用户名: 密码: 验证码:
滑坡、泥石流地质灾害评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡和泥石流灾害是常见的地质次生灾害,对人们的生产生活产生巨大的威胁并对区域经济的稳定、健康发展具有巨大的破坏作用。由于滑坡、泥石流地质灾害本身是一个非线性的复杂系统,人们到目前为止对其发生的机理和影响因素还没有清楚的认识,在滑坡和泥石流地质灾害评价过程中还存在很大的不确定性。进行滑坡和泥石流地质灾害评价方法研究,不仅具有科学理论上的价值,更具有很大的应用价值。通过此项研究可以提高这两类地质灾害评价的准度和精度,对制定区域经济中长期规划具有指导作用,对人们的生命财产安全和社会经济的发展具有重要的意义。
     国内外的科研工作者在滑坡和泥石流地质灾害评价方法方面已经进行的大量的研究工作,提出的评价方法大致可分为:定性的评价方法、确定性的方法、统计分析方法和基于人工智能的方法,以及基于“3S”技术的评价方法。本文提出了基于FAN (Forest Augmented Naive Bayesian,即森林增强型贝叶斯网络模型)模型的滑坡地质灾害脆弱性评价方法和基于贝叶斯网模型的泥石流地质灾害危险性评价方法,结合地理信息系统(GIS)技术,研究并开发了基于GIS的滑坡地质灾害脆弱性评价系统和泥石流地质灾害危险性评价系统。完成的研究工作及取得的主要进展如下
     (1)在分析现有评价模型存在的问题的基础上,根据四川攀西地区尺度范围,针对滑坡地质灾害脆弱性评价过程中存在的问题,选择了FAN作为滑坡地质灾害脆弱性评价的模型;考虑到中国大陆地区尺度范围比较大,针对现有泥石流地质灾害危险性评价模型存在的问题,选择了贝叶斯网络模型作为泥石流地质灾害危险性评价的模型。
     (2)滑坡地质灾害脆弱性是指一个地形单元发生滑坡地质灾害的概率大小,不考虑灾害发生的频率和规模。滑坡地质灾害的发生受很多复杂因素的影响,其评价具有很大的不确定性,因此,滑坡地质灾害脆弱性评价是一件很有挑战性的工作。根据滑坡地质灾害发生的机理和影响因素,本研究建立了滑坡地质灾害脆弱性评价指标体系,并提出了基于FAN模型和专家先验知识的滑坡地质灾害脆弱性评价方法。在两个干扰性不同的样本集上,分别对FAN模型和人工神经网络模型进行交叉验证。验证结果表明FAN模型在干扰性较小样本集2上(命中率:84.13%;精度:78.51%)具有很好的命中率和精度;与人工神经网络模型的性能对比结果表明FAN模型的评价性能较好,鲁棒性更好。最后分别用FAN模型和人工神经网络模型生产出了攀西地区的滑坡地质灾害脆弱性空间分布等级图。两个等级图对比分析的结果表明,FAN模型生产出的等级图的空间分布更合理。
     (3)泥石流地质灾害是一个非线性的复杂系统,灾害的发生受很多因素的影响,其评价过程具有很大的不确定性,是一个尚未得到很好解决的科学难题。根据泥石流地质灾害发生的机理和影响因素,本研究建立了泥石流地质灾害危险性评价指标体系,并提出了基于贝叶斯网络(BN)模型和专家先验知识的泥石流地质灾害危险性评价方法。在两个干扰性不同的样本集上,分别对贝叶斯网络模型、人工神经网络模型和支持向量机模型进行了交叉验证。在干扰性较小的样本集2上贝叶斯网络模型(命中率85.66%;误测率:8.23%;精度:89.63%)和人工神经网络模型(命中率:81.63%误测率:3.48%;精度:91.27%)的性能都很高,比支持向量机(命中率:73.44%误测率:8.17%;精度:85.31%)的性能好。在干扰性较大的样本集1上,人工神经网络(命中率:34.60%;精度:85.41%)和支持向量机(命中率:22.32%;精度:84.55%)的评价性能明显下降,而贝叶斯网络模型(命中率:76.99%;精度:76.53%)仍保持着较好的评价性能,这就说明贝叶斯网络模型具有较好的抗干扰性,鲁棒性更好。最后分别用贝叶斯网络模型、人工神经网络和支持向量机模型分别生产出了中国大陆地区的泥石流地质灾害危险性空间分布等级图。三幅等级图对比分析的结果表明:贝叶斯网络模型生产出的泥石流地质灾害危险性空间分布等级图更符合中国大陆的实际情况和调查数据的空间分布规律。交叉验证和评价结果对比分析的结果表明,贝叶斯网络模型能很好的处理泥石流地质灾害评价中的不确定性问题,是一个适合于大尺度范围(国家尺度)的泥石流地质灾害危险性评价模型。
     (4)滑坡和泥石流地质灾害评价原型系统开发是实现评价方法业务化运行的关键。本研究从充分利用MATLAB实现的贝叶斯网络模型软件包的开源性考虑,来降低模型本身算法的开发成本。空间数据的处理以及评价结果数据的保存和展示都需要用到地理信息系统功能,因此与GIS系统的集成也是系统开发的关键技术。在研究ArcGIS Engine、C#和MATLAB Engine集成技术的基础上,结合滑坡、泥石流地质灾害评价模型,本研究设计并开发出了基于GIS的滑坡地质灾害脆弱性评价系统和泥石流地质灾害危险性评价系统。评价系统为滑坡、泥石流地质灾害评价、管理、减灾和防灾工作提供了工具和决策的支持;系统设计和集成的技术思路为原型系统的系统集成和快速开发提出了新的思路。
     通过本文的研究,无论是理论上的科学性,还是滑坡、泥石流地质灾害评价结果的可靠性,均表明贝叶斯网络模型可以很好的处理滑坡、泥石流地质灾害评价过程中的不确定性问题,在地质灾害评价方面具有巨大的优越性,同时也显示出其广阔的应用前景。
Landslide and debris flow are common geological hazard. They can induce a series of disasters that may pose a serious threat to lives, property, and even economic development. The comprehensive assessment of landslide and debris flow hazard is a challenging task due to the uncertainties and complexity of various related factors. In this study, based on in-depth study and comprehensive analysis of previous research results, we proposed FAN (Forest Augmented Naive Bayesian) model for landslide susceptibility assessment and BN (Bayesian network) model for debris flow hazard assessment, and developed a GIS-based landslide susceptibility and debris flow hazard assessment systems. The main research work and key developments are as follows:
     (1) Analyzed the problems of the existing landslide and debris flow assessment model. According to the characteristics of the study area, FAN model was chosen as a model of the landslide hazard susceptibility assessment, and BN model was chosen as a model of the debris flow hazard assessment.
     (2) Landslide susceptibility is a full of challenge task due to the uncertainties and complexity of multiple related factors. Landslide susceptibility refers to the possibility of landslide occurrence of a terrain unit. Susceptibility does not consider the temporal probability of failure (i.e., when or how frequently landslides occur), nor the magnitude of the expected landslide. Factors associated with landslide susceptibility assessment are selected and a novel methodology for landslide susceptibility assessment based on FAN model and domain knowledge was proposed. Cross-validations of FAN model and ANNs (Artificial Neural Networks) were conducted on two different sample datasets. The landslide susceptibility maps of Pan-Xi district are produced using FAN model and ANNs, respectively. The results indicated that FAN model has excellent anti-interference, good robustness, and proves to be an alternative method for landslide susceptibility assessment.
     (3) The comprehensive assessment of debris flow hazard risk is a challenging task due to the uncertainties and complexity of various related factors. A reasonable and reliable assessment should be based on sufficient data and assessment approaches reflecting the actual situation. Factors associated with debris flow hazard assessment are selected and a novel methodology for assessing debris flow hazard based on a BN and domain knowledge is presented. Based on authoritative records of debris flow hazards and geomorphologic and environmental data for the Chinese mainland, approaches based on BN, SVM (support vector machine) and ANNs (artificial neural networks) were compared. The results show that BN provides a higher probability (85.66%) of hazard detection, a better precision (89.63%), and a larger AUC (area under the receiver operating characteristic curve) value (0.95) than SVM and ANNs. The BN-based model is useful for mapping and assessing debris flow hazard risk on a national scale.
     (4) Based on ArcGIS Engine, C#and MATLAB Engine, we developed a GIS-based landslide susceptibility and debris flow hazard assessment system. The assessment system can provide decision-making support and tools for decision makers.
     All the analysis of both the scientific theory and practical application show that BN model can deal with the uncertainty of landslide susceptibility and debris flow hazard assessment, has great advantages in the hazard assessment and broad application prospects.
引文
Alberto, R., Domenico, C.. Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. COMPUT GEOSCI-UK,2002,28:735-749.
    Aleotti, P., Chowdhury, R... Landslide hazard assessment:summary review and new perspectives. B ENG GEOL ENVIRON,1999,58:21-44.
    Ayalew, L., Yamagishi, H.. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology,2005,65(2):15-31.
    Aeza, C., Corominas, J.. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms,2001,26(12):1251-1263.
    Band, L.E.. Topographical partition of watersheds with digital elevation models. Water Resources Research,1986, (2):15-24.
    Brand, E.W., Premchitt, J., Phillipson, H.B.. Relationship between rainfall and landslide in HongKong. Proceeding 4th International Symposium Landslides, Toronto,17 September 1984,1984,1: 377-384.
    Biswajeet, P., Saro, L.. Landslide susceptibility assessment and factor effect analysis:backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software,2010,25:747-759.
    Carrara, A.. Multivariate Models for Landslide Hazard Evaluation. Journal of the International Association for Mathematical Geology,1983,15(3):403-426.
    Carrara, A., Cardinali, M., Guzzetti, F., Reichenback, P.. GIS technology in mapping landslide hazard. In: Carrara, A., Guzzetti, F. (Eds.), Geographical Information Systems in Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, The Netherlands,1995,135-175.
    Carrara, A., Merenda, L.. Landslide inventory in Northern Calabria, Southern Italy. Geological Society of America Bulletin,1976,87(8):1153-1162.
    Castelletti, A., Soncini-Sessa, R.. Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software,2007,22:1075-1088.
    Dai, F.C., Lee, C.F.. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology,2002,42:213-228.
    David, B.S.. Prototype and feature selection by sampling and random mutation hill climbing algorithms. Proc. of the Eleventh International Conference on Machine Learning,1994,293-301.
    Duda, R., Hart, P.. Pattern classification and scene analysis. John Wiley & Sons.
    Fansto, G., Alberto, C., Mauro, C., Paola, R.,1999. Landslide hazard evaluation a review of current techniques and their application in a multi-scale study Central Italy. Geomorphology,1973,31: 181-216.
    Fausett, F.. Fundamentals of neural networks:architectures, algorithms and applications. Prentice-Hall, Englewood Cliffs, NJ,1994.
    Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. ENG GEOL,2008,102(3-4):85-98.
    Franks, C.A.M.. Characteristics of some rainfall-induced landslides on natural slopes, Lantau Island, Hong Kong. Quarterly Journal of Engineering Geology,1999,32:247-259.
    Friedman, N., Greiger, D., Goldszmidt, M.. Bayesian Network Classifiers. MACH LEARN,1997,29: 131-163.
    Gomez, H., Kavzoglu, T.. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. ENG GEOL,2005,78(1-2):11-27.
    Gregory, F.C., Edward, H.. A bayesian method for the induction of probabilistic networks from data. Machine Learning,1992,9:309-347.
    Greiner, R., Darken, C., Santoso, N.I.. Efficient reasoning. Computing Surveys,2001,33(1):1-30.
    Guzzetti, F., Carrara, A., Cardinali, M.. Landslide hazard evaluation:an aid to a sustainable development. Geomorphology,1999,31:181-216.
    Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M.. Estimating the quality of landslide susceptibility models. Geomorphology,2006,81(1-2):166-184.
    Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F.. Landslide hazard assessment in the Staffora basin, northern Italian Apennines. Geomorphology,2005a,72:272-299.
    Guzzetti, F., Reichenbach,P., Cardinali, M., Galli, M., Ardizzone, F.. Probabilistic landslide hazard assessment at the basin scale. Geomorphology,2005b,72(4):272-299.
    Hayakin, S.. Neural networks:a comprehensive foundation,2nd edition. Prentice-Hall, Englewood Cliffs, NJ,1998.
    Hayakink, S.. Neural Networks:A Comprehensive Foundation,2nd edition. Prentice-Hall, Englewood Cliffs, NJ,1998.
    Hearn, G.J.. Landslide and erosion hazard mapping at Ok-Tedi Copper Mine, Papua-New-Guinea. Quarterly Journal of Engineering Geology,1995,28:47-60.
    Jain, A.K., Mao, J., Mohiuddin, K.M.. Artificial neural networks:a tutorial. Comput. IEEE March,1996, 31-44.
    Jiang, H., Eastman, J.R.. Application of fuzzy measures in multi-criteria evaluation in GIS. INT J GEOGR INF SCI,2000,173-184.
    Jiang, L.X., Zhang, H., Cai, Z.H., Su, J.. Learning Tree Augmented Naive Bayes for Ranking. Springer, 2005,34(53):688-698.
    Johnson, A.M., Rodine, J.R.. Debris flow. In:Brunsden, D., Prior, D.B. (Eds.), Slope Instability. Wiley, New York,1984.
    Jose, B., Annetty, B., Javier, H., Cees, V.W.. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain INT J APPL EARTH OBS,2000, 2(1):9-23.
    Keefer, D.K.. Landslides caused by earthquakes. Geological Socity of America Bulletin,1984,95: 406-421.
    Kondratyev, K.Y., Krapivin, V.F., Varotsos, C.A.. Natural disasters as interactive components of global ecodynamics. Springer, Chichester, UK,2006.
    Langley, P., Iba, W., Thompson, K.. An analysis of Bayesian classifiers. In Proceedings, Tenth National Conference on Artificial Intelligence,1992,223-228.
    Laura, U.. Advantages and challenges of Bayesian networks in environmental modelling, ecological modelling,2007,203:312-318.
    Leroi, E.. Landslide hazard-Risk maps at different scales:objectives, tools and developments. In:Proc Ⅶ Int Symp Landslides, Trondheim, June 1996,1996,1:35-52.
    Li L, W.J., Wang, C.. Typhoon insurance pricing with spatial decision support tools International Journal of Geographical Information Science. INT J GEOGR INF SCI,2005,13(3):363-384.
    Lim, A., Rodrigues, B., Zhang, X.. A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research,2006,174(3):1459-1478.
    Liu, Y., Guo, H.C., Zou, R., Wang, L.J.. Neural network modeling for regional hazard assessment of debris flow in Lake Qionghai Watershed, China. ENVIRON GEOL,2005,49(7):968-976.
    Myllymaki, P., Silander, T., Tirri, H., Uronen, P.. B-course:a web-based tool for Bayesian and causal data analysis. International Journal on Artificial Intelligence Tools,11(3),2002,369-387.
    Nandi, A., Shakoor, A.. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology,2010,110(1-2):11-20.
    Nilaweera, N.S., Nutalaya, P.. Role of tree roots in slope stabilisation. Bulletin of Engineering Geology and the Environment,1999,57:337-342.
    O'callaghan, J.F., Mark, D., M. The extraction of drainage of networks from digital elevation data. Computer Vision,Graphics and Image Processing,1984,28:323-344.
    O'Hare, G., Rivas, S.. The landslide hazard and human vulnerability in La Paz City, Bolivia. Geographical Journal,2005,171:239-258.
    Pachauri, A.K., Gupta, P.V., Chander, R.. Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology,1998,36(3-4):325-334.
    Pearl, J.. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San Mateo, California,1988.
    Reckhow, K.H.. Water quality prediction and probability network models. Canadian Journal of Fisheries and Aquatic Sciences,1999, (56):1150-1158.
    Renner, G., Ekart, A.. Genetic algorithms in computer aided design. Computer-Aided Design,2003, 35(8):709-726.
    Richard, B.. Draft of the MODIS Level IB Algorithm Theoretical Basis Document Version 2.0[ATBM)D-01][Z].. SAIC/GSC MCST document,1997,3-6.
    Rumelhart, D.E., Hinton, GE., Williams, R.J.. Learning internal representation by error propagation. In: Rumelhart, D.E., McClleland, J.L. (Eds.). Parallel,1986.
    Rupke, J., Cammeraat, E., Seijmonsbergen, A.C., Vanwesten, C.J.. Engineering geomorphology of the Widentobel Catchment, Appenzell and Sankt-Gallen, Gallen, Switzerland-a geomorphological Inventory system applied to geotechnical appraisal of slope stability. Engineering Geology,1988, 26(1):33-68.
    Saito, H., Nakayama, D., Matsuyama, H.. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence:The Akaishi Mountains, Japan. Geomorphology,2009,109(4):108-121.
    Shreve, R.L.. Infinite topologically random channel networks. Journal of Geology,1967,75:178-186.
    Soeters, R., van Westen, C.J.. Slope instability recognition analysis and zonation. In:Turner, A.K., Schuster, R.L. (Eds.), Landslide Investigation and Mitigation, National Research Council. Transportation Research Board Special Report, Vol.274. National Academy Press, Washington, D.C.,1996,129-177.
    Walczak, S., Cerpa, N.. Heuristic principles for the design of artificial neural networks. Information and Software Technology,1999, (41),107-117.
    Wan, S.. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Engineering Geology,2009,108(4):237-251.
    Wan, S., Lei, T.C.. A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems,2009,22(8):580-588.
    Yao, X., Tham, L.G., Dai, F.C.. Landslide susceptibility mapping based on support vector machine:a case study on natural slopes of Hong Kong, China. Geomorphology,2008,101(4):572-582.
    程裕淇.中国地质图(1:5,000,000)说明书[M].北京:地质出版社,1990.
    陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学,1995,16(3):62-70.
    陈守煌.工程模糊集理论与应用[M].国防工业出版社,北京,1998.
    陈正汉,周海清,FredlundDG.非饱和土的非线性模型及其应用[J].岩土工程学报,1999,21(5):603-608.
    陈刚,何政伟,杨洋,杨斌.基于径向基函数神经网络的泥石流危险性评价[J].计算机应用研究,2009,26(1):241-243.
    杜榕桓,段金凡.中国泥石流形成环境剖析[J].云南地理环境研究,1990,2(2):8-18.
    杜榕恒.长江三峡库区滑坡与泥石流研究[M].四川科学技术出版社,1991.
    冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1994,3(4):54-61.
    高士平,杜丽娟,王瑞君.基于3S技术的河北省泥石流灾害预测模型研究[J].地理与地理信息科学,2007,23(4):93-96.
    胡厚田.边坡地质灾害的预测预报[M].成都:西南交通大学出版社,2000.
    胡明鉴,张平仓,汪稔.降雨对滑坡的激发作用实验研究一以蒋家沟流域滑坡堆积坡地为例[J].水上保持学报,2001,15(5):116-129.
    何雪洲.意大利滑坡死亡人数统计及与一些国家的对比[J].中国地质灾害学报,2003,14(1):122-123.
    黄元江.基于IBRF神经网络的泥石流预测研究[J].中南林业科技大学学报,2010,30(3):159-163.
    孔令伟,罗鸿禧.红粘土有效胶结特征的初步研究[J].岩土工程学报,1995,(5):42-47.
    康志成,李焯芬,马蔼乃等.中国泥石流研究[M].北京:科学出版社,2004.
    匡乐红,徐林荣,刘宝琛.基于粗糙集原理的泥石流危险度区划指标选取方法[J].地质力学学报,2006,12(2):236-242.
    刘希林.泥石流危险度判定的研究[J].灾害学,1988,(3):10-15.
    刘希林.泥石流危险性评价[M].北京:科学出版社,1995,5-26.
    刘希林.区域泥石流危险度评价研究进展[J].中国地质灾害与防治学报.2002,13(4):1-8.
    陆中臣.流域地貌系统[M].大连:大连出版社,1991,11-29.
    李晓.重庆地区的强降雨过程与地质灾害的关系[J].中国地质灾害与防治学报,1995,6(3):24-32.
    李悼芬,陈虹.香港滑坡泥石流成因及治理[J].地理学报,1997,52(增刊):114-122.
    刘玉恒,麻荣永,吴彰敦.土坝滑坡风险计算方法研究[J].红水河,2001,20(1):29-31.
    林孝松.滑坡与降雨研究[J].地质灾害与环境保护,2001,12(3):2-7.
    刘涌江,胡厚田,白志勇.泥石流危险度评价的神经网络法[J].地质与勘探,2001,37(2):84-87.
    刘闯,葛成辉.EOS的卫星、传感器及其数据产品[J].中国图像图形学报(应用版),2001,6(5):4-12.
    刘玉洁,杨忠东等MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001,232-249.
    刘传正.区域滑坡泥石流灾害预警理论与方法研究[J].水文地质与工程地质,2004,(3):1-16.
    李秀珍,孔纪名,李朝凤.基于Matlab的BP神经网络在泥石流危险性评价中的应用[J].工程勘察,2010,(1):47-50.
    潘赞,丛威青,潘懋.基于GIS的辽宁省岫岩县泥石流灾害危险性区划研究[J].北京大学学报(自然科学版),2009,4:33-38.
    乔建平.滑坡减灾理论与实践[M].北京:科学出版社,1997.
    乔建平,赵宇.滑坡危险度区划研究述评[J].山地学报,2001,19(2):157-160.
    苏经宇.泥石流危险等级评价的模糊数学方法[J].自然灾害学报,1993a,2(2):11-13.
    苏经宇,周锡文,樊水荣.泥石流危险等级评价的模糊数学方法[J].自然灾害学报,1993b,2(2):83-90.
    谭炳炎.泥石流沟严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    谭万沛.中国泥石流分布特点与活动规律的研究[J].铁道工程学报,1986,(4):96-100.
    谭万沛,王成华等.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994.
    唐川,朱静,张翔瑞.GIS支持下的地震诱发滑坡危险区预测研究.地震研究,2001,24(1):73-81.
    唐川,朱大奎.基于GIS技术的泥石流风险性评价研究[J].地理科学,2002,22(3):300-304.
    汪培庄.模糊集合论及其应用[M].上海科学技术出版社,1983.
    文海家,柳源,张永兴.滑坡预报国内外研究动态及发展趋势[J].中国地质灾害与防治学报,2004a,15(1):1-16.
    文海家,柳源,张永兴.三峡库区地质灾害及其危害[J].重庆建筑大学学报,2004b,26(1):1-9.
    文海家,张永兴,柳源.三峡库区地质灾害防减灾治战略关键问题[J].中国地质灾害与防治学报,2004c,15(2):22-28.
    王晓朋,潘懋,徐岳仁.基于流域单元的泥石流区域危险性评价[J].山地学报,2006,24(2):177-180.
    王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报,2006,1(3):1-5.
    吴积善.泥石流及其综合治理[M],科学出版社,1993.
    徐瑞瑚,杨礼茂.巴东信陵镇泥石流的危险度判别[J].中国地质灾害与防治学报,1993,4(1):69-73.
    谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995,6(2):60-69.
    许强,黄润秋.基于神经网络理论的工程地质数据处理与定量化分析方法初探[J].地质灾害与环境保护,1995,6(2):20-23.
    谢剑明,刘礼领,殷坤龙等.浙江省滑坡灾害预警预报的降雨阀值研究[J],地质科技情报,2003,22(4):100-101.
    徐新良,庄大方,贾绍风,胡云峰.GIS环境下基于DEM的中国流域自动提取方法[J].长江流域资源与环境,2004,13(4):333-348.
    杨顺泉.灾发性地质灾害防灾预警系统方案研究[J].中国地质灾害与防治学报,2002,13(2):99-111.
    阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,28(1):89-92.
    殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J]地学前缘,2001,8(2):279-284.
    殷坤龙,汪洋.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,21(1):75-78.
    殷坤龙,张桂荣,龚日祥,王孔忠.基于WebGIS的浙江省地质灾害实时预警预报系统设计[J].水文地质工程地质,2003,3:19-22.
    原立峰.基于SVM的泥石流危险度评价研究[J].地理科学,2008,28(2):296-300.
    竺可桢.中国自然地理总论[M].北京:科学出版社,1985.
    张梁,张业成.关于地质灾害涵义及其分类分级的探讨[J].地质灾害与防治学报,1994,5(2):398-401.
    张业成,云南省东川市泥石流灾害风险分析[J].地质灾害与环境保护,1995,6(1):25-34.
    张建永.滑坡研究现状综述[J].中国岩溶,1999,18(3):280-286.
    赵其华,沈军辉,王兰生,李永林.川藏公路二郎山隧道西引道地质灾害特征及整治[J].公路交通科技,2002,19(2):6-10.
    朱良峰,殷坤龙,张梁等.GIS支持下的地质灾害风险分析[J].长江科学院院报,2002,54(5):42-45.
    周国兵,马力,廖代强.重庆市山体滑坡气象条件等级预报业务系统[J].应用气象学报,2003,14(1):122-12.
    张峰,何政伟,杨斌等.基于G1S和神经网络的泥石流危险性评价系统[J].计算机工 程,2009,35(3):205-210.
    张肆红,路晓光,赵伟.FCM(模糊C-均值聚类)法在泥石流分类中的应[J].福建建筑,2010,41(3):77-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700