用户名: 密码: 验证码:
褪黑素对大鼠血糖、血脂代谢和动脉粥样硬化相关因素影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     褪黑素(melatonin)是一种主要在夜间由松果体合成分泌、受光线明暗及昼夜节律调控的吲哚类激素,研究发现其具有抗自由基和氧化应激、调节机体血脂和血糖代谢等多种心血管相关的生理药理学作用。体内褪黑素水平的下降与动脉粥样硬化性疾病的发生,以及机体的血脂、血糖代谢异常有显著的相关性。但机体血清褪黑素水平的改变与机体脂糖代谢异常是否存在因果关系有待进一步研究。血管内皮炎症在动脉粥样硬化等心血管疾病的发生发展中起着重要的作用。研究发现褪黑素与血管炎症反应和内皮功能之间存在一定的相关性。但褪黑素水平的降低是否可以导致血管炎症的发生,其对血管内皮细胞炎症因子表达的调控及其机制仍有待进一步研究。动脉粥样硬化病变的典型特征是巨噬细胞吞噬大量的脂质,导致泡沫细胞形成。巨噬细胞表面的三磷酸腺苷结合盒转运体A1(ABCA1)、三磷酸腺苷结合盒转运体G1(ABCG1)及其介导的胆固醇外流是细胞胆固醇逆转运的重要始动因素。研究证实,ABCA1介导细胞内胆固醇外流功能障碍能加速动脉粥样硬化的发生和发展,而ABCG1介导的胆固醇外流功能与ABCA1介导的胆固醇外流具有协同作用。褪黑素能否影响ABCA1和ABCG1的表达及其介导的巨噬细胞胆固醇外流功能,目前未见报道。我们通过建立大鼠去松果体致褪黑素缺乏的动物模型,分别对以上三部分进行研究:
     第一部分去松果体致褪黑素缺乏大鼠模型的建立及血糖、血脂代谢特点分析
     研究目的:
     1.建立去松果体致褪黑素缺乏的大鼠动物模型;
     2.观察在生理性褪黑素缺乏的环境下大鼠体内血脂、血糖代谢的特点;
     研究方法:
     1.10周龄雄性Wistar大鼠共36只,随机分为两组。通过松果体摘除手术建立大鼠去松果体致褪黑素缺乏的动物模型(Px组),并以假手术大鼠作为对照组(Con组),检测手术前后大鼠血清夜间褪黑素水平判断褪黑素缺乏模型是否成功;
     2.在术前0周,术后4周、8周、16周四个时间点测量褪黑素缺乏大鼠在正常饮食条件下血脂、血糖相关代谢指标的水平,分析其随时间的动态变化特点;
     3.测量术后16周大鼠肝脏脂质水平含量,分析其与血脂水平的关系;
     研究结果:
     1.去松果体组(Px组,N=16)动物夜间褪黑素水平减少至术前的20%,且显著低于假手术对照组(Con组,N=14)(8.19±2.05ng/L和39.98±5.91ng/L,P<0.01),褪黑素缺乏模型制作成功;
     2.在术前0周和术后4周、8周、16周各组大鼠血脂血糖水平分别为:
     1)血脂代谢指标:两组动物血脂基线水平一致。Px组大鼠血清TG、FFA和VLDL-C水平自术后4周时相比4周Con组大鼠均显著增高,并持续增高至16周(P值均<0.05)。在校正0周基线值后,Px组上述指标的16周相对0周变化值仍较Con组变化值显著增加(P值均<0.05);
     2)糖代谢方面,两组动物血糖和胰岛素水平的基线值水平一致。相比术后16周Con组,术后16周Px组大鼠的血糖水平显著增加(P<0.05),ISI指数的水平显著降低(P<0.05),但INS的的增高无显著意义。在校正了术前0周水平后,术后16周Px组上述阳性指标的变化值相比对照组变化值的差异仍有显著意义(P值均<0.05);
     3.Px组大鼠16周肝脏单位质量的甘油三酯含量相比16周Con组显著增加(P<0.01),但其单位质量的总胆固醇含量两组间比较无显著性差异。
     第二部分去松果体致褪黑素缺乏大鼠主动脉内皮炎症因子表达的变化及机制
     研究目的:
     1.研究褪黑素缺乏环境下大鼠体内血清炎症因子水平的变化,观察其主动脉内皮细胞炎症因子表达的情况,
     2.研究褪黑素对体外培养的大鼠主动脉内皮细胞炎症因子表达调控的作用及相关信号通路机制;
     研究方法:
     1.10周龄雄性Wistar大鼠,建立褪黑素缺乏的大鼠模型组(8只),以假手术组(7只)作为对照(见第一部分);
     2.分别测量褪黑素缺乏大鼠术前0周和术后16周时血清氧化应激和炎症标志物MDA、oxLDL、TNFα、IL-6和CRP的水平,检测大鼠主动脉内皮炎症因子MCP-1、ICAM-1、VCAM-1和MMP-9的表达情况;
     3.体外培养大鼠主动脉内皮细胞系,用褪黑素干预oxLDL预刺激的内皮细胞,观察细胞炎症因子蛋白表达的变化,同时检测炎症相关信号通路NF-κB、 P38-MAPK、JNK和ERK磷酸化水平的表达,探讨褪黑素可能的作用机制;
     研究结果:
     1.两组动物血清炎症因子基线值水平基本一致。在术后16周,Px组N=8)大鼠血清MDA、oxLDL、TNFα、IL-6和CRP水平相比16周Con组(N=7)均显著增加(P值均<0.01)。在校正0周基线值后,Px组上述指标的16周相对0周变化值仍较Con组变化值显著增加(P值均<0.05);
     2.术后16周,Px组大鼠主动脉内皮MCP-1、VCAM-1和MMP-9因子表达水平的IOD值相比16周Con组对应值均显著增加(P值均<0.05)。而Px组大鼠16周ICAM-1表达相比Con组无显著统计学意义;
     3.褪黑素剂量依赖性地显著抑制oxLDL诱导大鼠主动脉内皮细胞表面MCP-1、VCAM-1和MMP-9蛋白表达(P值均<0.05);并剂量依赖性地显著抑制oxLDL诱导RAEC细胞内NF-κB和P38-MAPK通路蛋白磷酸化表达水平(P值均<0.05),但对JNK和ERK1/2蛋白磷酸化表达水平无显著影响。
     第三部分去松果体致褪黑素缺乏大鼠腹腔巨噬细胞胆固醇外流的变化及机制
     研究目的:
     1.研究褪黑素缺乏大鼠腹腔巨噬细胞胆固醇外流功能的变化;
     2.研究褪黑素缺乏大鼠腹腔巨噬细胞表面ABCA1和ABCG1的表达情况;
     3.探讨褪黑素对巨噬细胞ABCA1表达的相关信号调控机制。
     研究方法:
     1.10周龄雄性Wistar大鼠,建立褪黑素缺乏的大鼠模型组(共16只),以假手术组(共16只)作为对照(见第一部分);
     2.分别收集培养大鼠术前0周和术后16周的腹腔巨噬细胞,检测褪黑素缺乏大鼠术前0周和术后16周的腹腔巨噬细胞ABCA1、ABCG1和全血清介导的胆固醇外流率,评估不同因素介导外流率的变化;
     3.检测术后16周腹腔巨噬细胞ABCA1和ABCG1基因和蛋白表达的变化;
     4.体外培养人单核细胞系(THP-1)并诱导分化为巨噬细胞,分别以不同浓度褪黑素干预细胞,观察其对细胞ABCA1表达的影响并探讨其作用的相关信号通路机制。
     研究结果:
     1.两组动物腹腔巨噬细胞胆固醇外流率基线值基本一致。Px组(N=6)术后16周的全血清诱导(-7.29±5.91%和-3.80±4.79%,P<0.01)以及ABCA1介导的胆固醇外流率相对0周的变化值(-4.21±4.82%和-1.20±2.12%,P<0.01)相比Con组(N=6)对应的变化值均显著下降,但ABCG1介导的胆固醇外流率的变化值在两组间无显著差异。
     2.术后16周,Px组(N=6)的腹腔巨噬细胞ABCA1转运体mRNA水平的表达相比16周Con组(N=6)的表达显著下降(P<0.01),但其蛋白表达水平在两组间无显著统计学差异。
     3.术后16周,ABCG1转运体mRNA和蛋白水平的表达在两组间均无显著统计学差异。
     4.褪黑素剂量依赖性地显著增强THP-1巨噬细胞ABCA1和LXRa的mRNA水平和蛋白水平的表达(P值均<0.05);PPARy和LXRa拮抗剂均可显著抑制褪黑素对细胞ABCA1蛋白表达的促进作用(P值均<0.001);褪黑素膜受体MT1/MT2拮抗剂对于褪黑素对细胞ABCA1蛋白表达的调控均无显著影响。
     研究结论
     1.通过松果体摘除手术成功建立褪黑素缺乏的大鼠动物模型。
     2.褪黑素缺乏可显著导致大鼠胰岛素抵抗的发生,影响大鼠血甘油三酯和血糖代谢。
     3.褪黑素缺乏促进大鼠体内炎症反应过程,促进并可能通过NF-κB和P38-MAPK通路参与的机制调控大鼠主动脉内皮炎症因子的表达。
     4.褪黑素缺乏抑制大鼠腹腔巨噬细胞胆固醇外流及ABCA1基因表达及其介导的胆固醇外流;褪黑素以不依赖于褪黑素膜受体的方式作用于巨噬细胞内的PPARy-LXRa途径,调控细胞ABCA1的表达水平。
Background:
     Melatonin (Mel) is an indole-like hormone that synthesized and secreted by pineal gland, with a secretion rhythm controlled by the light-dark cycle (intensity of the light). Researches have found that Mel has a variety of cardiovascular relevant effects, such as the inhibition of oxidants and regulation of blood lipid and glucose metabolism. It has been reported that the decrease of Mel concentration is prominently related with the development of atherosclerotic diseases, and with the increase of the blood lipid and glucose-associated disorders. However, it is unclear whether the alternation of in vivo Mel concentration will lead to such dysmetabolisms. Endothelial inflammation participates in the development of cardiovascular diseases including atherosclerosis (As). Several publications presented a correlation between Mel and vascular inflammation and dysfunction. Nevertheless, mechanism of the effect of Mel on endothelial inflammation remains to be elucidated. Atherosclerotic lesions are typically infiltrated by macrophage-derived foam cells, in which cholesterol esters are overloaded. ATP-binding cassette transporter Al (ABCA1), which expressed on macrophages, plays critical roles in mediating the reverse cholesterol efflux to maintain intracellular cholesterol homeostasis. Studies indicated that the dysfunction of ABCA1mediated cholesterol efflux to apolipoprotein A1was closely associated with As. ATP-binding cassette transporter G1(ABCGl) mediated cholesterol efflux shown to be coordinated to ABCA1in removal of excessive cellular cholesterol, which also plays a role in the development of As. The mechanisms of Mel deficiency on regulating ABCA1and ABCG1expression and their mediated cholesterol efflux function, however, are still unknown. Therefore, we created melatonin-deficiency animal models and performed a study consist of three parts to answer those questions above.
     Part I. Creation of Melatonin-Deficiency Rats and the Metabolic Characteristics of their Serum Lipid and Glucose Profiles
     Objective:
     1. To create melatonin-deficiency animal models in rats.
     2. To analyse the metabolic characteristics of their serum lipid and glucose profiles in melatonin-deficiency rats.
     Methods:
     1. Thirty-six Wistar rats, male,10-week old were included. Melatonin-deficiency (Px) rats were created by pinealectomy. Nocturnal levels of melatonin before and after surgery were measured and compared with those levels in sham-operated (Con) rats to evaluate the success of surgery.
     2. Serum lipid and glucose profiles in Px rats were measured at the0week (baseline), and the4th,8th,16th week after surgery respectively, and compared with those profiles in Con rats at each time-point.
     3. The contents of total cholesterol and triglyceride in liver tissue were measured at the16th week after surgery respectively, and compared with those in Con rats.
     Results:
     1. Nocturnal serum level of melatonin in Px group (N=16) was significantly diminished after surgery, compared with that in Con group (N=14)(8.19±2.05ng/L vs.39.98±5.91ng/L, P<0.001, respectively), suggesting a melatonin deficiency state in pinealectomized rats.
     2. Comparison of serum lipid and glucose metabolic profiles between Px and Con rats at the0week(baseline), and the4th,8th,16th week after surgery were listed below:
     1. Lipid metabolic profile:No significant differences of serum lipid levels at the baseline were observed between the Px (N=16) and Con (N-14) groups. At the4th week after surgical operation, serum TG, VLDL-C and FFA in Px group were all significantly increased compared to those in Con group at4th week(all P<0.05), and continued to be elevated until the16th week (all P<0.05). The changes of serum TG, VLDL-C and FFA levels from baseline at the16th week in Px group were all significantly higher than those in control group (all P<0.05for the between-group comparison).
     2. Glucose metabolic profile:No significant differences of serum glucose-relevant parameters at the baseline were observed between the Px (N=8) and Con (N=7) groups. The serum glucose level at the16th week was significantly elevated, with the significant decrease of ISI index in Px group, compared with that in Con group (P<0.05). However, the INS level in Px group had no significant difference from that in Con group. The changes of serum glucose levels, INS and ISI from baseline at the16th week in Px group were all significantly higher than those in Con group (all P<0.05for the between-group comparison).
     3. The average content of triglyceride in the liver tissue of the Px group at16th week was significantly higher than that in Con group (P<0.01). However, The average content of total cholesterol in the liver tissue in Px group had no significant difference from that in Con group.
     Part II. Changes of Inflammatory Cytokines in Pinealectomized Melatonin-Deficiency Rats and the Underlying Mechanisms
     Objective:
     1. To investigate the effect of melatonin on in-vivo inflammation and expression of aortic inflammatory cytokines in melatonin-deficiency rats.
     2. To study the possible mechanisms of melatonin in regulating the expression of inflammatory cytokines on endothelial cells.
     Methods:
     1. Wistar rats, male,10-week old were included. Eight melatonin-deficiency (Px) rats were created and compared with seven sham-operated (Con) rats (See Part I).
     2. Serum oxidative stress and inflammatory biomarkers MDA, oxLDL, TNF-a, IL-6and CRP in Px rats were measured at the0week and16th week after surgery respectively, and compared with those levels in Con rats. IHC stain of the aorta in each group was performed and quantified to analyse the expression of inflammatory cytokines MCP-1, ICAM-1、VCAM-1and MMP-9in endothelium.
     3. Rat aortic endothelial cell lines (RAECs) were pre-incubated with oxLDL and treated by melatonin in vitro. The protein expression of inflammatory cytokines and phosphorylation levels of relevant signal pathways including NFκB, P38-MAPK, ERK and JNK were determined.
     Results:
     1. Serum levels of MDA, oxLDL, TNF-α, IL-6and CRP in Px group (N=8) at the16th week were all significantly increased, compared with those in Con group (N=7) respectively (all P<0.01). The change from baseline at the16th week for each above-mentioned parameter in Px group was significantly higher than that in Con group (all P<0.05for the between-group comparison).
     2. The IOD values of MCP-1, VCAM-1and MMP-9in Px group (N=8) were all significantly elevated compared to those in Con group (N=7)(all P<0.05). However, ICAM-1expression was not significantly changed compared to that in Con group.
     3. Melatonin dose-dependently attenuated oxLDL-induced MCP-1, VCAM-1and MMP-9expressions on RAECs (all P<0.05). It also dose-dependently decreased NFκB and P38-MAPK protein phosphorylation levels (all P<0.05), but the phosphorylation levels of ERK1/2and JNK were not affected significantly by melatonin.
     Part Ⅲ. Alternations of Cholesterol Efflux of Peritoneal Macrophages in Pinealectomized Melatonin-Deficiency Rats and the Underlying Mechanisms
     Objective:
     1. To investigate the function of intercellular cholesterol efflux in macrophages from melatonin-deficiency rats.
     2. To study the expressions of ABCA1and ABCG1on macrophages from melatonin-deficiency rats.
     3. To study the mechanisms of melatonin in regulating the expression of ABCA1on macrophages.
     Methods:
     1. Wistar rats, male,10-week old were included. Sixteen melatonin-deficiency (Px) rats were created and compared with sixteen sham-operated (Con) rats (See Part Ⅰ).
     2. Peritoneal macrophages were collected from Px and Con rats at0week and16th week respectively, and cultured in vitro.
     3. Their macrophage cholesterol efflux rates of Px and Con groups at0week and16th week were measured respectively.
     4. Their ABCA1, ABCG1mRNA and protein expression levels of the two groups at the16th week were determined respectively.
     5. THP-1derived macrophages were cultured and treated by melatonin in vitro. The mechanism of melatonin in regulating ABCA1protein expression was evaluated using different signal pathway/receptor antagonists.
     Results:
     4. No differences of cholesterol efflux rates of peritoneal macrophages at the baseline were observed between the Px (N=6) and Con (N=6) groups. The differences of serum-induced cholesterol efflux rates (-7.29±5.91%vs.-3.80±4.79%, P<0.01) and ABCA1-induced cholesterol efflux rates (-4.21±4.82%vs.-1.20±2.12%, P<0.01) between0week and16th week in Px group were both significantly lowered, compared to those in Con group respectively. However, those differences of ABCG1-induced cholesterol efflux rates showed no significance between the two groups.
     5. The ABCA1mRNA expression level of the peritoneal macrophages was significantly decreased in Px group (N=6) at16th week, compared to that in Con (N=6) group (P<0.001). However, the protein expression level of ABCA1showed no significant differences between the two groups.
     6. Neither the mRNA expression level (N=6) nor the protein expression level of ABCG1on peritoneal macrophages showed significant differences between the two groups at the16th week.
     7. Melatonin dose-dependently augmented ABCA1and LXRa expressions on the cultured THP-1derived macrophages (all P<0.05). The use of PPARy and LXRa antagonists both significantly attenuated melatonin-induced ABCA1expression. However, the use of melatonin membrane receptor antagonists showed no significant influences on melatonin-induced ABCA1expression on macrophages.
     Conclusions:
     Melatonin-deficiency rats were successfully created by pinealectomy. Melatonin deficiency initiates blood lipid and glucose-associated disorders, augments in vivo inflammatory state and the expression of aortic inflammatory cytokines in pinealectomized rats. Melatonin regulates these inflammatory cytokines expressions probably via NF-κB and P38-MAPK involved pathways. Melatonin deficiency inhibits the function of cholesterol efflux and ABCAl gene expression of peritoneal macrophage from pinealectomized rats. The PPARy-LXRa pathways were involved in the regulatory effect of melatonin on ABCA1protein expression, with a mechanism independent of melatonin membrane receptors.
引文
[1]Tsuboi S. [Regulatory mechanism of melatonin synthesis in pineal gland: regulation of serotonin N-acetyltransferase activity][J]. Seikagaku,2005,77(5):411-415.
    [2]Ebels I, Cremer-Bartels G. Inhibition of avian and mammalian hydroxy-indole-o-methyl-transferase (HIOMT) with low molecular weight fractions of mammalian pineal glands[J]. Life Sci,1982,30(16):1369-1377.
    [3]Skene D J, Arendt J. Human circadian rhythms:physiological and therapeutic relevance of light and melatonin.[J]. Ann Clin Biochem,2006,43(Pt 5):344-353.
    [4]Cassone V M. Effects of melatonin on vertebrate circadian systems.[J]. Trends Neurosci,1990,13(11):457-464.
    [5]Alberti C. [Melatonin:the first hormone isolated from the pineal body][J]. Farmaco Sci,1958,13(8):604-605.
    [6]Arendt J, Bojkowski C, Folkard S, et al. Some effects of melatonin and the control of its secretion in humans.[J]. Ciba Found Symp,1985,117:266-283.
    [7]Jung B, Ahmad N. Melatonin in cancer management:progress and promise.[J]. Cancer Res,2006,66(20):9789-9793.
    [8]Szczepanik M. Melatonin and its influence on immune system[J]. J Physiol Pharmacol,2007,58 Suppl 6:115-124.
    [9]Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin: a novel radioprotector.[J]. J Radiat Res (Tokyo),2007,48(4):263-272.
    [10]Reiter R J, Paredes S D, Korkmaz A, et al. Melatonin in relation to the "strong" and "weak" versions of the free radical theory of aging[J]. Adv Med Sci,2008,53(2): 119-129.
    [11]Sahna E, Deniz E, Aksulu H E. [Myocardial ischemia-reperfusion injury and melatonin][J]. Anadolu Kardiyol Derg,2006,6(2):163-168.
    [12]Agil A, Navarro-Alarcon M, Ruiz R, et al. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats[J]. J Pineal Res,2011,50(2): 207-212.
    [13]Lima F B, Matsushita D H, Hell N S, et al. The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin.[J]. Braz J Med Biol Res,1994,27(4):995-1000.
    [14]Espino J, Pariente J A, Rodriguez A B. Role of melatonin on diabetes-related metabolic disorders[J]. World J Diabetes,2011,2(6):82-91.
    [15]Devavry S, Legros C, Brasseur C, et al. Molecular pharmacology of the mouse melatonin receptors MT(1) and MT(2)[J]. Eur J Pharmacol,2012,677(1-3):15-21.
    [16]Schepelmann M, Molcan L, Uhrova H, et al. The presence and localization of melatonin receptors in the rat aorta[J]. Cell Mol Neurobiol,2011,31(8):1257-1265.
    [17]Slominski R M, Reiter R J, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues:distribution and functions [J]. Mol Cell Endocrinol,2012, 351(2):152-166.
    [18]Cutando A, Aneiros-Fernandez J, Lopez-Valverde A, et al. A new perspective in Oral health:potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity [J]. Arch Oral Biol,2011,56(10):944-950.
    [19]Hoyos M, Guerrero J M, Perez-Cano R, et al. Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats.[J]. J Pineal Res,2000,28(3):150-155.
    [20]Nishida S, Segawa T, Murai I, et al. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity.[J]. J Pineal Res,2002,32(1):26-33.
    [21]Kadhim H M, Ismail S H, Hussein K I, et al. Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin.[J]. J Pineal Res,2006,41(2):189-193.
    [22]Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, et al. Elevated levels of oxidized low-density lipoprotein and impaired nocturnal synthesis of melatonin in patients with myocardial infarction.[J]. Atherosclerosis,2005,180(1):101-105.
    [23]Vijayasarathy K, Shanthi N K, Sastry B K. Melatonin metabolite 6-Sulfatoxymelatonin, Cu/Zn superoxide dismutase, oxidized LDL and malondialdehyde in unstable angina.[J]. Int J Cardiol,2009.
    [24]Robeva R, Kirilov G, Tomova A, et al. Melatonin-insulin interactions in patients with metabolic syndrome.[J]. J Pineal Res,2008,44(1):52-56.
    [25]Rosenson R S, Brewer H J, Davidson W S, et al. Cholesterol efflux and atheroprotection:advancing the concept of reverse cholesterol transport[J]. Circulation, 2012,125(15):1905-1919.
    [26]Frohlich J, Al-Sarraf A. Cholesterol efflux capacity and atherosclerosis [J]. N Engl J Med,2011,364(15):1474,1474-1475.
    [27]Knight B L. ATP-binding cassette transporter A1:regulation of cholesterol efflux[J]. Biochem Soc Trans,2004,32(Pt 1):124-127.
    [28]Smith J D. Insight into ABCG1-mediated cholesterol efflux[J]. Arterioscler Thromb Vasc Biol,2006,26(6):1198-1200.
    [29]Truong T Q, Aubin D, Falstrault L, et al. SR-BI, CD36, and caveolin-1 contribute positively to cholesterol efflux in hepatic cells[J]. Cell Biochem Funct,2010,28(6): 480-489.
    [30]Oram J F. Tangier disease and ABCA1[J]. Biochim Biophys Acta,2000,1529(1-3): 321-330.
    [31]Soumian S, Albrecht C, Davies A H, et al. ABCA1 and atherosclerosis[J]. Vasc Med,2005,10(2):109-119.
    [32]Liu H F, Cui K F, Wang J P, et al. Significance of ABCA1 in human carotid atherosclerotic plaques[J]. Exp Ther Med,2012,4(2):297-302.
    [33]Ozasa H, Ayaori M, Iizuka M, et al. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARgamma/LXRalpha pathway:findings from in vitro and ex vivo studies[J]. Atherosclerosis,2011,219(1): 141-150.
    [34]Tarling E J, Edwards P A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter [J]. Proc Natl Acad Sci U S A,2011,108(49): 19719-19724.
    [35]Afzal R. Melatonin:Miracles far beyond the pineal gland[J]. Indian J Endocrinol Metab,2012,16(4):672-674.
    [36]Preslock J P. The pineal gland:basic implications and clinical correlations[J]. Endocr Rev,1984,5(2):282-308.
    [37]Bubenik G A. Thirty four years since the discovery of gastrointestinal melatonin.[J]. J Physiol Pharmacol,2008,59 Suppl 2:33-51.
    [38]Arav V I, Slesarev S M, Slesareva E V. A method for extirpation of the pineal gland in albino rats[J]. Bull Exp Biol Med,2008,146(3):382-384.
    [39]Kennaway D J, Wright H. Melatonin and circadian rhythms[J]. Curr Top Med Chem,2002,2(2):199-209.
    [40]Nishida S, Sato R, Murai I, et al. Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats.[J]. J Pineal Res,2003,35(4): 251-256.
    [41]Talayero B G, Sacks F M. The role of triglycerides in atherosclerosis[J]. Curr Cardiol Rep,2011,13(6):544-552.
    [42]Pu D R, Liu L. Remnant like particles may induce atherosclerosis via accelerating endothelial progenitor cells senescence[J]. Med Hypotheses,2007,69(2):293-296.
    [43]Malloy M J, Kane J P. A risk factor for atherosclerosis:triglyceride-rich lipoproteins[J]. Adv Intern Med,2001,47:111-136.
    [44]Cohn J S. Postprandial lipemia and remnant lipoproteins[J]. Clin Lab Med,2006, 26(4):773-786.
    [45]Yamamura T, Ishigami M. [Cutting-edge research on the metabolism of remnant lipoproteins][J]. Rinsho Byori,2010,58(6):613-621.
    [46]Shoji T, Hatsuda S, Tsuchikura S, et al. Small dense low-density lipoprotein cholesterol concentration and carotid atherosclerosis[J]. Atherosclerosis,2009,202(2): 582-588.
    [47]Koba S, Hirano T. [Dyslipidemia and atherosclerosis][J]. Nihon Rinsho,2011, 69(1):138-143.
    [48]Garczorz W, Francuz T, Gminski J, et al. Influence of elastin-derived peptides, glucose, LDL and oxLDL on nitric oxide synthase expression in human umbilical artery endothelial cells[J]. Acta Biochim Pol,2011,58(3):375-379.
    [49]Goyal T, Mitra S, Khaidakov M, et al. Current Concepts of the Role of Oxidized LDL Receptors in Atherosclerosis[J]. Curr Atheroscler Rep,2012.
    [50]Blachnio-Zabielska A, Zabielski P, Baranowski M, et al. Effects of streptozotocin-induced diabetes and elevation of plasma FFA on ceramide metabolism in rat skeletal muscle[J]. Horm Metab Res,2010,42(1):1-7.
    [51]Chehade J M, Gladysz M, Mooradian A D. Dyslipidemia in Type 2 Diabetes: Prevalence, Pathophysiology, and Management[J]. Drugs,2013.
    [52]Katsiki N, Nikolic D, Montalto G, et al. The Role of Fibrate Treatment in Dyslipidemia:An Overview[J]. Curr Pharm Des,2013.
    [53]Muhlbauer E, Albrecht E, Bazwinsky-Wutschke I, et al. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets[J]. J Pineal Res,2012,52(4):446-459.
    [54]Stumpf I, Muhlbauer E, Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells.[J]. J Pineal Res,2008,45(3):318-327.
    [55]Kitagawa A, Ohta Y, Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats[J]. J Pineal Res,2012,52(4):403-413.
    [56]Kim S J, Nian C, Mcintosh C H. Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes[J]. J Biol Chem,2007,282(47):34139-34147.
    [57]Ouda B F, Girard A, Prost J, et al. [Fish proteins moderate triacylglycerols, activities of hepatic triacylglycerol lipase and tissue lipoprotein lipases in hypertensive and diabetic rats][J]. Arch Mal Coeur Vaiss,2006,99(7-8):727-731.
    [58]van der Steeg W A, Kuivenhoven J A, Klerkx A H, et al. Role of CETP inhibitors in the treatment of dyslipidemia[J]. Curr Opin Lipidol,2004,15(6):631-636.
    [59]Ong K T, Mashek M T, Bu S Y, et al. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning[J]. Hepatology,2011,53(1):116-126.
    [60]Bu S Y, Mashek D G. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways[J]. J Lipid Res,2010,51(11): 3270-3280.
    [61]Dhote V, Joharapurkar A, Kshirsagar S, et al. Inhibition of microsomal triglyceride transfer protein improves insulin sensitivity and reduces atherogenic risk in Zucker fatty rats[J]. Clin Exp Pharmacol Physiol,2011,38(5):338-344.
    [62]Ginsberg H N, Brown W V. Apolipoprotein CIII:42 years old and even more interesting[J]. Arterioscler Thromb Vasc Biol,2011,31(3):471-473.
    [63]Tai E S, Ordovas J M. Clinical significance of apolipoprotein A5[J]. Curr Opin Lipidol,2008,19(4):349-354.
    [64]Butun I, Ekmekci H, Ciftci O, et al. The effects of different doses of melatonin on lipid peroxidation in diet-induced hypercholesterolemic rats[J]. Bratisl Lek Listy,2013, 114(3):129-132.
    [65]Kozirog M, Poliwczak A R, Duchnowicz P, et al. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome[J]. J Pineal Res,2011,50(3):261-266.
    [66]Hussain S A. Effect of melatonin on cholesterol absorption in rats.[J]. J Pineal Res, 2007,42(3):267-271.
    [67]Usui T, Okada M, Hara Y, et al. Death-associated protein kinase 3 mediates vascular inflammation and development of hypertension in spontaneously hypertensive rats[J]. Hypertension,2012,60(4):1031-1039.
    [68]Seijkens T, Kusters P, Engel D, et al. CD40-CD40L:Linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications [J]. Diab Vase Dis Res,2012.
    [69]Arzamastsev D D, Karpenko A A, Kostiuchenko G I. [Inflammation of the vascular wall and hyperhomocysteinemia in patients with atherosclerosis obliterans of lower limb arteries][J]. Angiol Sosud Khir,2012,18(1):27-30.
    [70]Tsimikas S, Miller Y I. Oxidative modification of lipoproteins:mechanisms, role in inflammation and potential clinical applications in cardiovascular disease[J]. Curr Pharm Des,2011,17(1):27-37.
    [71]Chen B, Guan D, Cui Z J, et al. Thioredoxin 1 downregulates MCP-1 secretion and expression in human endothelial cells by suppressing nuclear translocation of activator protein 1 and redox factor-1[J]. Am J Physiol Cell Physiol,2010,298(5):C1170-C1179.
    [72]Jia Y, Gao P, Chen H, et al. SIRT1 suppresses PMA and ionomycin-induced ICAM-1 expression in endothelial cells[J]. Sci China Life Sci,2012.
    [73]Zhang F, Ren J, Chan K, et al. Angiotensin-(1-7) regulates Angiotensin Ⅱ-induced VCAM-1 expression on vascular endothelial cells[J]. Biochem Biophys Res Commun, 2012.
    [74]Cossette E, Cloutier Ⅰ, Tardif K, et al. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein[J]. Mol Cell Biochem,2012.
    [75]Grinenko T N, Balliuzek M F, Kvetnaia T V. [Melatonin as a marker of intensity of structural and functional changes in the heart and vessels of the patients presenting with metabolic syndrome][J]. Klin Med (Mosk),2012,90(2):30-34.
    [76]Rodella L F, Rossini C, Favero G, et al. Nicotine-induced morphological changes in rat aorta:the protective role of melatonin[J]. Cells Tissues Organs,2012,195(3): 252-259.
    [77]Tunstall R R, Shukla P, Grazul-Bilska A, et al. MT2 receptors mediate the inhibitory effects of melatonin on nitric oxide-induced relaxation of porcine isolated coronary arteries[J]. J Pharmacol Exp Ther,2011,336(1):127-133.
    [78]Korkmaz A, Reiter R J, Topal T, et al. Melatonin:an established antioxidant worthy of use in clinical trials.[J]. Mol Med,2009,15(1-2):43-50.
    [79]Kaneko S, Okumura K, Numaguchi Y, et al. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury.[J]. Life Sci,2000,67(2): 101-112.
    [80]Chakravarty S, Rizvi S I. Circadian modulation of human erythrocyte plasma membrane redox system by melatonin[J]. Neurosci Lett,2012,518(1):32-35.
    [81]Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. The role of melatonin in acute myocardial infarction[J]. Front Biosci,2012,17:2433-2441.
    [82]Mogulkoc R, Baltaci A K, Aydin L, et al. Pinealectomy inhibits antioxidant system in rats with hyperthyroidism[J]. Neuro Endocrinol Lett,2005,26(6):795-798.
    [83]Itabe H. Oxidative modification of LDL:its pathological role in atherosclerosis[J]. Clin Rev Allergy Immunol,2009,37(1):4-11.
    [84]Duryee M J, Klassen L W, Schaffert C S, et al. Malondialdehyde-acetaldehyde adduct is the dominant epitope after MDA modification of proteins in atherosclerosis[J]. Free Radic Biol Med,2010,49(10):1480-1486.
    [85]Bruunsgaard H, Skinhoj P, Pedersen A N, et al. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis [J]. Clin Exp Immunol,2000,121(2): 255-260.
    [86]Nishida M, Moriyama T, Ishii K, et al. Effects of IL-6, adiponectin, CRP and metabolic syndrome on subclinical atherosclerosis[J]. Clin Chim Acta,2007,384(1-2): 99-104.
    [87]Sekalska B. [Aortic expression of monocyte chemotactic protein-1 (MCP-1) gene in rabbits with experimental atherosclerosis][J]. Ann Acad Med Stetin,2003,49:79-90.
    [88]Ling S, Nheu L, Komesaroff P A. Cell adhesion molecules as pharmaceutical target in atherosclerosis[J]. Mini Rev Med Chem,2012,12(2):175-183.
    [89]Singh R J, Mason J C, Lidington E A, et al. Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3[J]. Cardiovasc Res,2005,67(1):39-49.
    [90]Arnett D K, Mcclelland R L, Bank A, et al. Biomarkers of inflammation and hemostasis associated with left ventricular mass:The Multiethnic Study of Atherosclerosis (MESA)[J]. Int J Mol Epidemiol Genet,2011,2(4):391-400.
    [91]Rybakowski J K. Matrix Metalloproteinase-9 (MMP9)-A Mediating Enzyme in Cardiovascular Disease, Cancer, and Neuropsychiatric Disorders[J]. Cardiovasc Psychiatry Neurol,2009,2009:904836.
    [92]Thompson W L, Van Eldik L J. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocytes [corrected][J]. Brain Res,2009,1287:47-57.
    [93]Loizou S, Paraschos S, Mitakou S, et al. Chios mastic gum extract and isolated phytosterol tirucallol exhibit anti-inflammatory activity in human aortic endothelial cells[J]. Exp Biol Med (Maywood),2009,234(5):553-561.
    [94]Li W, Li H, Bocking A D, et al. Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway[J]. Biol Reprod, 2010,83(3):481-487.
    [95]Tang Z, Jiang L, Peng J, et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages[J]. Int J Mol Med,2012,30(4):931-938.
    [96]Qin W, Lu W, Li H, et al. Melatonin inhibits IL1beta-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-kappaB activation[J]. J Endocrinol,2012,214(2):145-153.
    [97]Chen X L, Dodd G, Kunsch C. Sulforaphane inhibits TNF-alpha-induced activation of p38 MAP kinase and VCAM-1 and MCP-1 expression in endothelial cells[J]. Inflamm Res,2009,58(8):513-521.
    [98]Aomatsu T, Imaeda H, Takahashi K, et al. Tacrolimus (FK506) suppresses TNF-alpha-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts[J]. Int J Mol Med,2012, 30(5):1152-1158.
    [99]Choi H J, Chung T W, Kim J E, et al. Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysachride-induced RAW264.7 cells[J]. Int Immunopharmacol,2012,14(3): 267-274.
    [100]Dong Y J, Ding C H, Gu W W, et al. [Inhibitory effects of melatonin on the expression of phosphorylation p38 mitogen-activated protein kinase during acute lung injury in rats][J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2010,22(7):418-421.
    [101]Esposito E, Genovese T, Caminiti R, et al. Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury [J]. J Pineal Res, 2009,46(1):79-86.
    [102]Wang M D, Franklin V, Marcel Y L. In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired[J]. Arterioscler Thromb Vasc Biol, 2007,27(8):1837-1842.
    [103]Ni Z L, Zhao S P, Wu Z. ABCG1--a potential therapeutic target for atherosclerosis[J]. Med Hypotheses,2007,69(1):214-217.
    [104]Broncel M, Kozirog-Kolacinska M, Chojnowska-Jezierska J. [Melatonin in the treatment of atherosclerosis] [J]. Pol Merkur Lekarski,2007,23(134):124-127.
    [105]de Vries R, Groen A K, Dullaart R P. Cholesterol efflux capacity and atherosclerosis[J]. N Engl J Med,2011,364(15):1473-1474,1474-1475.
    [106]Yancey P G, Bortnick A E, Kellner-Weibel G, et al. Importance of different pathways of cellular cholesterol efflux[J]. Arterioscler Thromb Vasc Biol,2003,23(5): 712-719.
    [107]Kritharides L, Christian A, Stoudt G, et al. Cholesterol metabolism and efflux in human THP-1 macrophages [J]. Arterioscler Thromb Vasc Biol,1998,18(10): 1589-1599.
    [108]王会娟,孟晓梅,陈连凤,等.2型糖尿病患者的高密度脂蛋白和乏脂血清对细胞内胆固醇外流的影响[J].基础医学与临床,2009(5):510-514.
    [109]Okuhira K. [Regulatory factors for ABCA1 activity of HDL generation][J]. Seikagaku,2012,84(4):285-290.
    [110]Borges-Silva C N, Alonso-Vale M I, Franzoi-De-Moraes S M, et al. Pinealectomy impairs adipose tissue adaptability to exercise in rats[J]. J Pineal Res,2005,38(4): 278-283.
    [111]Reiss A B, Anwar F, Chan E S, et al. Disruption of cholesterol efflux by coxib medications and inflammatory processes:link to increased cardiovascular risk[J]. J Investig Med,2009,57(6):695-702.
    [112]Post S M, Groenendijk M, van der Hoogt C C, et al. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol[J]. Arterioscler Thromb Vasc Biol,2006,26(12):2724-2730.
    [113]Post S M, Groenendijk M, van der Hoogt C C, et al. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE* 3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol[J]. Arterioscler Thromb Vasc Biol,2006,26(12):2724-2730.
    [114]Nishimaki-Mogami T. [Dual regulation of hepatic ABCA1 gene expression][J]. Seikagaku,2010,82(9):852-856.
    [115]Qiu G, Hill J S. Atorvastatin inhibits ABCA1 expression and cholesterol efflux in THP-1 macrophages by an LXR-dependent pathway[J]. J Cardiovasc Pharmacol,2008, 51(4):388-395.
    [116]Arakawa R, Tamehiro N, Nishimaki-Mogami T, et al. Fenofibric acid, an active form of fenofibrate, increases apolipoprotein A-I-mediated high-density lipoprotein biogenesis by enhancing transcription of ATP-binding cassette transporter A1 gene in a liver X receptor-dependent manner[J]. Arterioscler Thromb Vasc Biol,2005,25(6): 1193-1197.
    [117]Hao X R, Cao D L, Hu Y W, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner[J]. Atherosclerosis,2009,203(2):417-428.
    [118]Field F J, Watt K, Mathur S N. TNF-alpha decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2[J]. J Lipid Res, 2010,51(6):1407-1415.
    [119]Santamarina-Fojo S, Peterson K, Knapper C, et al. Complete genomic sequence of the human ABCA1 gene:analysis of the human and mouse ATP-binding cassette A promoter[J]. Proc Natl Acad Sci U S A,2000,97(14):7987-7992.
    [120]Liu Y, Tang C. Regulation of ABCA1 functions by signaling pathways[J]. Biochim Biophys Acta,2012,1821(3):522-529.
    [121]Ide T, Shimano H, Yoshikawa T, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. Ⅱ. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling[J]. Mol Endocrinol,2003,17(7):1255-1267.
    [122]Yoshikawa T, Ide T, Shimano H, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling[J]. Mol Endocrinol,2003,17(7): 1240-1254.
    [123]Chawla A, Boisvert W A, Lee C H, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell,2001, 7(1):161-171.
    [124]Yang C M, Lu Y L, Chen H Y, et al. Lycopene and the LXRalpha agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARgamma-LXRalpha-ABCAl pathway [J]. J Nutr Biochem,2011.
    [125]Zhang L, Su P, Xu C, et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression[J]. J Pineal Res,2010,49(4):364-372.
    [126]Dong S Z, Zhao S P, Wu Z H, et al. Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway[J]. Mol Cell Biochem, 2011,358(1-2):282-285.
    [127]Zuercher W J, Buckholz R G, Campobasso N, et al. Discovery of tertiary sulfonamides as potent liver X receptor antagonists[J]. J Med Chem,2010,53(8): 3412-3416.
    [128]Chawla A, Boisvert W A, Lee C H, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell,2001, 7(1):161-171.
    [129]Wu Y H, Ursinus J, Zhou J N, et al. Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression[J]. J Affect Disord, 2013.
    [130]Bahr I, Muhlbauer E, Schucht H, et al. Melatonin stimulates glucagon secretion in vitro and in vivo[J]. J Pineal Res,2011,50(3):336-344.
    [131]Liao S, Liu Y, Tan Y, et al. Association of genetic variants of melatonin receptor 1B with gestational plasma glucose level and risk of glucose intolerance in pregnant Chinese women[J]. PLoS One,2012,7(7):e40113.
    [132]Nagorny C L, Sathanoori R, Voss U, et al. Distribution of melatonin receptors in murine pancreatic islets[J]. J Pineal Res,2011,50(4):412-417.
    [133]Aneiros-Fernandez J, Arias-Santiago S, Arias-Santiago B, et al. MT1 Melatonin Receptor Expression in Warthin's Tumor[J]. Pathol Oncol Res,2012.
    [134]Espino J, Rodriguez A B, Pariente J A. The inhibition of TNF-alpha-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction[J]. J Pineal Res,2013.
    [135]Paulis L, Simko F, Laudon M. Cardiovascular effects of melatonin receptor agonists[J]. Expert Opin Investig Drugs,2012,21(11):1661-1678.
    [136]Smirnov A N. Nuclear melatonin receptors[J]. Biochemistry (Mosc),2001,66(1): 19-26.
    [1]Kavousi M, Leening M J, Witteman J C. Markers for prediction of cardiovascular disease risk[J]. JAMA,2012,308(24):2561,2561-2562.
    [2]陆再英,钟南山.内科学第7版[M].北京:人民卫生出版社,2008:159.
    [3]胡盛寿,孔灵芝.中国心血管病报告2010[M].北京:中国大百科全书出版社,2011:1.
    [4]Martinez-Soriano F, Ruiz-Torner A, Armananzas E, et al. Influence of light/dark, seasonal and lunar cycles on serum melatonin levels and synaptic bodies number of the pineal gland of the rat[J]. Histol Histopathol,2002,17(1):213-222.
    [5]Alberti C. [Melatonin:the first hormone isolated from the pineal body][J]. Farmaco Sci,1958,13(8):604-605.
    [6]Arendt J, Bojkowski C, Folkard S, et al. Some effects of melatonin and the control of its secretion in humans.[J]. Ciba Found Symp,1985,117:266-283.
    [7]Jung B, Ahmad N. Melatonin in cancer management:progress and promise.[J]. Cancer Res,2006,66(20):9789-9793.
    [8]Szczepanik M. Melatonin and its influence on immune system[J]. J Physiol Pharmacol,2007,58 Suppl 6:115-124.
    [9]Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin:a novel radioprotector.[J]. J Radiat Res (Tokyo),2007,48(4):263-272.
    [10]Reiter R J, Paredes S D, Korkmaz A, et al. Melatonin in relation to the "strong" and "weak" versions of the free radical theory of aging[J]. Adv Med Sci,2008,53(2): 119-129.
    [11]Sahna E, Deniz E, Aksulu H E. [Myocardial ischemia-reperfusion injury and melatonin] [J]. Anadolu Kardiyol Derg,2006,6(2):163-168.
    [12]Agil A, Navarro-Alarcon M, Ruiz R, et al. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats[J]. J Pineal Res,2011,50(2): 207-212.
    [13]Lima F B, Matsushita D H, Hell N S, et al. The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin.[J]. Braz J Med Biol Res,1994,27(4):995-1000.
    [14]Espino J, Pariente J A, Rodriguez A B. Role of melatonin on diabetes-related metabolic disorders[J]. World J Diabetes,2011,2(6):82-91.
    [15]Tuteja N, Singh M B, Misra M K, et al. Molecular mechanisms of DNA damage and repair:progress in plants[J]. Crit Rev Biochem Mol Biol,2001,36(4):337-397.
    [16]Victor V M, Apostolova N, Herance R, et al. Oxidative stress and mitochondrial dysfunction in atherosclerosis:mitochondria-targeted antioxidants as potential therapy [J]. Curr Med Chem,2009,16(35):4654-4667.
    [17]Papaharalambus C A, Griendling K K. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury[J]. Trends Cardiovasc Med,2007,17(2): 48-54.
    [18]Zmijewski J W, Landar A, Watanabe N, et al. Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium[J]. Biochem Soc Trans,2005, 33(Pt 6):1385-1389.
    [19]Pacher P, Beckman J S, Liaudet L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev,2007; 87(1):315-424.
    [20]Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace[J]. Circulation,2006,113(13):1708-1714.
    [21]Korkmaz A, Reiter R J, Topal T, et al. Melatonin:an established antioxidant worthy of use in clinical trials.[J]. Mol Med,2009,15(1-2):43-50.
    [22]Reiter R J, Tan D X, Fuentes-Broto L. Melatonin:a multitasking molecule[J]. Prog Brain Res,2010,181:127-151.
    [23]Chakravarty S, Rizvi S I. Circadian modulation of human erythrocyte plasma membrane redox system by melatonin[J]. Neurosci Lett,2012,518(1):32-35.
    [24]Matuszak Z, Reszka K, Chignell C F. Reaction of melatonin and related indoles with hydroxyl radicals:EPR and spin trapping investigations [J]. Free Radic Biol Med, 1997,23(3):367-372.
    [25]Reiter R J, Tan D X, Mayo J C, et al. Melatonin as an antioxidant:biochemical mechanisms and pathophysiological implications in humans[J]. Acta Biochim Pol,2003, 50(4):1129-1146.
    [26]Tan D X, Manchester L C, Reiter R J, et al. Melatonin directly scavenges hydrogen peroxide:a potentially new metabolic pathway of melatonin biotransformation[J]. Free Radic Biol Med,2000,29(11):1177-1185.
    [27]Bonnefont-Rousselot D, Collin F, Jore D, et al. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro[J]. J Pineal Res,2011,50(3):328-335.
    [28]Guenther A L, Schmidt S I, Laatsch H, et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species:formation of novel compounds,3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK[J]. J Pineal Res,2005,39(3):251-260.
    [29]Teixeira A, Morfim M P, de Cordova C A, et al. Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite [J]. J Pineal Res,2003,35(4): 262-268.
    [30]Rodriguez C K M M A. Circadian rhythm in 5-aminolevulinate synthase mRNA levels in the Harderian gland of the Syrian hamster:involvement of light:dark cycle and pineal function. [Z].1994.
    [31]Rahman I, Biswas S K, Kode A. Oxidant and antioxidant balance in the airways and airway diseases[J]. Eur J Pharmacol,2006,533(1-3):222-239.
    [32]Crespo E, Macias M, Pozo D, et al. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats[J]. FASEB J, 1999,13(12):1537-1546.
    [33]Ekmekcioglu C, Thalhammer T, Humpeler S, et al. The melatonin receptor subtype MT2 is present in the human cardiovascular system[J]. J Pineal Res,2003,35(1):40-44.
    [34]Ekmekcioglu C, Haslmayer P, Philipp C, et al. Expression of the MT1 melatonin receptor subtype in human coronary arteries[J]. J Recept Signal Transduct Res,2001, 21(1):85-91.
    [35]Borjigin J, Zhang L S, Calinescu A A. Circadian regulation of pineal gland rhythmicity[J]. Mol Cell Endocrinol,2012,349(1):13-19.
    [36]Holmes S W, Sugden D. Proceedings:The effect of melatonin on pinealectomy-induced hypertension in the rat[J]. Br J Pharmacol,1976,56(3): 360P-361P.
    [37]Ostrowska Z, Kos-Kudla B, Marek B, et al. [Circadian rhythm of melatonin in patients with hypertension][J]. Pol Merkur Lekarski,2004,17(97):50-54.
    [38]Nava M, Quiroz Y, Vaziri N, et al. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats[J]. Am J Physiol Renal Physiol,2003,284(3):F447-F454.
    [39]Grossman E, Laudon M, Yalcin R, et al. Melatonin reduces night blood pressure in patients with nocturnal hypertension[J]. Am J Med,2006,119(10):898-902.
    [40]Shatilo V B, Bondarenko E V, Antoniuk-Shcheglova I A. [Metabolic disorders in elderly patients with hypertension and their correction with melatonin][J]. Adv Gerontol, 2012,25(1):84-89.
    [41]K-Laflamme A, Wu L, Foucart S, et al. Impaired basal sympathetic tone and alphal-adrenergic responsiveness in association with the hypotensive effect of melatonin in spontaneously hypertensive rats[J]. Am J Hypertens,1998,11(2):219-229.
    [42]Campino C, Valenzuela F, Arteaga E, et al. [Melatonin reduces cortisol response to ACTH in humans][J]. Rev Med Chil,2008,136(11):1390-1397.
    [43]Enzminger H, Witte K, Lemmer B. Altered melatonin production in TGR(mREN2)27 rats:on the regulation by adrenergic agonists, antagonists and angiotensin Ⅱ in cultured pinealocytes[J]. J Pineal Res,2001,31(3):256-263.
    [44]Campos L A, Cipolla-Neto J, Amaral F G, et al. The Angiotensin-melatonin axis[J]. Int J Hypertens,2013,2013:521783.
    [45]Pozo M J, Gomez-Pinilla P J, Camello-Almaraz C, et al. Melatonin, a potential therapeutic agent for smooth muscle-related pathological conditions and aging[J]. Curr Med Chem,2010,17(34):4150-4165.
    [46]Paulis L, Pechanova O, Zicha J, et al. Melatonin interactions with blood pressure and vascular function during L-NAME-induced hypertension [J]. J Pineal Res,2010, 48(2):102-108.
    [47]Escames G, Khaldy H, Leon J, et al. Changes in iNOS activity, oxidative stress and melatonin levels in hypertensive patients treated with lacidipine[J]. J Hypertens,2004, 22(3):629-635.
    [48]Hoyos M, Guerrero J M, Perez-Cano R, et al. Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats.[J]. J Pineal Res,2000,28(3):150-155.
    [49]Kozirog M, Poliwczak A R, Duchnowicz P, et al. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome[J]. J Pineal Res,2011,50(3):261-266.
    [50]Kaneko S, Okumura K, Numaguchi Y, et al. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury.[J]. Life Sci,2000,67(2): 101-112.
    [51]Lagneux C, Joyeux M, Demenge P, et al. Protective effects of melatonin against ischemia-reperfusion injury in the isolated rat heart[J]. Life Sci,2000,66(6):503-509.
    [52]Lee Y M, Chen H R, Hsiao G, et al. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo.[J]. J Pineal Res,2002,33(2):72-80.
    [53]Sahna E, Olmez E, Acet A. Effects of physiological and pharmacological concentrations of melatonin on ischemia-reperfusion arrhythmias in rats:can the incidence of sudden cardiac death be reduced?[J]. J Pineal Res,2002,32(3):194-198.
    [54]Grad B R, Rozencwaig R. The role of melatonin and serotonin in aging:update[J]. Psychoneuroendocrinology,1993,18(4):283-295.
    [55]Girotti L, Lago M, Ianovsky O, et al. Low urinary 6-sulfatoxymelatonin levels in patients with severe congestive heart failure[J]. Endocrine,2003,22(3):245-248.
    [56]Ghosh G, De K, Maity S, et al. Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart[J]. J Pineal Res,2007, 42(1):71-82.
    [57]Reiter R J, Tan D X, Paredes S D, et al. Beneficial effects of melatonin in cardiovascular disease[J]. Ann Med,2010,42(4):276-285.
    [58]Idris I, Deepa R, Fernando D J, et al. Relation between age and coronary heart disease (CHD) risk in Asian Indian patients with diabetes:A cross-sectional and prospective cohort study[J]. Diabetes Res Clin Pract,2008,81(2):243-249.
    [59]Peschke E, Wolgast S, Bazwinsky I, et al. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes.[J]. J Pineal Res,2008,45(4): 439-448.
    [60]Dzherieva I S, Volkova N I, Rapoport S I. [Melatonin as a regulator of metabolism][J]. Klin Med (Mosk),2012,90(10):27-30.
    [61]Ha H, Yu M R, Kim K H. Melatonin and taurine reduce early glomerulopathy in diabetic rats.[J]. Free Radic Biol Med,1999,26(7-8):944-950.
    [62]Sailaja D M, Suresh Y, Das. Preservation of the antioxidant status in chemically-induced diabetes mellitus by melatonin.[J]. J Pineal Res,2000,29(2): 108-115.
    [63]Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus.[J]. Endocrine,2005,27(2):131-136.
    [64]Korkmaz A, Ma S, Topal T, et al. Glucose:a vital toxin and potential utility of melatonin in protecting against the diabetic state[J]. Mol Cell Endocrinol,2012,349(2): 128-137.
    [65]Muhlbauer E, Albrecht E, Bazwinsky-Wutschke I, et al. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets[J]. J Pineal Res,2012,52(4):446-459.
    [66]Stumpf I, Muhlbauer E, Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells.[J]. J Pineal Res,2008, 45(3):318-327.
    [67]Lyssenko V, Nagorny C L, Erdos M R, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. [M]. 2009.82-88.
    [68]Vlassi M, Gazouli M, Paltoglou G, et al. The rs10830963 variant of melatonin receptor MTNR1B is associated with increased risk for gestational diabetes mellitus in a Greek population[J]. Hormones (Athens),2012,11(1):70-76.
    [69]Regodon S, Del P M M, Jardin I, et al. Melatonin, as an adjuvant-like agent, enhances platelet responsiveness[J]. J Pineal Res,2009,46(3):275-285.
    [70]Morera A L, Abreu P. Existence of melatonin in human platelets[J]. J Pineal Res, 2005,39(4):432-433.
    [71]Bekyarova G, Tancheva S, Hristova M. The effects of melatonin on burn-induced inflammatory responses and coagulation disorders in rats[J]. Methods Find Exp Clin Pharmacol,2010,32(5):299-303.
    [72]Gooneratne N S, Edwards A Y, Zhou C, et al. Melatonin pharmacokinetics following two different oral surge-sustained release doses in older adults [J]. J Pineal Res, 2012,52(4):437-445.
    [73]She M, Deng X, Guo Z, et al. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats[J]. Pharmacol Res, 2009,59(4):248-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700