative, two new natural furan derivatives from Rehmannia glutinosa and their bioactivity [J]. Natural product research,2005,19 (2):165-170.
    [32]Fu, G. M.; Shi, S. P.; Fanny, C. F.; et al. A new carotenoid glycoside from Rehmannia glutinosa [J]. Naturl product research,2011,25 (13):1213-1218.
    [33]Lee, S. Y.; Kim, J. S.; Choi, R. J.; et al. A New Polyoxygenated Triterpene and Two New Aeginetic Acid Quinovosides from the Roots of Rehmannia glutinosa [J]. Chem. Pharm. Bull,2011,59 (6):742-746.
    [34]Anh,N. T. H.; Sung, T. V.; Franke, K.; et al. Phytochemical studies of Rehmannia glutinosa rhizomes [J]. Pharmazie,2003,58 (8):593-595.
    [35]Jiang, B.; Liu, J. H.; Bao, Y. M.; et al. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC 12 cells by preventing cytochromec release and inactivating of caspase cascade [J]. Toxicon,2004,43 (1):53-59.
    [36]Zhang, A.; Hao, S.; Bi, J.; et al. Effects of catalpol on mitochondrial function and working memory in mice after lipopolysaccharide-induced acute systemic inflammation [J]. Exp Toxicol Pathol,2009,61 (5):461-469.
    [37]Jiang, B.; Du, J.; Liu, J. H.; et al. Catalpol attenuates the neurotoxicity induced by β-amyloidl-42 in cortical neuron-glia cultures [J]. BrainRes,2008,1188 (10): 139-147.
    [38]Liang, J. H.; Du, J.; Xu, L. D.; et al. Catalpol protects primary cultured cortical neurons induced by A 1-42 through a mitochondrial-dependent caspase pathway [J]. Neurochemistry International,2009,55 (8):741-746.
    [39]樊淼,杨菁,白剑,等.地黄寡糖及其主要成分对大鼠脑片氧化应激损伤保护作用研究[J].乒药药理与临床,2009,25(5):64-67.
    [40]Mao,Y. R.; Jiang, L.; Duan, Y. L.; et al. Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain [J]. Environmental Toxicology and Pharmacology,23:314-318.
    [41]姜涛,张爱红,赵荣国.梓醇对鱼藤酮损伤小鼠的记忆、抗氧化能力的影响及安全性评价[J].现代生物医学进展,2008,8(6):1039-1045.
    [42]Tian, Y. Y.; Jiang, B.; An, L. J.; et al. Neuroprotective effect of catalpol against MPP+ -induced oxidative stress in mesencephalic neurons [J]. European Journal of Pharmacology,2007,568:142-148.
    [43]Bi, J.; Jiang, B.; Liu, J. H.; et al. Protective effects of catalpol against H2O2-induced oxidative stressin astrocytes primary cultures [J]. Neuroscience Letters,2008,2008,442:224-227.
    [44]Hu, L. G.; Sun, Y. K.; Hu, J. Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3K/Akt signaling pathway and modulating expression of Bcl-2 and Bax [J]. European Journal of Pharmacology,2010,628:155-163.
    [45]石海燕,李莹,史佳琳,等.地黄寡糖对血管性痴呆大鼠学习记忆能力 及海马乙酰胆碱的影响[J].乒药药理与临床,2008,24(2):27-29.
    [46]杨菁,石海燕,李莹,等.地黄寡糖对脑缺血再灌注所致痴呆大鼠学习记忆功能的影响[J].中国药理学与毒理学杂志,2008,22(3):165-169.
    [47]史佳琳,杨菁,徐新利,等.地黄寡糖对谷氨酸诱导海马神经元损伤的影响[J].中国药理学通报,2009,25(3):357-361.
    [48]刘硕,胡雅儿,夏宗勤.小鼠脑内注射Aβ25-35记忆和M受体变化及梓醇的调节作用[J].上海交通大学学报,2007,27(8):945-948.
    [49]Wang, Z.; Liu, Q.; Zhang, R.; et al. Catalpol Ameliorates Beta Amyloid-induced Degeneration of Cholinergic Neurons by Elevating Brain-Derived Neurotrophic Factors [J]. Neuroscience,2009,163:1363-1372.
    [50]王金红,张瑞,胡雅儿,等.地黄活性成分梓醇抗Aβ25-35诱导的PC12细胞凋亡作用[J].上海交通大学学报,2007,27(7):805-808.
    [51]王金红,孙启祥,夏宗勤,等.地黄活性成分梓醇对转基因CHO细胞M2受体的调节作用[J].中国药理学通报,2006,22(12):1462-1466.
    [52]刘庆丰,夏宗勤,孙启祥,等.梓醇对p肾上腺素受体及M胆碱受体失平衡的双向调节作用[J].上海交通大学学报,2007,27(12):1432-1434.
    [53]Bi, J.; Jiang, B.; S, H.; et al. Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons [J]. Neurochemistry International,2009,54 (3-4):264-270.
    [54]Jiang, B.; Zhang, H.; Bi, J.; et al. Neuroprotective activities of catalpol on MPP+/ MPTP-induced neurotoxicity [J]. Neurol Res,2008,30:639-644.
    [55]Bi, J.; Wang, X. B.; Chen, L.; et al. Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity [J]. Toxicolln Vitro,2008,22 (8):1883-1889.
    [56]Tian, Y.; Y.; An, L. J.; Jiang, L. et al. Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures [J]. Life Sciences,2006,80:193-199.
    [57]王金红,康白,胡雅儿,等.梓醇对L-谷氨酸损伤PC12细胞的保护作用[J].中国药理学通报,2008,24(9):1258-1259.
    [58]Liu, J.; He, Q. J.; Zou, W.; et al. Catalpol increases hippocampal neuroplasticity and up-regulates PKCand BDNF in the aged rats [J]. Brain Res,2006,1123 (1): 68-79.
    [59]Zhang, X. L.; An, L. J.; Bao, Y. M.; et al. D-galactose administration induces memory loss and energy metabolismdisturbance in mice:Protective effects of catalpol [J]. Food and Chemical Toxicology,2008,46:2888-2894.
    [60]Zhang, X. L.; Jiang, B.; Li, Z. B.; et al. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose [J]. Pharmacol Biochem Be,2007,88 (1):64-72.
    [61]Zhang, X. L.; Zhang, A. H.; Jiang, B.; et al. Further pharmacological evi dence of the neuroprotective effectof catalpol from Rehmannia glutinosa [J]. Phytomedicine,2008,15:484-490.
    [62]Zhang, X. L.; Liu,W. D.; Niu, X. H.; et al. Systemic administration of catalpol prevents D-galactose induced mitochondrial dysfunction in mice [J]. Neuroscience Letters,2010,473:224-228.
    [63]Li, D. Q.; Li, Y.; Liu, Y. X.; et al. Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia reperfusion injury [J]. Toxicon,2005,46 (8):845-851.
    [64]Li, D. Q.; Bao, Y. M.; Zhao, J. J.; et al. Neuroprotective properties of ca talpol in transient global cerebral ischemia in gerbils:dose-response, therap eutictime -window and long-term efficacy [J]. Brain Research,2004,1029 (2):179-185.
    [65]祝慧凤,万东,罗勇,等.梓醇上调GAP-43表达伴随局灶脑缺血大鼠神经功能恢复[J].中国药理学通报,2007,23(9):1231-1236.
    [66]万东,祝慧凤,罗勇,等.梓醇促大鼠大脑皮质神经元轴突生长的离体研[J].中国重要杂志,32(17):1771-1774.
    [67]Li, D. Q.; Bao, Y. M.; Li, Y.; et al. Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury [J]. Brain Research,2006,1115:179-185.
    [68]Li, D. Q.; Duan, Y. L.; Bao, Y M.; et al. Neuroprotection of catalpol in Transient global ischemia in gerbils [J]. Neuroscience Reaearch,2004,50 (2):169-177.
    [69]Wang, Z.; An, L. J.; Duan, Y. L.; et al. Catalpol protects rat pheochromo cytoma cells against oxygen and glucose deprivation induced injury [J]. Ne urological Research,2008,30 (1):106-112.
    [70]Li, Y. C.; Bao, Y. M. Jiang, B.; et al. Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage [J]. Int. J. Devl Neuroscience, 2008,26 (3-4):309-317.
    [71]曾艳,贾正平,张汝学,等.地黄寡糖在2型糖尿病大鼠模型上的降血糖 作用及机制[J].中国药理学通报,2006,(4):411-415.
    [72]王晓莉,张汝学,贾正平.地黄寡糖灌胃对糖尿病大鼠的降糖作用及对肠道菌群的影响[J].西北国防医学杂志,2003,24(2):121-123.
    [73]Zhang, R. X.; Zhou, J. H.; Jia, Z. P.; et al. Hypoglycemic effect of Reh mannia glutinosa oligosaccharide in hyperglycemic and alloxan-induced dia betic rats and its mechanism [J]. Journal of Ethnopharmacology,2004 (90): 39-43.
    [74]张汝学,贾正平,李茂星,等.地黄寡糖对2型糖尿病大鼠外周血像、激素水平和胰岛病理学的影响[J].西北国防医学杂志,2009,30(3):161-164.
    [75]郭丽民,张汝学,贾正平,等.地黄寡糖对HepG2胞细增殖及胰岛素抵抗的作用[J].中国中药杂志,2007,32(13):1328-1332.
    [76]郭晓农,张汝学,贾正平,等.地黄寡糖对3T3-L1脂肪细胞增殖及胰岛素抵抗的作用[J].中国中药杂志,2006,31(5):403-407.
    [77]刘芳芳,杨明炜,王晓强,等.梓醇与小檗碱及其配伍对胰岛素抵抗3T3-L1脂肪细胞的影[J].中草药,2007,38(10):1523-1526.
    [78]Huang, W. J.; Niu, H. S. Lin, M. H. et al. Antihyperglycemic Effect of Catalpol in Streptozotocin-Induced Diabetic Rats [J]. J. Nat. Prod.,2010, (73):1170-1172.
    [79]Shieh, J. P.; Cheng, K. C.; Chung, H. H.; et al. Plasma Glucose Lowering Mechanisms of Catalpol, an Active Principle from Roots of Rehmannia glutinosa, in Streptozotocin-Induce Diabetic Rats [J]. Journal of Agricultural and Food Chemistry,2011 (59):3747-3753.
    [80]Yokozawa, T.; Kim, H. Y.; Yamabe, Nor. Amelioration of Diabetic Nephropathy by Dried Rehmanniae Radix (Di Huang) Extract [J]. The American Journal of Chinese Medicine,2004,32 (6):829-839.
    [81]Lau, T. W.; Lam, F.Y.; Lau, K.M.; et al. Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer [J]. Journal of Ethnopharmacology,2009,123:155-162.
    [82]Wang, C. F.; Li, D. Q.; Xue, H. Y.; et al. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats [J]. Brain research,2010:158-165.
    [83]Pungitore, C. R.; Ayub, M. J.; Borkowski, E. J.; et al. Inhibition of Taq DNA polymerase by catalpol [J]. Cell Mol Biol,2004,50 (6):767-772.
    [84]Pungitore, L. G.; Leon, C. G.; et al. Novel antiproliferative analogs of the Taq DNA polymerase inhibitor catalpol [J]. Bioorganic & Medicinal Chemistry Letters,2007,17:1332-1335.
    [85]Garcia, C.; Gleon, L.; Pungitore, C. R.; et al. Enhancement of antiproliferative activity by molecular simplificationof catalpol [J]. Bioorganic & Medicinal Chemistry,2010,18:2515-2523.
    [86]Fu, S. H. The effect catalpol on 2-aminofluore N-acetylation from human tumor cells in vitro and 2-aminofluore metabolites in Spregure-Dawley rats in vivo [D]. Taiwan (Province):China Medical University,2000.
    [87]Chang, I. M.; Liver-protective activities of aucubin derived from traditional oriental medicine [J]. Res Commun Mol Pathol Pharmacol,1998,102 (2): 189-204.
    [88]Recio, M. C.; Giner, R. M.; Manez, S.; et al. Structural considerations on the iridoids as anti-inflammatory agents [J]. PlantaMed,1994,60 (3):232-234.
    [89]Gutierrez, R. M.; Solis, R. V.; Baez, E. G.; et al. Effect on capillary permeability in rabbits of iridoids from Buddleia scordioides [J]. Phytother Res,2006,20 (7): 542.
    [90]Ortizdeurbina, A. V.; Martin, M. L.; Fernandez, B. In vitro antispasmodic activity of peracetylated penstemonoside, aucubin and catalpol [J]. Planta Med,1994,60 (6):512-515.
    [91]Kang, D. G.; Sohn, J.; Moon, M. K.; et al. Rehmannia glutinosa Ameliorates Renal Function in the Ischemia/Reperfusion-Induced Acute Renal Failure Rats [J]. Biol Pharm Bull,2005,28 (9):1662-1667.
    [92]Leea, B. C.; Choi, J. B.; Cho, H. J.; et al. Rehmannia glutinosa ameliorates the progressive renal failure induced by 5/6 nephrectomy [J]. Journal of Ethnopharmacology,2009,122:131-135.
    [93]Oha, K. O.; Kim, S, W. Kim, J. Y. et al. Effect of Rehmannia glutinosa Libosch extracts on bone metabolism [J]. Clinica Chimica Acta,2003,334:185-195.
    [1]Nishimura, H.; Sasaki, H.; Morota, T.; et al. Six iridoid glycosides from Rehmannia Glutinosa [J]. Phytochemistry,1989,28 (10):2705-2709.
    [2]Kamiya, K.; Tanaka, Y.; Endang, H.; et al. Chemical constituents of Morinda citrifolia fruits inhibit copper-induced low-density liporotein oxidation [J]. J. Agric. Food Chem.,2004,52,5843-5848.
    [3]Antus, S.; Kurtan, T.; Juhasz, L.; et al. Chiroptical properties of 2,3-dihydr obenzo[b]furan and chromane chromophores in naturally occurring O-heteroc ycles [J]. Chirality,2001,13,493-506.
    [4]Sasaki, H.; Morota, T.; Nishimura, H.; et al. Norcarotenoids of Rehmannia glutinosa Ver. Hueichingensis [J]. Phytochemistry,1991,30,1997-2001.
    [5]Fan, Q. L.; Tan, C. H.; Liu, J.; et al. Iridoid glycosides and glycosidic constituents from Eriophyton wallichii Benth [J]. Phytochemistry,2011,72,1927-1932.
    [6]Yoshikawa, M.; Fukuda, Y.; Taniyama, T.; et al. Abosolute configurations of rehmaionosides A, B, and C and rehmapicroside. three new ionone glucosides and a new momoterpene glucoside from Rehmanniae Radix [J]. Chem. Pharm. Bull, 1986,34 (5):2294-2297.
    [7]Sasaki, H.; Nishimura, H.; Morota, T.; et al. Norcarotenoids Glycosides of Rehmannia Glutinosa Ver.Purpurea [J]. Phytochemistry,1991,30 (5):1639-1644.
    [8]Yang, X. W.; Zhao, P. J.; Ma, Y. L.; et al. Mixed Lignan-Neolignans from Tarenna attenuata [J]. J. Nat. Prod.,2007,71:521-525.
    [9]Xiong, L.; Zhu, C. G.; Li, Y R.; et al. Lignans and neolignans from Sinocalamus affinis and their absolute configurations [J]. J. Nat. Prod.,2011,74:1188-1200.
    [10]Morota, T.; Sasaki, H.; Nishimura, H.; et al. Two iridoid glycosides from Rehmannia Glutinosa [J]. Phytochemistry,1989,28 (8):2149-2153.
    [11]Kitagawa, I.; Fukuda, Y.; Taniyama, T.; et al. Chemical Studies on Crude Drug Processing. X. Comparison of the constituents of various Rehmannia Radixes originating in China, Korea, and Japan [J]. Yakugaku.Zasshi,1995,115 (12): 992-1003.
    [12]Wren, R. J.; Bent, J. N.; Lars, F. R. Iridoids in Physostegia virginiana [J]. Phytochemistry,1989,28 (11):3055-3057.
    [13]Seren, D.; Seren, R. J.; Bent, J. N. Structural revision of ajuglo and myoporside [J]. Tetrahedron,1982,23 (11):1215-1216.
    [14]Oshio, H.; Inouye, H. Iridoid glycosides of Rehmannia Glutinosa [J]. Phytochemistry,1981,21 (1):133-138.
    [15]Morota, T.; Sasaki, H.; Sugama, K.; et al. Two non-glycosidic iridoids from Rehmannia Glutinosa [J]. Phytochemistry,1990,29 (2):523-526.
    [16]Armandodoriano, B.; Marcella, G.; Mariaceleste, M.; et al, Iridoids from endemic sardinian Linaria species [J]. Phytochemistry,1996,42 (1):89-91.
    [17]Kanemoto, M.; Matsunani, K.; Otsuka, H.; et al. Chlorine-containing iridoid and iridoid glucoside, and other glucosides from leaves of Myoporum bontioides [J]. Phytochemistry,2008,69:2517-2522.
    [18]Kanchanapoom, T.; Ruchirawat, S.; Kasai, R.; et al. Aliphatic alcohol and iridoid glycosides from Asytasia intrusa [J]. Chem.Pharm. Bull.,2004,52 (8):980-982.
    [19]Boros, C. A.; Stermiz, R. S. Iridoids. An updated review. Part 1. [J]. J.Nat. Prod., 1990,53 (5):1087.
    [20]Armandodoriano, B.; Silvava, L.; Pietro, P. Iridoid glucosides from Satureja vulgaris [J]. Phytochemistry,1984,23 (1):121-123.
    [21]Inouye, H.; Takeda, Y.; Nishimura, H. Two new iridoid glucosides from Gardenia fruits [J]. Phytochemistry,1974,13:2219-2224.
    [22]Kobayashi, H.; Karasawa, H.; Miyase, T.; et al. Studies on the constituents of Cistanchis herba. VI. Isolation and structure of a new iridoid glycoside, 6-deoxycatalpol [J]. Chem.Pharm. Bull.,1985,33 (9):3645-3650.
    [23]Toda, S.; Miyase, T.; Arichi, H.; et al. Natural antioxidants. Ⅱ. Antioxidative components isolated from seeds of plantago asiatica linne [J]. Chem.Pharm. Bull.,1985,33 (3):1270-1273.
    [24]Damtoft, S; Hansen, S. B.; Jacobsen, B.; et al. Iridoid glucosides from Melampyrum[J]. Phytochemistry,1984,23 (10):2387-2389.
    [25]Armandodoriano, B.; Pietro, P.8-Epiloganin, an iridoid glucoside from Odontites verna [J]. Phytochemistry,1981,20 (8):1873-1876.
    [26]Ono, M.; Ueno, M.; Masuoka, C.; et al. Iridoid glucosides from the fruit of Genipa americana [J]. Chem.Pharm. Bull.,2005,53 (10):1342-1344.
    [27]Zhang, Y. L.; Gan, M. L.; Lin, Sheng.; et al. Glycosides from the bark of Adina polycephala [J]. J. Nat. Prod.,2008,71:905-909.
    [28]Yamamoto, A.; Nitta, S.; Miyase, T.; et al. Phenylethanoid and lignan-iridoid complex glycosides from roots of Buddleja davidii [J]. Phytochemistry,1993,32 (2):421-425.
    [29]Lu, J. H.; Pu, X. P.; Tu, G. Z.; et al. Iridoid glycosides from Buddleja lineyana [J].J. Chin. Pharm. Sci.2004,13 (3):151-154.
    [30]Gouda, Y. G.; Abdel-baky, A. M.; Darwish, F. M.; et al. Iridoid from Kigelia pinnata DC. fruits [J]. Phytochemistry,2003,63:887-892.
    [31]Sasaki, H.; Nishimura, H.; Morota, T.; et al. Norcarotenoids Glycosides of Rehmannia Glutinosa Ver.Purpurea [J]. Phytochemistry,1991,30 (5): 1639-1644.
    [32]Lee, S. Y.; Kim, J. S.; Choi, R. J.; et al. A New Polyoxygenated Triterpene and Two New Aeginetic Acid Quinovosides from the Roots of Rehmannia glutinosa [J]. Chem. Pharm. Bull,2011,59 (6):742-746.
    [33]Maria, G V.; Maria, Y. R. Iridoids from Crescentia alata [J]. J. Nat. Prod.,2007, 70:100-102.
    [34]Fu, G M.; Shi, S. P.; Fanny, C. F.; et al. A new carotenoid glycoside from Rehmannia glutinosa [J].Naturl product research,2011,25 (13):1213-1218.
    [35]Champaviera, Y.; Comtea, G.; Vercauterenb, J.; et al. Norterpenoid and se squiterpenoid glucosides from Juniperus ph'nicea and Galega offcinalis [J]. Phytochemistry,1999,50:1219-1223.
    [36]Yoshikawa, M.; Fukuda, Y.; Taniyama, T.; et al. Chemical studies on crude drug processing.IX. On the constituents of Rehmanniae Radix.(3). Absolute stereostructures of rehmaionosides A, B, and C, and rehmapicroside, biologically active ionone glucosides and a monoterpene isolated from Chinese Rehmanniae Radix [J]. Chem Pharm Bull,1996,44 (1):41-47.
    [37]杨仁洲,周俊.一个新奇的单萜苷-黑蒴苷[J].云南植物研究,1983,5(2):213-218.
    [38]Kitagawa, I.; Hori, K.; Kawanishi, T.; et al. On the constituents of the root of fukuchiyama-jio, the hybrid of Rehmannia glutinosa var. purpurea and R. glutinosa forma hueichingensis [J]. Yakugaku Zasshi,1998,118(10):464-475.
    [39]Ihsan, C.; Mohamed, F. L.; Erich, R. Isomartynoside, A phenylpropanoid glycoside from Galeopsis pubescens [J]. Phytochemistry,1984,23 (10): 2313-2315.
    [40]Li, L. M.; Pu, J. X.; Sun, H. D. A new phenylethanoid glycoside from Is odon sculponeatus [J]. Chinese Chemical Letters,2011,22 (8):961-963.
    [41]Nishimura, H.; Sasaki, H.; Morota, T.; et al. Six Glycosides from Rehmannia Glutinosa Var. Purpurea [J]. Phytochemistry,1990,29 (10):3303-3306.
    [42]Sasaki, H.; Nishimura, H.; Chin, M.; et al. Hydroxycinnamic acid esters of phenethylalcohol Glycosides from Rehmannia Glutinosa Ver. Purpurea [J]. Phytochemistry,1989,28 (3):875-879.
    [43]Shoyama, Y.; Matsumoto, M.; Nishioka, I. Pennolic glycosides from diseased roots of Rehmannia Glutinosa Ver. Purpurea [J]. Phytochemistry,1987,26 (4): 983-986.
    [44]黄鹰,常睿洁,金慧子,等.观光木酚性成分研究[J].天然产物研究与开发,2012,24:176-178.
    [45]Oshima, Y.; Tanaka, K.; Hikino, H. Sesquiterpenoid from Rehmannia Glutinosa Roots [J]. Phytochemistry,1993,33 (1):233-234.
    [46]Amarendra, P.; Alok, M. Constituents of acorus calamus:Structure of acoramone. Carbon-13 NMR spectra of cis- and trans-asarone [J]. Patra & Mitra,1981, 668-669.
    [47]陈若芸,于德泉.新疆藁本有效成分研究[J].药学学报,1995,30(7):526-530.
    [48]韦松,粱鸿,赵玉英.怀牛膝中化合物的分离鉴定[J].中国中药杂志,1997,22(5):293-295.
    [49]柳全文,范晓,张婷,等.三叉仙菜中4种化学成分的分离鉴定[J].海洋科学2006,30(10):4-6.
    [50]陈泉,吴立军,阮丽军.中药淡竹叶的化学成分研究[J].沈阳药科大学学报,2002,19(4):257-259.
    [51]冉新辉,倪伟,魏刚,等.多穗金粟兰中一个新的酚苷[J].云南植物研究2010,32(1):83-86.
    [52]周乐,王宁,杨维霞,等.秦岭龙胆的化学成分研究[J].西北农林科技大学学报(自然科学版),2004,32(1):89-92.
    [53]Wang, H. B.; Yu, D. Q.; Liang, X. T. The structure of a new neolignan glycoside from Stauntonia chinensis [J]. J. Nat. Prod.,1992,55 (2):214-216.
    [54]Koichi, M.; Megumi, Y.; Eriko, K.; et al. Four New Lignan Glycosides f rom Osmanthus fragrans Lour. var. aurantiacus Makino [J]. Helvetica. Chi mica. Acta.,2010,93:2164-2174.
    [55]Kicha, A. A.; Ivanchina, N. V.; Kalinovsky, A. I.; et al. Alkaloidosteroids from the starfish Lethasterias nanimensis chelifera [J]. Tetrahedron Lett.,2 003,44:1935-1937.
    [56]Zhong, X. N.; Otsuka, H.; Ide, T.; et al. Hydroquinone diglycoside acyl e sters from the leaves of Myrsine seguinii [J]. Phytochemistry,1999,52:92 3-927.
    [57]Lu, X. H., Zhang, J. J., Liang, H., et al. Chemical constituents of Angelica sinesis [J].J Chin Pharm Sci,2004,13 (1):1-3.
    [58]N, Aligiannis., S, Mitaku., E, Tsitsa-Tsardis., et al. Methanolic extract of verbascum macrurum as a source of natural preservatives against oxidative rancidity [J]. J. Agric. Food Chem.,2003,51,7308-7312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700