用户名: 密码: 验证码:
UV调节角质形成细胞VEGFRs表达和激活及其功能和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     在正常生理或病理状态下,血管新生都是重要的生物学过程,主要由生长因子和其相应的酪氨酸激酶受体(receptor tyrosine kinases, RTKs)控制,其中,最主要的就是血管内皮生长因子(vascular endothelial growth factor, VEGF)家族及其受体(VEGF receptors, VEGFRs,包括VEGFR-1, VEGFR-2, VEGFR-3及辅助受体Neuropilins,即NRP-1和NRP-2)。
     目前的研究发现,VEGF家族包括VEGF-A, PIGF (placenta growth factor,胎盘生长因子),VEGF-B, VEGF-C, VEGF-D, VEGF-E和svVEGF (snake venom VEGF,蛇毒VEGF). VEGF-A,即一般意义上的VEGF,以往称为血管通透性因子(vascular permeability factor, VPF),存在于多种细胞和组织中,与机体内的生理和病理活动密切相关,如肿瘤的血管新生和血管形成。VEGF在基因转录过程中由于不同的剪接方式形成几种分子量不同的VEGF同种异构体(VEGF isoforms),在人类主要为VEGF111、VEGF121、VEGF145、VEGF165、VEGF189、VEGF206等。
     表皮角质形成细胞是VEGF的主要分泌细胞之一,在某些炎症性皮肤病如银屑病、特应性皮炎等情况下,皮肤角质形成细胞分泌VEGF明显增加,通过旁分泌作用促进真皮层微血管增生。角质形成细胞主要分泌VEGF111、VEGF121、 VEGF165和VEGF189等,其中以VEGF165效应最强。VEGF通过与其受体相结合发挥生物学效应,这些受体分为跨膜酪氨酸激酶受体和非酪氨酸激酶受体(即辅助受体),前者包括VEGFR-1, VEGFR-2, VEGFR-3,后者则包括NRP-1和NRP-2,而VEGFR-2则被认为是介导VEGF促血管新生效应的主要受体。近年来,越来越多的证据表明,VEGFRs家族不仅仅表达在血管内皮细胞上,也表达于包括上皮细胞在内的一些非血管内皮细胞上。而且,VEGF/VEGFRs已经不再局限于血管新生和/或血管通透性的增加,该信号途径还参与了其他多种功能,包括诱导肿瘤的转移、参与炎症反应、保护神经和肝脏、参与骨髓干细胞的迁移等。因此,有必要对VEGF/VEGFRs进行更深入的研究。
     银屑病(Psoriasis)是一种由多基因遗传决定的、多环境因素刺激诱导的免疫异常性慢性炎症性增生性皮肤病,其特征包括表皮角质形成细胞增生过度和异常分化,淋巴细胞(主要为T细胞)炎性浸润以及真皮血管改变如血管新生、扩张、迂曲等。之前,我们研究了VEGFRs在HaCaT细胞株、正常人表皮和银屑病非皮损区、邻近皮损区和皮损区角质形成细胞中的表达情况,并研究了VEGF通过VEGFR-2对HaCaT细胞和表皮角质形成细胞增殖、迁移和黏附的作用以及VEGFRs在银屑病不同发展阶段的可能作用。结果表明:VEGFR-1和VEGFR-2在正常表皮基底层和棘层有显著表达,颗粒层表达较少,角质层无表达;而VEGFR-3, NRP-1和NRP-2均匀地表达于除角质层以外的其它表皮各层。在银屑病患者皮肤中,VEGFR-1和VEGFR-2强烈表达于银屑病非皮损区和邻近皮损区除角质层以外的其它各层角质形成细胞、银屑病皮损区表皮全层角质形成细胞,包括角质层角化不全细胞。在银屑病非皮损区、邻近皮损区VEGFR-3的分布与正常表皮中的分布一致,而银屑病皮损区则在包含角质层角化不全细胞的表皮各层均表达VEGFR-3; VEGFR-1、VEGFR-2和VEGFR-3mRNA表达水平从正常表皮到银屑病非皮损区、邻近皮损区和皮损区逐渐增加,皮损区表皮角质形成细胞VEGFRs mRNA表达水平最高;VEGFRs和NRPs在角质形成细胞内的分布形式亦有所差异:VEGFRs沿着细胞间连接呈膜性分布,而NRPs在细胞膜和细胞浆中均有分布。此外,VEGF可促进角质形成细胞的增殖和迁移而降低角质形成细胞的黏附功能。抗VEGFR-2抗体预处理能显著抑制VEGF诱导的对角质形成细胞的以上作用。
     日光中的紫外线(ultraviolet, UV)与皮肤息息相关。皮肤中的角质形成细胞和黑素细胞是UV照射的重要靶位,急性UV辐射可增强皮肤角质形成细胞VEGF、白介素-8(IL-8)、碱性成纤维细胞因子(bFGF)等细胞因子的表达和释放,致使真皮血管扩张和增生,产生红斑反应;而慢性UV辐射可导致皮肤老化,产生皮角、日光性角化病等癌前期病变甚至皮肤癌。然而,临床上采用窄谱中波紫外线(narrowband UVB, NB-UVB)台疗银屑病等免疫炎症性皮肤病效果显著,其机制涉及减少局部T细胞的浸润、激活调节性T细胞等多个方面,此外,UV照射后皮损处细胞因子、细胞表面抗原和受体表达的改变也使得炎症介质的效应作用抑制和减弱。鉴于UVB辐射可增强皮肤角质形成细胞VEGF的表达的肯定性,结合我们课题组之前的发现,我们思考,为何NB-UVB光疗不但没有加重银屑病患者皮损的红斑反应和鳞屑性表皮增生,却反而起到了一个较好的治疗作用?会不会因为UV同时通过调节角质形成细胞VEGFRs的表达而改变了VEGF/VEGFRs信号通路在银屑病等炎症性皮肤病中的作用?如果UV能调节角质形成细胞VEGFRs的表达,那么,它又是通过什么途径达到该调节作用的呢?带着这样的疑问,我们设计和进行了本研究。如有新的发现,我们不但重复和肯定了我们课题组之前的工作,还将在国际上首次报道UV对角质形成细胞VEGFRs表达的影响及其相关的可能机制和作用,以及通过改变VEGF/VEGFRs信号通路而产生的对银屑病等炎症性皮肤疾病的治疗作用,为UV治疗这类皮肤病提供了更多新的依据。
     研究目的:
     利用UV(包括UVA和UVB)辐射正常人皮肤角质形成细胞或者正常人皮肤,以及采用NB-UVB治疗银屑病患者皮损,研究UV辐射前后上述细胞或者表皮VEGF和VEGFRs的表达变化情况,明确UV对角质形成细胞VEGF和VEGFRs表达以及VEGFRs磷酸化的影响;探索UV调节角质形成细胞VEGFRs表达和磷酸化的可能信号机制;进一步明确VEGFRs在正常人和银屑病表皮角质形成细胞中的功能,并为UV治疗银屑病等免疫性炎症性皮肤病提供新的理论依据。
     研究方法:
     第一部分:首先,分离和培养正常人表皮角质形成细胞,采用不同剂量(高、中、低)的UVB,分不同时间段对正常人皮肤角质形成细胞进行辐射,然后,以MTT法测定各组细胞增殖活性;流式细胞仪测定各组细胞的凋亡率;提取总RNA,采用逆转录-聚合酶链反应(Reverse transcript polymerase chain reaction, RT-PCR)法半定量测定VEGF和VEGFRs的mRNA含量变化及其趋势;提取总蛋白,采用Western Blot法半定量测定VEGF、VEGFRs和P-VEGFRs的蛋白质含量变化及其趋势;以间接免疫荧光法检测UVB辐射前后VEGF、VEGFRs和P-VEGFRs在正常角质形成细胞上的表达和定位;采用Western Blot法筛选出UVB影响角质形成细胞VEGFRs表达和磷酸化的可能信号机制。其次,入组一定数量的正常健康人,确定其各自的最小红斑量(minimal erythema dose, MED),采用低(1MED)、高(3MEDs)两种剂量的UVB辐射正常人臀部皮肤,24h后切取三处皮肤(未照光、低剂量、高剂量)进行活检,组织在OCT包埋后,做成冰冻切片,行间接免疫荧光,原位观察UVB辐射前后VEGF、VEGFRs和P-VEGFRs在正常人表皮中的表达和定位情况。
     第二部分:将UVB光源换成UVA,其他处理方法基本同上。
     第三部分:首先,按照一定的入选标准,收集多个同一银屑病患者NB-UVB光疗前、中、后皮损处皮肤;其次,作为比较,招募多个银屑病患者单独外用0.05%卤米松乳膏作治疗处理,并切取治疗前、中、后的皮损处皮肤。所有标本OCT包埋后做成6μm冰冻切片,用间接免疫荧光标记表皮中的VEGF、VEGFRs和P-VEGFRs,原位分析它们在两种治疗前、中、后表皮中的表达和分布情况。
     研究结果:
     一、VEGFR-2信号途径被中等剂量UVB激活后可促进正常人角质形成细胞的存活:
     1、中等剂量的UVB辐射可促进培养的正常人角质形成细胞VEGF和VEGFR-1、VEGFR-2、NRP-1mRNA和蛋白的表达;
     2、中等剂量的UVB辐射可促进正常人皮肤表皮VEGF和VEGFR-1、 VEGFR-2、NRP-1的表达;
     3、中等剂量UVB辐射所致的VEGFR-1、VEGFR-2、NRP-1的表达上调与VEGF的表达无关,而主要由UVB辐射后导致角质形成细胞发生缺氧和氧化应激所致;
     4、中等剂量UVB辐射可促进培养的正常人角质形成细胞和正常人表皮所表达的VEGFR-1和VEGFR-2发生磷酸化,即可以激活VEGFR-1和VEGFR-2;
     5、中等剂量UVB辐射所致的VEGFR-1和VEGFR-2的激活亦不依赖于角质形成细胞自分泌产生的VEGF,而与蛋白激酶C (PKC)以及Sarc家族激酶(SFKs)的激活有关;
     6、高剂量的UVB辐射能促进培养的正常人角质形成细胞和正常人皮肤表皮VEGF的表达,却未能明显促进VEGFR-1、VEGFR-2、NRP-1的表达和磷酸化;采用VEGF中和抗体处理高剂量UVB辐射后的细胞,可一定程度上恢复UVB诱导的VEGFR-1、VEGFR-2、NRP-1的表达增高及其磷酸化的发生;
     7、中等剂量UVB辐射角质形成细胞所产生的VEGF对细胞具有一定的保护作用,而高剂量UVB辐射角质形成细胞所产生的大量VEGF则表现为一种炎症介质,对细胞具有明显的损伤作用;
     8、UVB辐射可剂量依赖性促进角质形成细胞的凋亡,当细胞被VEGFR-2中和抗体处理后,能明显加重中等剂量UVB辐射所致的细胞凋亡,减少细胞的存活;当VEGFR-1被其中和抗体处理后,则未显著显示出上述作用,表明VEGFR-2信号途径的激活对UVB辐射后的角质形成细胞具有促生存作用;
     9、采用VEGFR-2中和抗体处理可抑制中等剂量UVB辐射所致的角质形成细胞ERK1/2和Akt信号途径的激活,表明UVB诱导的VEGFR-2信号途径的激活可通过进一步激活ERK1/2和Akt来促进细胞存活。
     二、VEGFR-1和VEGFR-2信号途径被UVA激活后均可促进正常人角质形成细胞的存活:
     1、在一定剂量范围内,UVA辐射呈剂量依赖性促进培养的正常人角质形成细胞VEGFR-1、VEGFR-2、NRP-1mRNA和蛋白的表达;
     2、在一定剂量范围内,UVA辐射可呈剂量依赖性增强正常人皮肤表皮VEGFR-1、vegfr-2、NRP-1的表达;
     3、无论是对培养的正常人角质形成细胞,还是在正常人皮肤表皮,UVA辐射均不能诱导VEGF的表达增强;
     4、UVA辐射可促进培养的正常人角质形成细胞和正常人表皮所表达的VEGFR-1和VEGFR-2发生磷酸化,即可以激活VEGFR-1和VEGFR-2;
     5、UVA辐射所致的VEGFR-1和VEGFR-2的激活亦与蛋白激酶C (PKC)以及Sarc家族激酶(SFKs)的激活有关;
     6、UVA辐射可剂量依赖性促进角质形成细胞的凋亡,当细胞被VEGFR-1和/或VEGFR-2中和抗体处理后,均能明显加重UVA辐射所致的细胞凋亡,减少细胞的存活,表明VEGFR-1和VEGFR-2信号途径的激活对UVA辐射后的角质形成细胞均具有促生存作用;
     7、采用VEGFR-1和/或VEGFR-2中和抗体处理可抑制UVA辐射所致的角质形成细胞ERK1/2和/或Akt信号途径的激活,表明UVA诱导的VEGFR-1和VEGFR-2的激活可通过进一步激活ERK1/2和/或Akt来促进细胞存活。
     三、银屑病皮损中高表达的VEGFRs可被NB-UVB和外用0.05%卤米松乳膏两种疗法下调
     1、银屑病皮损中高表达的VEGFRs可被NB-UVB光疗显著下调,皮损基底部角质形成细胞的VEGFRs的表达首先出现下降,随着UVB剂量的逐渐增加,VEGFRs的表达位置也逐渐往上迁移,至疗程结束时,表皮全层均不再过表达VEGFRs;同时,P-VEGFR的表达可在随着VEGFRs往上迁移的部位而加强,但其在疗程结束后完全消失。
     2、银屑病皮损中高表达的VEGFRs亦可被外用0.05%卤米松乳膏显著下调,但下调方式不同于NB-UVB,表现为弥漫性、逐渐均匀地下降。然而,至疗程结束时,虽然皮损得到明显改善,但VEGFRs的表达仍明显高于正常皮肤。P-VEGFR的表达与VEGFRs相似。
     3、银屑瘸皮损中VEGFRs的表达高低与患者病情,即PASI评分呈正相关。
     结论:
     1、正常人角质形成细胞VEGFRs的表达可被一定剂量范围内的UVA和UVB上调,该调节不依赖于UVB所致的VEGF的自分泌,而依赖于UV诱导的细胞缺氧和氧化应激;
     2、UV可不依赖于VEGF直接激活角质形成细胞VEGFRs,这与UV所致的PKC途径的激活有关;
     3、UV辐射后VEGFRs的激活可促进角质形成细胞的存活,该作用虽为一种保护机制,但在长期、慢性UV辐射下,为皮肤光老化和光源性皮肤肿瘤的发生提供了潜在可能;
     4、UVB可显著下调银屑病角质形成细胞VEGFRs的表达,该调节方式不同于倍他米松乳膏;
     5、银屑病皮损处表皮VEGFRs表达异常可能不是银屑病的启动因素,但这种继发性改变可能间接参与了表皮增生和角化不全的发生,而UV可通过有效调节VEGFRs的表达和功能而影响角质形成细胞的生物学行为,表明了VEGFRs在角质形成细胞生理和病理过程中的作用。
Background:
     Angiogenesis is a complex process by which new blood vessels arise from the pre-existing vasculature under both physical and pathological conditions. Angiogenesis is mostly controlled by some growth factors and their receptor tyrosine kinases, among which the most important are vascular endothelial growth factor (VEGF) and their receptors, VEGF receptors (VEGFRs), including VEGFR-1, VEGFR-2, VEGFR-3and their co-receptors, neuropilins (including NRP-1and NRP-2).
     The VEGF family includes VEGF-A, P1GF (placenta growth factor), VEGF-B, VEGF-C, VEGF-D, VEGF-E and svVEGF (snake venom VEGF). The generally referred VEGF is VEGF-A (also called vascular permeability factor, VPA), which is associated with physical activities and pathological process in many kinds of cells and tissues of the body, such as new blood vessel formation in tumors. To date, seven isoforms of human VEGF have been identified, which range in length from111to206amino acid residues (VEGF111,121,145,165,183,189,206).
     Human epidermal keratinocytes are a major source of VEGF, which normally express VEGF121, VEGF165and VEGF189, of which VEGF165has the strongest effect. The effect of VEGF is mediated by binding with its receptors, including transmembrane, tyrosine kinase VEGFR-1, VEGFR-2, VEGFR-3and non-tyrosine kinase neuropilins (including NRP-1and NRP-2). VEGFR-2has a more crucial role in angiogenesis than VEGFR-1and VEGFR-3. Recently, mounting evidence demonstrated that VEGFRs was not only expressed in endothelial cells, but also in some non-endothelial cells, including epithelial cells and tumor cells, and the VEGF/VEGFR signaling mediated effects are so various that they are no longer limited in enhancing angiogenesis and vascular permeability. So, further works need to be done to investigate the functional significance of VEGFRs.
     Psoriasis is a common, chronic, inflammatory, immune aberrant and proliferative skin disease that is determined by polygene and induced by multiple environmental factors. The characteristics of psoriasis include hyperplasia and altered differentiation of epidermal keratinocytes (acanthosis), infiltration of lymphocytes (mainly T cells) into the dermis and epidermis, and dilation and growth of capillary vessels in the dermis. Angiogenesis plays especially important roles in the pathogenesis of psoriasis. We previously examined the expression of VEGFRs in HaCaT cells, normal human epidermal keratinocytes, psoriatic nonlesional, perilesional and lesional keratinocytes and epidermis. The distribution pattern of these receptors varied in epidermis:VEGFRs show a membranous staining pattern along the intercellular junctions in the basal and suprabasal layers of the epidermis except for the horny cell layer. The staining pattern of NRPs is differed from that for VEGFRs. NRPs are stained in the membrane and in the cytoplasm of keratinocytes in the whole epidermis except for the stratum corneum. Specifically, VEGFR-1and VEGFR-2strongly labeled keratinocytes in stratum basal and spinosum adjacent to basal, while all layers of the epidermis except horny cell layer demonstrated a uniform expression pattern of VEGFR-3, NRP-1, and NRP-2. Moreover, NRP-1and NRP-2show diffuse intense fluorescence compared with VEGFRs. In psoriatic epidermis, VEGFR-1and VEGFR-2strongly labeled nonlesional, perilesional keratinocytes in all layers of the epidermis except the stratum corneum, and lesional keratinocytes in all viable layers, including the parakeratotic stratum corneum. A uniform expression pattern of VEGFR-3was detected in psoriatic epidermis except for stratum corneum. Interestingly, parakeratotic keratinocytes in lesional psoriatic stratum corneum also showed intense fluorescence for VEGFRs, suggesting VEGFRs might play important roles in different stages of psoriasis. We also showed that VEGF affected cell proliferation, migration, and adhesion of HaCaT cells and normal human keratinocytes via VEGFR-2signaling pathway.
     Ultraviolet (UV) is one of the most important components in the sunlight, and is closely related to human skin. Keratinocytes and melanocytes are important target cells for UV in the skin, an acute UV exposure can enhance the expression and release of cytokines like VEGF、interleukin-8(IL-8) and basic fibroblast growth factor (bFGF) from keratinocytes, resulting in skin erythema caused by blood vessel dilation and angiogenesis in the dermis; whereas repeated and chronic UV exposure can lead to skin photoaging, including development of pre-cancerous lesions like cutaneous horn, actinic keratosis or even skin cancers. In the meantime, narrowband UVB (NB-UVB) phototherapy has been used clinically to treat immuo-inflammatory dermatoses including psoriasis with good effectiveness. The underlying mechanisms involves depleting regional infiltration of T cells, activating Reg T cells, and importantly, the changed expression of cytokines, cellular surface antigens and receptors in the UV-irradiated lesions can also inhibit the inflammation mediators-induced effects. As UVB can enhance the expression of VEGF, we asked that, integrating our previous findings, why NB-UVB would not aggravate lesional erythema and epidermal hyperplasia in psoriasis, but achieved a good therapeutic result? Would UV modulate VEGF/VEGFRs signaling pathway in psoriatic epidermis? If the hypothesis is true, how does it work? With such a list of questions, we designed and performed this study. If new findings could be discovered, we would demonstrate for the first time that UV affects the expression of VEGFRs and its underlying mechanisms and roles in normal keratinocytes. In addition, we would provide more evidence relating to UV phototherapy, if it is useful for treating psoriasis by interfering with VEGF/VEGFRs signaling in psoriatic epidermis.
     Objective:
     1. By using normal human keratinocytes and normal human epidermis, we investigated whether UV (including UVA and UVB) could regulate the expression of VEGF and VEGFRs, whether UV could activate VEGFRs. To further clarify the underlying mechanisms and possible roles of VEGFRs in normal human keratinocytes.
     2. By using psoriatic human epidermis, we investigated whether NB-UVB phototherapy could regulate the expression of VEGF and VEGFRs, to further demonstrate the roles of VEGFRs in psoriatic epidermis, and to provide more evidence for the mechanism of UVB phototherapy.
     Methods:
     1. First, normal human keratinocytes were seperated from adolescent foreskin and cultured with serum free medium. By applying different doses of UVB (high, moderate, and low), keratinocytes were irradiated and harvested at various times after irradiation. Then, cellular viability was determined by MTT assay; apoptosis rate was determined by using flow cytometry; Total RNA was extracted and VEGF/VEGFRs mRNAs were determined by reverse transcript polymerase chain reaction (RT-PCR); Total protein was extracted and VEGF, VEGFRs and phospho-VEGFRs proteins were determined by Western Blot; Indirect immunofluorescence was used to detect the expression of VEGF, VEGFRs, and phospho-VEGFRs in keratinocytes before and after UVB irradiation; Western Blot was used to illucidate the mechanisms and possible pathways for the UVB-induced regulation and activation of VEGFRs. In addition, to recruit a few healthy individuals, their minimal erythema dose (MED) to UVB was dertermined respectively, then, two doses of UVB (1MED,3MEDs) was adopted to irradiate the healthy skin in the buttocks.24h after irradiation, biopsies from three sites (sham-irradiated,1MED,3MEDs) were taken, embedded in OCT and snap frozen, and Indirect immunofluorescence was performed to detect in situ expression of VEGF, VEGFRs, and phospho-VEGFRs in normal human epidermis before and after UVB irradiation.
     2. Second, replace the light source of UVB with UVA, other methods were similar to above.
     3. Third, according to enrollment criteria, to collect a few psoriasis patients, and take biopsies from their skin lesions before, under, and after NB-UVB phototherapy; For comparison, another few psoriasis patients were enrolled with treatment of topical Halomethasone monohydrate0.05%cream, and biopsies were taken from their skin lesions before, under, and after treatment. All specimens were embedded in OCT and snap frozen, cut into6μm slides, and Indirect immunofluorescence was performed to detect in situ expression of VEGF, VEGFRs, and phospho-VEGFRs in psoriatic human epidermis before, under, and after the two treatments.
     Results:
     1. Activation of VEGFR-2signaling in response to moderate dose of ultraviolet B promotes survival of normal human keratinocytes:
     a) Moderate dose of UVB enhanced the mRNA and protein expression of VEGF, VEGFR-1, VEGFR-2, and NRP-1in normal human keratinocytes;
     b) Moderate dose of UVB enhanced the expression of VEGF, VEGFR-1, VEGFR-2, and NRP-1in normal human epidermis;
     c) Moderate dose UVB-induced upregulation of VEGFR-1, VEGFR-2, and NRP-1was independent of autocrine VEGF in keratinocytes, but mainly caused by UVB-induced hypoxia and oxidative stress.
     d) Moderate dose UVB promoted tyrosine phosphorylation of VEGFR-1and VEGFR-2in normal human keratinocytes and epidermis, that is, VEGFR-1and VEGFR-2were activated by UVB;
     e) Moderate dose UVB-induced tyrosine phosphorylation of VEGFR-1and VEGFR-2was again independent of autocrine VEGF, but mainly caused by UVB-induced activation of protein kinase C (PKC) and Sarc family kinases (SFKs);
     f) High dose of UVB upregulated the expression of VEGF in normal human keratinocytes and epidermis, but it failed to affect significant expression and activation of VEGFRs. Treatment of VEGF neutralizing antibody after high dose of UVB could restore UVB-induced expression and activation of VEGFRs in some degree;
     g) Moderate dose UVB-induced VEGF plays a protective role for keratinocytes, whereas high dose of UVB-induced, over-released VEGF acted as a proinflammatory factor, which caused obvious damage to keratinocytes;
     h) UVB dose-dependently induced cell apoptosis. Incubation of VEGFR-2but not VEGFR-1neutralizing antibody significantly accelerated cell apoptosis induced by moderate dose of UVB, and reduced cell survival, suggesting that activation of VEGFR-2signaling pathway played a pro-survival role for keratinocytes;
     i) Incubation of VEGFR-2neutralizing antibody significantly inhibited activation of ERK1/2and Akt induced by moderate dose of UVB, suggesting UVB-induced activation of VEGFR-2signaling promotes cell survival via ERK1/2and PI3K/Akt pathway.
     2. Activation of both VEGFR-1and VEGFR-2signaling by UVA promotes survival of normal human keratinocytes:
     a) UVA dose-dependentlyupregulated the mRNA and protein expression of VEGFR-1, VEGFR-2, and NRP-1in normal human keratinocytes;
     b) UVA dose-dependently upregulated the expression of VEGFR-1, VEGFR-2, and NRP-1in normal human epidermis;
     c) UVA could not induce the expression of VEGF in normal human keratinocytes or epidermis;
     d) UVA promoted tyrosine phosphorylation of VEGFR-1and VEGFR-2in normal human keratinocytes and epidermis, that is, VEGFR-1and VEGFR-2were activated by UVA;
     e) UVA-induced tyrosine phosphorylation of VEGFR-1and VEGFR-2was also mainly caused by UVA-induced activation of PKC and SFKs;
     f) UVA dose-dependently induced cell apoptosis. Incubation of both VEGFR-1and VEGFR-2neutralizing antibody significantly accelerated cell apoptosis induced by UVA, and reduced cell survival, suggesting that activation of VEGFR-1and VEGFR-2signaling pathways played a pro-survival role for keratinocytes in response to UVA;
     i) Incubation of VEGFR-1and VEGFR-2neutralizing antibody significantly inhibited activation of ERK1/2and Akt induced by UVA, suggesting UVA-induced activation of VEGFR-1and VEGFR-2signaling both promotes cell survival via ERK1/2and PI3K/Akt pathway.
     3. Over-expressed VEGFRs in psoriatic epidermis were normalized by UVB phototherapy in a way different from that by halomethasone
     a) The over-expressed VEGFRs in the whole psoriatic epidermis was significantly down-regulated both during and after phototherapy, and interestingly, their expression decreased in a down to top advancement way, that is, VEGF receptors over-expressed in the basal layers were much more sensitive to UVB than that in upper layers, and the location of VEGF receptors shafted to the upper epidermis, even to the stratum corneum after NB-UVB treatment. In addition, VEGFRs were activated in psoriatic epidermis, but their activation was enhanced with their upward movement during NB-UVB treatment, and became extinct after whole therapy.
     b) The overall result from treatment by halomethasone was similar to that by UVB phototherapy. However, the process was quite different, in which VEGF, VEGFRs and phospho-VEGFRs decreased in a gradual, homogeneous manner. Although the skin lesions were greatly improved, the expression of VEGFRs was still higher than normal skin, the expression of phospho-VEGFR was similar to VEGFRs, suggesting VEGF and its receptors are not target molecules of halomethasone, and their expression automatically declined due to improvement of the skin lesions by treatment of the drug.
     c) The expression of VEGFRs in psoriatic epidermis is positively correlated with patients' PASI scoring.
     Conclusions:
     1. The expression of VEGFRs in keratinocytes can be upregulated by UVA and UVB irradiation, which is independent of UVB-induced autocrine release of VEGF, but partly dependent of UV-induced cell hypoxia and oxidative stress;
     2. UV activates VEGFRs in keratinocytes independent of VEGF, but via activation of PKC signaling pathway;
     3. Activation of VEGFRs by UV promotes survival of normal human keratinocytes. Although it acts an protective effect for keratinocytes, it provides potential opportunities for skin photoaging, malignant transformation and development of skin caners under long-term, chronic UV exposure.
     4. UVB phototherapy significantly downregulates the expression of VEGFRs in psoriatic epidermis, in a way which was different from that by treatment of halomethasone0.05%cream;
     5. The over-expressed VEGFRs in psoriatic epidermis may not be initial factors in psoriasis pathogenesis, however, this secondary pathological change of VEGFRs may be involved in the development of epidermal hyperplasia and parakeratosis. As UV can affect the biological behavior of keratinocytes through modulating the expression and function of VEGFRs, we demonstrate the important roles of VEGFRs in physiological and pathological conditions of epidermal keratinocytes.
引文
[1]Akman A, Yilmaz E, Mutlu H, Ozdogan M. Complete remission of psoriasis following bevacizumab therapy for colon cancer. Clin Exp Dermatol 2008;34:e202-4
    [2]Arun SN, Kaddour-Djebbar I, Shapiro BA, Bollag WB. Ultraviolet B irradiation and activation of protein kinase D in primary mouse epidermal keratinocytes. Oncogene 2011;30:1586-96
    [3]Barbagallo J, Spann CT, Tutrone WD, Weinberg JM. Narrowband UVB phototherapy for the treatment of psoriasis:a review and update. Cutis 2001;68:345-7
    [4]Beani JC, Jeanmougin M. Narrow-band UVB therapy in psoriasis vulgaris: good practice guideline and recommendations of the French Society of Photodermatology. Ann Dermatol Venereol 2010; 137:21-31
    [5]Blaudschun R, Sunderkotter C, Brenneisen P, Hinrichs R, Peters T, Schneider L, et al. Vascular endothelial growth factor causally contributes to the angiogenic response upon ultraviolet B irradiation in vivo. Br J Dermatol 2002;146:581-7
    [6]Brauchle M, Funk JO, Kind P, Werner S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 1996;271:21793-7
    [7]Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 1992;176:1375-9
    [8]Brusselmans K, Bono F, Collen D, Herbert JM, CarmelietP, Dewerchin M. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 2005;280:3493-9
    [9]Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, et al. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci 2010;51:1190-7
    [10]Canavese M, Altruda F, Ruzicka T, Schauber J. Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis--a possible target for novel therapies? J Dermatol Sci 2010;58:171-6
    [11]Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575-83
    [12]Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost 2000;26:561-9
    [13]Dayanir V, Meyer RD, Lashkari K, Rahimi N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 2001;276:17686-92
    [14]Decraene D, Smaers K, Gan D, Mammone T, Matsui M, Maes D, et al. A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes. J Invest Dermatol 2004; 122:484-91
    [15]de Gruijl FR. Skin cancer and solar UV radiation. Eur J Cancer 1999;35:2003-9.
    [16]Detmar M, Brown LF, Claffey KP, Yeo KT, Kocher O, Jackman RW, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 1994; 180:1141-6
    [17]Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 1998;111:1-6
    [18]Detmar M, Brown LF, Berse B, Jackman RW, Elicker BM, Dvorak HF, et al. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J Invest Dermatol 1997; 108:263-8
    [19]Ferrara N. Vacular endothelial growth factor:basic science and clinical progress. Endocr Rev 2004;25:581-611
    [20]Flisiak I, Zaniewski P, Rogalska M, Mysliwiec H, Jaroszewicz J, Chodynicka B. Effect of psoriasis activity on VEGF and its soluble receptors concentrations in serum and plaque scales.Cytokine 2010;52:225-9
    [21]Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66-70
    [22]Fuh G, Garcia KC, de Vos AM. The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 2000;275: 26690-5
    [23]Gille J, Reisinger K, Asbe-Vollkopf A, Hardt-Weinelt K, Kaufmann R. Ultraviolet-A-induced transactivation of the vascular endothelial growth factor gene in HaCaT keratinocytes is conveyed by activator protein-2 transcription factor. J Invest Dermatol 2000,115:30-6
    [24]Gschwendt M, Kielbassa K, Kittstein W, Marks F. Tyrosine phosphorylation and stimulation of protein kinase C delta from porcine spleen by src in vitro. Dependence on the activated state of protein kinase C delta. FEBS Lett 1994;347:85-9
    [25]Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995;270:6729-33
    [26]Halin C, Fahrngruber H, Meingassner JG, Bold G, Littlewood-Evans A, Stuetz A, et al. Inhibition of a chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosin kinase inhibitor. Am J Pathol 2008; 173:265-76.
    [27]Herve MA, Meduri G, Petit FG, Domet TS, Lazennec G, Mourah S, et al. Regulation of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR by estradiol through VEGF in uterus. J Endocrinol 2006; 188:91-9
    [28]Herzinger T, Funk JO, Hillmer K, Eick D, Wolf DA, Kind P. Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene 1995; 11:2151-6
    [29]He YY, Huang JL, Chignell CF. Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA: implications in carcinogenesis. J Biol Chem 2004;279:53867-74
    [30]Hirakawa S, Fujii S, Kajiya K, Yano K, Detmar M. Vascular endothelial growth factor promotes sensitivity to ultraviolet B-induced cutaneous photodamage. Blood 2005; 105:2392-9
    [31]Jeanmougin M, Civatte J. Dosimetry of solar ultraviolet radiation. Daily and monthly changes in Paris. Ann Dermatol Venereol 1987;114:671-6
    [32]Kim EJ, Park HY, Yaar M, Gilchrest BA. Modulation of vascular endothelial growth factor receptors in melanocytes. Exp Dermatol 2005; 14:625-33
    [33]Kosmadaki MG, Yaar M, Arble BL, Gilchrest BA. UV induces VEGF through a TNF-alpha independent pathway. FASEB J 2003; 17:446-8
    [34]Lachgar S, Charveron M, Gall Y, Bonafe JL. Inhibitory effects of retinoids on vascular endothelial growth factor production by cultured human skin keratinocytes. Dermatology 1999; 199:(Suppl.1) 25-7
    [35]Lapolla W, Yentzer BA, Bagel J, Halvorson CR, Feldman SR. A review of phototherapy protocols for psoriasis treatment. J Am Acad Dermatol 2011-,64:936-49
    [36]Lauer G, Sollberg S, Cole M, Flamme I, Sturzebecher J, Mann K, et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 2000;115:12-8
    [37]Lee EJ, Jeon MS, Kim BD, Kim JH, Kwon YG, Lee H, et al. Capsiate inhibits ultraviolet B-induced skin inflammation by inhibiting Src family kinases and epidermal growth factor receptor signaling. Free Radic Biol Med 2010;48: 1133-43
    [38]Li C, Man X, Li W, Zhou J, Chen J, Cai S, et al. Regulation of adhesion by vascular endothelial growth factor in HaCaT cells. Mol Cell Biochem 2011;346:173-8
    [39]Li Y, Bi Z, Yan B, Wan Y. UVB radiation induces expression of HIF-1alpha and VEGF through the EGFR/PI3K/DEC1 pathway. Int J Mol Med 2006; 18:713-9
    [40]Man XY, Yang XH, Cai SQ, Yao YG, Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis, Mol Med 2006; 12: 127-36
    [41]Man XY, Yang XH, Cai SQ, Bu ZY, Zheng M. Overexpression of vascular endothelial growth factor (VEGF) receptors on keratinocytes in psoriasis: regulated by calcium independent of VEGF. J Cell Mol Med 2008; 12:649-60
    [42]Man, XY, Yang XH, Cai SQ, Bu ZY, Wu XJ, Lu ZF, et al. Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages:a comparison study by immunofluorescence. Clin Exp Dermatol 2009;34:396-401
    [43]Martin J, Duncan FJ, Keiser T, Shin S, Kusewitt DF, Oberyszyn T, et al. Macrophage migration inhibitory factor (MIF) plays a critical role in pathogenesis of ultraviolet-B (UVB)-induced nonmelanoma skin cancer (NMSC). FASEB J 2009;23:720-30
    [44]Matsui MS, Wang N, DeLeo VA. Ultraviolet radiation B induces differentiation and protein kinase C in normal human epidermal keratinocytes. Photodermatol Photoimmunol Photomed 1996; 12:103-8
    [45]Matsumura M, Tanaka N, Kuroki T, Ichihashi M, Ohba M. The eta isoform of protein kinase C inhibits UV-induced activation of caspase-3 in normal human keratinocytes. Biochem Biophys Res Commun 2003,303:350-6
    [46]Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity:signal transduction cascades. FASEB J 2001;15:1218-20
    [47]Mildner M, Weninger W, Trautinger F, Ban J, Tschachler E. UVA and UVB radiation differentially regulate vascular endothelial growth factor expression in keratinocyte-derived cell lines and in human keratinocytes. Photochem Photobiol 1999;70:674-9
    [48]Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, M(?)ller NP, Risau W, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72: 835-46
    [49]Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, et al. Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 2007;79: 1261-73
    [50]Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13:9-22
    [51]Nofal A, Al-Makhzangy I, Attwa E, Nassar A, Abdalmoati A. Vascular endothelial growth factor in psoriasis:an indicator of disease severity and control. J Eur Acad Dermatol Venereol 2009;23:803-6
    [52]Nys K, Maes H, Dudek AM, Agostinis P. Uncovering the role of hypoxia inducible factor-la in skin carcinogenesis. Biochim Biophys Acta 2011;1816:1-12
    [53]Pentland AP. Active oxygen mechanisms of UV inflammation. Adv Exp Med Biol 1994;366:87-97
    [54]Petrova TV, Makinen T, Alitalo K. Signaling via vascular endothelial growth factor receptors. Exp Cell Res 1999;253:117-30
    [55]Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR. UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 1999; 112:751-6
    [56]Peus D, Vasa RA, Meves A, Pott M, Beyerle A, Squillace K, et al. H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J Invest Dermatol 1998; 110:966-71
    [57]Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 1993;90: 7533-7
    [58]Rijnkels JM, Moison RM, Podda E, van Henegouwen GM. Photoprotection by antioxidants against UVB-radiation-induced damage in pig skin organ culture. Radiat Res 2003; 159:210-7
    [59]Robinson GS, Ju M, Shih SC, Xu X, McMahon G, Caldwell RB, et al. Nonvascular role for VEGF. VEGFR-1,-2 activity is critical for neural retinal development. FASEB J 2001;15:1215-7
    [60]Rosenberger C, Solovan C, Rosenberger AD, Jinping L, Treudler R, Frei U,et al. Upregulation of hypoxia-inducible factors in normal and psoriatic skin. J Invest Dermatol 2007; 127:2445-52
    [61]Sanchez A, Wadhwani S, Grammas P. Multiple neurotrophic effects of VEGF on cultured neurons. Neuropeptides 2010;44:323-31
    [62]Sander CS, Chang H, Salzmann S, Muller CS, Ekanayake-Mudiyanselage S, Elsner P, et al. Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol 2002; 118:618-25
    [63]Scrofani SD, Fabri LJ, Xu P, Maccarone P, Nash AD. Purification and refolding of vascular endothelial growth factor-B. Protein Sci 2000;9: 2018-25
    [64]Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995; 10:135-47
    [65]Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376:62-6
    [66]Shen BQ, Lee DY, Zioncheck TF. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J Biol Chem 1999;274:33057-63
    [67]Singh AJ, Meyer RD, Band H, Rahimi N. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation. Mol Biol Cell 2005;16:2106-18
    [68]Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735-45
    [69]Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12:4243-54
    [70]Sondell M, Kanje M. Postnatal expression of VEGF and its receptor flk-1 in peripheral ganglia. Neuroreport 2001; 12:105-8
    [71]Supp DM, Supp AP, Bell SM, Boyce ST. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol 2000;114:5-13
    [72]Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res 2005;65:550-63
    [73]Tapia JA, Garcia-Marin LJ, Jensen RT. Cholecystokinin-stimulated protein kinase C-delta kinase activation, tyrosine phosphorylation, and translocation are mediated by Src tyrosine kinases in pancreatic acinar cells. J Biol Chem 2003;278:35220-30
    [74]Terman B. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187:1579-86
    [75]Umeda J, Sano S, Kogawa K, Motoyama N, Yoshikawa K, Itami S, et al. In vivo cooperation between Bcl-xL and the phosphoinositide 3-kinase-Akt signaling pathway for the protection of epidermal keratinocytes from apoptosis. FASEB J 2003; 17:610-20
    [76]Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Fltl, two receptors for vascular endothelial growth factor. J Biol Chem 1994;269:26988-95
    [77]Wang HQ, Quan T, He T, Franke TF, Voorhees JJ, Fisher GJ. Epidermal growth factor receptor-dependent, NF-kappaB-independent activation of the phosphatidylinositol 3-kinase/Akt pathway inhibits ultraviolet irradiation-induced caspases-3,-8, and -9 in human keratinocytes. J Biol Chem 2003;278: 45737-45
    [78]Weninger W, Uthman A, Pammer J, Pichler A, Ballaun C, Lang IM, et al. Vascular endothelial growth factor production in normal epidermis and in benign and malignant epithelial skin tumors. Lab Invest 1996;75:647-57
    [79]Wey JS, Fan F, Gray MJ, Bauer TW, McCarty MF, Somcio R, et al. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 2005; 104:427-38
    [80]Whitaker GB, Limberg BJ, Rosenbaum JS. Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF165 and VEGF121. J Biol Chem 2001;276:25520-31
    [81]Wilgus TA, Matthies AM, Radek KA, Dovi JV, Burns AL, Shankar R, et al. Novel function for vascular endothelial growth factor receptor-1 on epidermal keratinocytes. Am J Pathol 2005; 167:257-66
    [82]Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 2003;102:161-8
    [83]Yang XH, Man XY, Cai SQ, Yao YG. Bu ZY, Zheng M. Expression of VEGFR-2 on HaCaT cells is regulated by VEGF and plays an active role in mediating VEGF induced effects. Biochem Biophys Res Commun 2006;349:31-8
    [84]Yonekura H, Sakurai S, Liu X, Migita H, Wang H, Yamagishi S, et al. Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 1999;274:35172-8
    [85]Yoshizumi M, Nakamura T, Kato M, Ishioka T, Kozawa K, Wakamatsu K, et al. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol Int 2008;32:1405-11
    [86]Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med 2009;47:891-905
    [87]Zhu M, Zhang Y, Bowden GT. Involvement of mitogen-activated protein kinases and protein kinase C in regulation of antioxidant response element activity in human keratinocytes. Cancer Lett 2006;244:220-8
    [88]Zhu Y, Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J 2003; 17:186-93
    [1]Yaar M, Gilchrerst BA. Photoaging:mechanism, prevention and therapy. Br J Dermatol,2007,157:874-887.
    [2]Gallagher RP, Lee TK. Adverse effects of ultraviolet radiation:a brief review. Prog Biophys Mol Biol,2006,92:119-131.
    [3]Mackie RM. Long-term health risk to the skin of ultraviolet radiation. Prog Biophys Mol Biol,2006,92:92-96.
    [4]Jung EJ, Kawai T, Park HK, et al. Identification of ultraviolet B-sensitive genes in human peripheral blood cells. J Med Invest,2008,55(3-4):204-210.
    [5]Kunisada M, Kumimoto H, Ishizaki K, et al. Narrow-band UVB induces more carcinogenic skin tumors than broad-band UVB through the formation of cyclobutane pyrimidine dimer. J Invest Dermatol.2007,127(12):2865-2871.
    [6]Kikuchi K, Wakamatsu K, Tada Y, et al. Serum 5-S-cysteinyldopa levels in patients with psoriasis undergoing narrowband ultraviolet B phototherapy. Clin Exp Dermatol,2008,33(6):750-753.
    [7]Reichrath J. Skin cancer prevention and UV-protection:how to avoid vitamin D-deficiency? Br J Dermatol,2009,161Suppl 3:54-60.
    [8]Brzoska T, Luger TA, Maaser C, et al. Alpha-melanocyte-stimulating hormone and related tripeptides:biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev,2008, 29(5):581-602.
    [9]Bonkobara M, Yagihara H, Yudate T, et al. Ultraviolet-B radiation upregulates expression of dectin22 on epidermal Langerhans cells by activating the gene promoter. Photochem Photobiol,2005,81:944.
    [10]Schwarz A, Maeda A, Wild MK, et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J Immunol,2004,172(2):1036-1043.
    [11]van de Pas CB, Kelly DA,Seed PT, et al. Ultraviolet radiation induced erythema and suppression of contact hypersensitivity responses in patients with polymorphic light eruption. J Invest Dermatol,2004,122:295-299.
    [12]Palmer RA, Hawk JL, Young AR, et al. The effect of solar-simulated radiation on the elicitation phase of contact hypersensitivity does not differ between controls and patients with polymorphic light eruption.2005,124(6): 1308-1312.
    [13]Duarte I, Cunha JA, Bedrikow RB, et al. What is the most common phototherapy prescription for psoriasis:NB-UVB or PUVA? Prescription behavior. An Bras Dermatol.2009,84(3):244-248.
    [14]Anbar TS, Westerhof W, Abdel-Rahman AT, et al. Effect of one session of ER:YAG laser ablation plus topical 5Fluorouracil on the outcome of short-term NB-UVB phototherapy in the treatment of non-segmental vitiligo: a left-right comparative study. Photodermatol Photoimmunol Photomed, 2008,24(6):322-329.
    [15]Shimauchi T, Suqita K, Nishio D, et al. Alterations of serum Th1 and Th2 chemokines by combination therapy of interferon-gamma and narrowband UVB in patients with mycosis fungoides. J Dermatol Sci,2008,50(3): 217-225.
    [16]Welsh O, Herz-Ruelas ME, Gomez M, et al. Therapeutic evaluation of UVB-targeted phototherapy in vitiligo that affects less than 10% of the body surface area. Int J Dermatol,2009,48(5):529-534.
    [17]Nicolaidou E, Antoniou C, Stratigos A, et al. Narrowband ultraviolet B phototherapy and 308-nm excimer laser in the treatment of vitiligo:a review. J Am Acad Dermatol,2009,60(3):470-477.
    [18]Walters IB, Burack LH, Coven TR, et al. Suberythemogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J Am Acad Dermatol,1999,40(6 Pt 1):893-900.
    [19]Lee JH, An HT, Chung JH, et al. Acute effects of UVB radiation on the proliferation and differentiation of keratinocytes. Photodermatol Photoimmunol Photomed,2002,18(5):253-261.
    [20]Gambichler T, Rotterdam S, Tigges C, et al. Impact of ultraviolet radiation on the expression of marker proteins of gap and adhesion junctions in human epidermis. Photodermatol Photoimmunol Photomed,2008,24(6):318-321.
    [21]Bohm M, Wolff I, Scholzen TE, Robinson SJ, et al. alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem,2005,280(7):5795-5802.
    [22]Breuckmann F, von Kobyletzki G, Avermaete A, et al. Mechanisms of apoptosis:UVA1-induced immediate and UVB-induced delayed apoptosis in human T cells in vitro. J Eur Acad Dermatol Venereol,2003,17(4):418-429.
    [23]Schwarz T. Mechanisms of UV-induced immunosuppression. Keio J Med, 2005,54(4):165-171.
    [24]Aufiero BM, Talwar H, Young C, et al. Narrow-band UVB induces apoptosis in human keratinocytes. J Photochem Photobiol B,2006,82(2):132-139.
    [25]Sigmundsdottir H, Johnston A, Gudjonsson JE, et al. Narrowband-UVB irradiation decreases the production of pro-inflammatory cytokines by stimulated T cells. Arch Dermatol Res,2005,297(1):39-42.
    [1]Wai PY, Kuo PC. The role of Osteopontin in tumor metastasis. J Surg Res, 2004,21(2):228-41.
    [2]Zhang J, Talahashi K, Takahashi F, et al. Diferential esteopantin expression in lung cancer. Cancer Lett,2001,171(2):215-222.
    [3]Shinohara ML, Lu L, Bu J. et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol, 2006,7:498-506.
    [4]Shinohara ML, Kim JH, Garcia VA, et al. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity,2008,29:68-78.
    [5]Cantor H, Shinohara ML. Regulation of T-helper-cell lineage development by osteopontin:the inside story. Nat Rev Immunol,2009,9:137-141.
    [6]Yu DW, Yang T, Sonoda T. et al. Osteopontin gene is expressed in the dermal papilla of pelage follicles in a hair-cycle-dependent manner. J Invest Dermatol,2001,117:1554-1558.
    [7]Chang PL, Harkins L, Hsieh YH. et al. Osteopontin expression in normal skin and non-melanoma skin tumors. J Histochem Cytochem,2008,56:57-66.
    [8]Buback F, Renkl AC, Schulz G. et al. Osteopontin and the skin:multiple emerging roles in cutaneous biology and pathology. Exp Dermatol, 2009,18(9):750-759.
    [9]Mori R, Shaw T J, Martin P. Molecular mechanisms linking wound inflammation and fibrosis:knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med,2008,205:43-51.
    [10]Sharma A, Singh AK, Warren J, et al. Differential regulation of angiogenic genes in diabetic wound healing. J Invest Dermatol,2006,126:2323-2331.
    [11]Masutani K, Akahoshi M, Tsuruya K. et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum, 2001,44:2097-2106.
    [12]D' Alfonso S, Barizzone N, Giordano M. et al. Two single-nucleotide polymorphisms in the 5'and 3'ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum, 2005,52:539-547.
    [13]Xu AP, Bai J, Lu J. et al. Osteopontin gene polymorphism in association with systemic lupus erythematosus in Chinese patients. Chin Med J,2007,120: 2124-2128.
    [14]Kenji Y. Muneaki I. Susan RR, et al. Osteoppntin deficiency protects joints against destruction in anti-type Ⅱ collagen antibody induced arthritis in mice. Proc Natl Acad Sci,2002,99:4556-4561.
    [15]Chen YJ, Shen JL, Wu CY, et al. Elevated plasma osteopontin level is associated with occurrence of psoriasis and is an unfavorable cardiovascular risk factor in patients with psoriasis. J Am Acad Dermatol,2009,60:225-230.
    [16]Buommino E, Tufano MA, Balato N, et al. Osteopontin:a new emerging role in psoriasis. Arch Dermatol Res,2009,301(6):397-404.
    [17]Zhou Y, Dai DL, Martinka M. et al. Osteopontin expression correlates with melanoma invasion. J Invest Dermatol,2005,124:1044-1052.
    [18]Winfield HL, Kirkland F, Ramos-Ceballos FI, et al. Osteopontin expression in Spitz nevi. Arch Dermatol,2007,143:1076-1077.
    [19]Philip S, Bulbule A, Kundu GC. Matrix metalloproteinase-2:mechanism and regulation of NF-kappaB-mediated activation and its role in cell motility and ECM-invasion. Glycoconj J,2004,21(8-9):429-441
    [20]Rangel J, Nosrati M, Torabian S, et al. Osteopontin as a molecular prognostic marker for melanoma. Cancer,2008,112(1):144-150.
    [21]Hsieh YH, Juliana MM, Hicks PH et al. Papilloma development is delayed in osteopontin-null mice:implicating an antiapoptosis role for osteopontin. Cancer Res,2006,66:7119-7127.
    [22]Rangaswami H. Kundu. GC. Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways. Oncol Rep,2007,18(4):909-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700