用户名: 密码: 验证码:
环形密封和多级转子系统耦合动力学数值及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多级离心泵中,由于实现平衡压力及密封的需要,大量存在如密封口环、级间密封及平衡鼓等环形密封隙流道。上述密封流道一方面会造成泄漏,从而降低离心泵效率,另一方面会对离心泵的振动性能造成影响。七十年代,美国航天飞机的高压油泵转子曾出现过较大的转子涡动,导致转速达不到设计值,在将周向开槽的密封改为光滑环密封后,振动消失且转子达到了设计转速。由此可以看出,无论从提高效率还是安全生产的角度,都很难忽视小间隙流对离心泵性能的影响,并且很有必要把转子和环形密封动力学分析结合起来作为转子设计过程中的关键内容。
     本文以考虑环形密封的多级转子系统为研究对象,分别针对环形密封、多级转子的动力学特性进行研究,设法在稳态和瞬态过程中考虑环形密封对转子性能的影响,并针对研究对象展开一系列试验研究以验证数值方法的可靠性。论文的主要内容包括以下五个方面:
     1、介绍了环形密封动力学模型的建立过程,分析了若干关键密封参数,包括壁面摩擦因子、入口预旋及入口损失系数等对环形密封动力学特性的影响;基于CFD方法建立了环形密封流道模型并进行了网格无关性验证,计算了不同内壁转速、进口速度及轴向截面积下环形间隙入口损失系数的变化;基于本文实验测试所用密封参数建立了环形密封数学模型,计算了密封动力特性系数及密封参数对其的影响。
     2、设计并搭建了国内首台环形密封流体力测试装置,可用于测试主轴任意偏心及涡动比状态下环形密封流道产生的径向流体力,研究各种密封形式及参数对流体作用力的影响等;介绍了该测试装置的设计思路及运行机理,着重介绍了其涡动调节原理;计算出测试装置所用环形密封的理论流体力,与实验测试结果进行比较,验证了环形密封动力学模型的可靠性。
     3、为实现利用密封参数直接预测转子系统的振动性能,首先对转子系统进行建模,并以矩阵形式将密封动特性系数耦合到转子系统矩阵中,得到考虑密封支撑作用的转子系统运动方程;通过求解上述方程得到考虑密封支撑的转子系统临界转速及不平衡响应;基于考虑环形密封的多级转子动态响应实验台,测得不同密封压差下多级转子的临界转速,与计算结果进行了对比。
     4、为研究环形密封对转子瞬态响应的影响,建立单转子模型并对其可靠性进行实验验证;基于湍流润滑理论建立环形间隙流动模型并给出三种湍流假设对应的数值结果,对环形间隙流道计算模型进行改进;通过对转子运动方程及湍流润滑方程分别求解,并在每个时间步内判断环形间隙的流动状态,实现环形间隙流场与转子系统的耦合,得到考虑流体力影响的转子瞬态响应结果。
     5、由于多级离心泵中密封支撑位置多且部分密封长径比较大,使得在传统转子动力学分析中被认为对转子性能影响不明显的阻尼系数在转子系统中所占比重增加;以单转子及多转子系统为例,分析了密封阻尼变化时转子各阶固有频率及响应幅值的变化规律;针对长径比这一对密封阻尼有显著影响的密封参数,研究了其对转子系统稳定性的影响。
     研究结果显示,密封流道长径比增加时各动特性系数均会增加,其中交叉刚度及主阻尼系数增幅最为明显,而密封间隙的增加会明显降低刚度及阻尼系数大小,入口预旋增加则会引起交叉刚度和交叉阻尼系数的增加及主刚度系数的降低;密封流体力的理论计算结果与测试结果相比偏小,即理论结果会低估密封对转子系统的支撑作用;采用本文方法计算得到的湿转子临界转速与实验结果吻合较好,当密封间隙在0.3-0.5mm范围内时,误差不超过5%;当考虑密封支撑时,转子系统临界转速变化较小但其对应响应幅值大幅减小;瞬态过程中,启动加速度的变化对转子响应幅值及响应峰值出现的时间有明显影响;密封阻尼的增加会引起转子临界转速及响应幅值的下降,密封流道长径比增加至一定范围时会引起转子在某一转速下失稳。
     本文研究内容和结论为多级离心泵内转子系统的性能预测及优化设计提供参考依据。
Multi-stage centrifugal pumps employ several annular clearance channels, such as seal rings and balance pistons, which not only cause leakage and decreases in efficiency in the pumps but also obviously influence the vibration characteristics of their rotor systems. In the1970s, the rotating speed of the rotor of a high-pressure oil pump in an aerospace plane was unable to achieve the desired value due to the large vibration of the rotor. This problem was solved by replacing the circumferentially grooved seals by smooth seals. Thus, detailed studies of influence of annular seals on rotor behaviors in multi-stage centrifugal pumps are necessary.
     Taking the multi-stage rotors which considering annular seals as the research object of this dissertation, the influence of annular seals on the multi-stage rotors was studied during the steady and transient process. An experiment facility was established to test the fluid induced forces of annular seals. The major contents of the current dissertation consist of the following five aspects.
     First, the annular seal model and a few key parameters including the wall friction factor, the pre-swirl coefficient and inlet pressure-loss coefficient were introduced. Based on CFD methods annular clearance channel was modeled and grid independence was verified on this model. Numerical results of annular seal flow were obtained due to different inner wall velocity, inlet axial velocity and clearance sizes. An annular seal was modeled based on the seal parameters of the test facility, and dynamic coefficients of various seal parameters were calculated to see the influence of these parameters on dynamic Coefficients.
     Second, there is still no fluid forces test facility of pump seals in the domestic. The author designed a test facility to test the radial fluid induced forces when the shaft under different eccentricity and whirling motion. The design concept and operation mechanism of the test facility were described and the adjusting mechanism of the whirling motion was emphasized. Based on the perturbation method, the fluid induced force was calculated using seal parameters of the test facility. Numerical and experiment results were compared to verify the reliability of theoretical methods, which established the foundation of the fluid-structure interaction method developed in this dissertation.
     Third, to predict the vibration performance of multi-stage rotors directly, a fluid-structure interaction method was developed in the current paper, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems were modeled based on the node-element method, and the motion equations were expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results.
     Fourth, this dissertation studied the influence of annular seals on the rotors transient response during the start-up period of centrifugal pump. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. Numerical results were in good agreement with the experimental results. A fluid structure interaction method was developed. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains.
     Fifth, in traditional rotor dynamics analysis it's generally believed that the stiffness coefficient plays a key role in determining the characteristics of the rotor system, and the effect of damping coefficient is not obvious. Due to the large number and large LID ratio of seal rings in the multi-stage pumps, it's found that damping coefficients have an important influence on the critical speed of the multi-stage rotors. Taking single rotors and multi-stage rotors as examples, the influence of damping coefficients on rotor performance was analyzed. The influence of LID ratio on the stability of rotor systems was studied by calculating the unstable rotating speed of rotors.
     Research results indicate that, all dynamic coefficients increased with the increase of seal channel's LID ratio, while the increase of cross stiffness and damping coefficients were most obvious. The increase of seal clearance significantly reduced the stiffness and damping coefficients. The inlet pre-swirl caused the increase of cross stiffness and cross damping coefficients, and the decrease of principal stiffness coefficients. Test results of fluid induced forces were larger than the theoretical results, which indicated that the theoretical results underestimate the supporting role of seals on the rotor system. Based on the fluid structure interaction method developed in this paper, the numerical results of "wet" critical speed showed a good agreement with experimental results. The difference between calculated and experimental results was less than5%when the seal clearance was in the range of0.3-0.5mm. When considering the supporting role of seals in the rotor system, the change of critical speed was small but its corresponding response amplitude significantly reduced. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased. The increase of damping coefficients caused the decease of critical speed and vibration amplitude. When LID ratio of seal channels increased to a certain range, the rotor may become unstable under a certain rotating speed.
     The content and conclusions of the current dissertation can provide references for the performance prediction, design optimization of the rotor systems in a multistage pump.
引文
[1]Lomakin, A. A. Calculating of critical speed and securing of dynamic stability of high pressure pumps with reference to forces arising in seal gaps energomashinostroenic, vol.4, No.1,1958
    [2]Z.X Lu. Numerical calculation of dynamic coefficients of angular seal ring [J]. Chinese journal of applied mechanics,1995,12(1):81-86.
    [3]Taylor G. I. Stability of a viscous liquid contained between two rotating cylinders[J]. Philtrans R Soc London,1923, A223:289-343.
    [4]Constamtinescu, V. N. On turbulent lubrication, Proc.Inst.Mech.Eng., Vol.173. 881-899,1959.
    [5]Ng, C. W., Pan, C. H. T., Alinearized turbulent lubrication theory. Journal of basic engineering, Trans. ASME, Vol.87, No.4, Dec.1965, P.675.
    [6]袁艳平,吉洪湖,高久好,等.Taylor-Couette流与旋转圆柱轴间流体膜润滑与密封[J].润滑与密封.2006(9):192-196.
    [7]Elrod, H. G., Ng, C.W., A theory for turbulent fluid films and its application to bearings. Journal of lubrication technology., Trans. ASME, Vol.89, No.3,1967, P346.
    [8]Constamtinescu, V. N. Basic relationships in turbulent lubrication and their extension to include thermal effects. Paper No.72-lub-16, ASME-ASLE Conference, new york, oct.1972.
    [9]Hirs, G. G. Fundamentals of a bulk flow theory for turbulent lubricant films. PhD thesis, Delft University,1970.
    [10]Roberts J B, Mason P J. An experimental investigation of pressure distributions in a journal bearing operating in the transition regime[J]. Proceedings of institution mechanical engineers,1986,200(4):251-264.
    [11]周祖巍.关于润滑流动中的湍流模式.上海:水动力学研究与进展.Vol.3, No.l, 1988.
    [12]张运清,张直明.一种紊流润滑理论分析新方法.摩擦学学报,1995,15(3):271-275.
    [13]Black H F. effects of high-pressure ring seals on pump rotor vibrations [J]. Fluid Engineering Division.1971,184(3):92-100.
    [14]Jenssen D N. dynamics of rotors systems embodying high pressure ring seals[D]. Heriot-Watt University,1970.
    [15]Hf B. On journal bearings with high axial flows in the turbulent regime[J]. Journal of Mechanical Engineering Science.1970,12(4):301-303.
    [16]Black H F. effects of hydraulic forces in annular pressure seals on the vibrations of centrifugal pump rotors[J]. Journal of Mechanical Engineering Science.1969,11 (2).
    [17]Black H F. calculation of forced whirling and stability of pump rotor vibrations[J]. journal of engineering for industry.1979.
    [18]Childs D W. Dynamic analysis of turbulent annular seals based on hirs'lubrication equation[J]. ASME Journal of lubrication technology,1983,105:429-436.
    [19]Childs D W. Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Axial Vibration Analysis[J]. Journal of Vibration and Acoustics.1991,113(1): 108-115.
    [20]Williams J P, Childs D W. Influence of Impeller Shroud Forces on Turbopump Rotor Dynamics [J]. Journal of Vibration and Acoustics.1991,113(4):508-515.
    [21]Adkins D R, Bremen C E. ANALYSES OF HYDRODYNAMIC RADIAL FORCES ON CENTRIFUGAL PUMP IMPELLERS. [J]. Journal of Fluids Engineering, Transactions of the ASME.1988,110(1):20-28.
    [22]Childs D W, Dressman J B. Convergent-Tapered Annular Seals:Analysis and Testing for Rotordynamic Coefficients [J]. Journal of Tribology.1985,107(3):307-316.
    [23]Von Pragenau, G. Damping seals for turbo machinery.1982, NASA Technical paper No.1987.
    [24]Nelson, C. Nguyen, D. Comparison of Hirs'equation with Moody's equation for determining rotordynamic coefficients of annular pressure seals. Journal of Tribology, 1987,109:144-148.
    [25]Nordmann, R., Dietzen, F., Janson, W., Frei, A., and Florjancic, S. Rotordynamic coefficients and leakage flow for smooth and grooved seals in turbopumps. Proceedings of the second IFToMM Iternational Conference on Rotordynamics, Tokyo, japan,1986:619-627.
    [26]Dietzen, F., and Normann, R. Calculating rotordynamic coefficients of seals by finite difference techniques. Rotordynamic instability problems in high performance turbomachinery, NASA CP No.3026, proceedings of a workshop held at texas A&M university,1988:197-210.
    [27]Dietzen, F., and Normann, R. Calculating rotordynamic coefficients by finite difference techniques. Journal of tribology,1987
    [28]Dietzen, F., and Normann, R. Finite difference analysis for the rotordynamic coefficients of turbulent seals in turbopumps. ASME FED-Vol.48, Symposium on thin fluid films,1987:31-42.
    [29]Florjancic, S. Annular seals of high energy centrifugal pumps:A new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Dissertation, Swiss federal institute of techno logy, Switzerland,1990.
    [30]D. W. Childs. Fluid-structure interaction forces at pump-impeller-shroud surfaces for axial vibration analysis. Transactions of the ASME,1991,113:108-115
    [31]D. W. Childs. Pressure oscillation in the leakage annulus between a shrouded impeller and its housing due to impeller-discharge-pressure disturbances. Journal of Fluid Engineering,1992,114:61-67
    [32]E.A.Baskharone etc. Rotor dynamic effects of the shroud-to-housing leakage flow in centrifugal pumps. Transactions of the ASME,1994,116:558-563
    [33]Childs, D. Vibration characteristics of the high pressure oxygen turbopump of the space shuttle main engine. Journal of engineering for gas turbines and power,1985, 107:152-159.
    [34]Childs, D. and Kim, C. H. testing results for round-hole-pattern damper seals: optimum configuration and dimensions for maximum net damping. Journal of tribology,1986,108:605-611.
    [35]Childs, D., Nolan, S., and Kilgore, J. additional test results for round-hole-pattern damper seals:leakage, friction factors, and rotordynamic force coefficients. Journal of tribology,1990,112:365-371.
    [36]Iwatsubo, T., and Sheng, B. An experimental study on the static and dynamic characteristics of damper seals. Proceedings of the third IFToMM international conference on rotordynamic, lyon, France,1990:307-312.
    [37]Kilgore, J., and Childs, D. Rotordynamic coefficients and leakage flow of circumferentially-grooved liquid seals. Journal of fluids engineering,1990,112: 250-256.
    [38]Childs, D., and Kim, C. H. testing for rotordynamic coefficients and leakage: circumferentially-grooved seals. Proceedings of the second IFToMM international conference on rotordynamics. Tokyo, Japan,1986:609-618.
    [39]Diewald, W., and Nordmann, R. Influence of different types of seals on stability behaviour of turbopumps. Rotordynamic instability problems in high performance turbomachinery, NASA CP No.3026, proceedings of a workshop held at Texas A&M university,1988:197-210.
    [40]A. Guinzburg etc. Experimental results for the rotordynamic characteristics of leakage flows in centrifugal pumps. Transactions of the ASME,1994,116:110-115
    [41]Yoshinobu Tsujimoto etc. Fluid force moment on a centrifugal impeller shroud in precessing motion.pdf. Transactions of the ASME,1997,119:366-371
    [42]Robert V. Uy etc. Rotordynamic forces from discharge-to-suction leakage flows in centrifugal pumps effects of geometry. JSME International Journal,1998,41(1): 208-213
    [43]Christopher E.Brennen, Allan J.Acosta. Fluid-induced rotordynamic forces and instabilities. Structure control and health monitoring,2006,13:10-26
    [44]Takayuki Suzuki etc. Measurements of rotordynamic forces on an artificial heart pump impeller. Transactions of the ASME,2007,129:1422-1427
    [45]Pugachev A O, Deckner M. Analysis of the Experimental and CFD-Based Theoretical Methods for Studying Rotordynamic Characteristics of Labyrinth Gas Seals [J]. ASME Conference Proceedings.2010,2010(44014):11-23.
    [46]Vijaykumar A, Morrison G. Numerical Simulation of the Flow Field in a Statically and Dynamically Eccentric Annular Seal with Non-Circular Whirl Orbits [J]. ASME Conference Proceedings.2010,2010(49484):731-761.
    [47]Pugachev A O. CFD Optimization of Liquid Annular Seals for Leakage and Rotordynamics Improvement [J]. ASME Conference Proceedings.2009, 2009(48876):657-667.
    [48]van der Velde D E, Childs D W. Measurements Versus Predictions for Rotordynamic and Leakage Characteristics of a Convergent-Tapered Honeycomb-Stator/Smooth-Rotor Annular Gas Seal[J]. ASME Conference Proceedings.2008,2008(43154):883-889.
    [49]Shen X, Jing J, Gong Q. Experimental and Numerical Analysis of Dynamics of the Rotor-Bearing-Seal System [J]. ASME Conference Proceedings.2007,2007(48027): 1653-1664.
    [50]Childs D W, Graviss M, Rodriguez L E. Influence of Groove Size on the Static and Rotordynamic Characteristics of Short, Laminar-Flow Annular Seals[J]. Journal of Tribology.2007,129(2):398-406.
    [51]Ertas B H, Vance J M. Rotordynamic Force Coefficients for a New Damper Seal Design [J]. Journal of Tribology.2007,129(2):365-374.
    [52]Childs D W, Graviss M, Rodriguez L E. The Influence of Groove Size on the Static and Rotordynamic Characteristics of Short, Laminar-Flow Annular Seals[J]. ASME Conference Proceedings.2006,2006(42592a):281-293.
    [53]Lee Y, Kim C, Duan W, et al. Analysis of Leakage Flow and Dynamic Characteristics in Floating Ring Seals for High Pressure Turbopump[J]. ASME Conference Proceedings.2006,2006(42401):1341-1349.
    [54]Ertas B, Gamal A, Vance J. Rotordynamic Force Coefficients of Pocket Damper Seals[J]. Journal of Turbomachinery.2006,128(4):725-737.
    [55]Arghir M, Frene J. A Bulk-Flow Analysis of Static and Dynamic Characteristics of Eccentric Circumferentially-Grooved Liquid Annular Seals [J]. Journal of Tribology. 2004,126(2):316-325.
    [56]Kaneko S, Ikeda T, Saito T, et al. Experimental Study on Static and Dynamic Characteristics of Liquid Annular Convergent-Tapered Damper Seals with Honeycomb Roughness Pattern [J]. Journal of Tribology.2003,125(3):592-599.
    [57]Hsu Y, Brennen C E. Fluid Flow Equations for Rotordynamic Flows in Seals and Leakage Paths [J]. Journal of Fluids Engineering.2002,124(1):176-181.
    [58]Moore J J, Palazzolo A B. CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals [J]. Journal of Tribology.1999,121(2):306-314.
    [59]Darden J M, Earhart E M, Flowers G T. Experimental Rotordynamic Characterization of Annular Seals:Facility and Methodology [J]. Journal of Engineering for Gas Turbines and Power.1999,121(2):349-354.
    [60]Childs D W, Fayolle P. Test Results for Liquid"Damper" Seals Using a Round-Hole Roughness Pattern for the Stators [J]. Journal of Tribology.1999,121(1):42-49.
    [61]Marquette O R, Childs D W, Andres L S. Closure to "Discussion of "Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals:Theory Versus Experiment"'(1997, ASME J. Tribol.,119, pp.447--448)[J]. Journal of Tribology. 1997,119(3):448.
    [62]Marquette O R, Childs D W, Andres L S. Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals:Theory Versus Experiment [J]. Journal of Tribology.1997,119(3):443-447.
    [63]Arghir M, Frene J. Rotordynamic Coefficients of Circumferentially-Grooved Liquid Seals Using the Averaged Navier-Stokes Equations [J]. Journal of Tribology.1997, 119(3):556-567.
    [64]Marquette O R, Childs D W. An Extended Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals[J]. Journal of Tribology.1996,118(2): 276-285.
    [65]Zirkelback N, San Andres L. Bulk-flow model for the transition to turbulence regime in annular pressure seals[J]. Tribology Transactions.1996,39(4):835-842.
    [66]孙晓林于慎波曹玉林.离心泵密封口环动力学特性系数计算[J].润滑与密封,1998,6:44-46.
    [67]孙启国,虞烈,谢友柏.间隙环流中同心涡动转子动特性的研究[J].机械强度.2003,25(1):21-24.
    [68]杨绍宇,陆颂元.液体环形密封转子动力特性CFD数值计算分析[J].汽轮机技术.2007(1):23-26.
    [69]赵伟国.基于CFD的离心泵口环间隙流动研究[D].华中科技大学,2006.
    [70]张新敏,夏延秋,赵清,等.部分锥度环状间隙短密封动力特性计算分析[J].润滑 与密封.2004(3):71-75.
    [71]孙启国,方海容,虞烈.大间隙环流的三维动力学模型[J].润滑与密封.2004(5):7-9.
    [72]张新敏,夏延秋,赵清,等.离心泵稳态密封间隙力的计算分析[J].润滑与密封.2004(4):63-65.
    [73]孙启国,虞烈,谢友柏.间隙环流中同心涡动转子动特性的研究[J].机械强度.2003(1):21-24.
    [74]刘鹄然,胡青春,方志明,等.用雷诺方程分析迷宫式密封的泄漏[J].润滑与密封.2003(6):56-57.
    [75]张新敏,夏延秋,王世杰,等.一种湍流润滑理论分析的工程计算方法[J].润滑与密封.2002(2):4-6.
    [76]孙启国,虞烈.有限长大间隙环流中同心转子动特性系数研究[J].摩擦学学报.2001(6):473-477.
    [77]孙启国,虞烈.粗糙度对大间隙环流偏心转子动特性系数的影响[J].摩擦学学报.2000(5):365-369.
    [78]孙启国,虞烈,谢友柏.大间隙环流中偏心转子动特性系数的计算[J].润滑与密封.2000(2):13-15.
    [79]孙启国,虞烈.大间隙环流中偏心转子动特性系数的数值分析方法[J].应用力学学报.2000(4):45-49.
    [80]王小静,张直明,孙美丽.复合型紊流润滑理论模式的研究[J].摩擦学学报.2000(2):127-130.
    [81]孙启国,虞烈.流体机械中浸液转子动力学特性的研究[J].动力工程.2000(5):906-910.
    [82]马彩云.无限长大间隙环流中同心涡动转子动特性研究[J].石油矿场机械.2000(5):16-19.
    [83]孙启国,姜培林,虞烈.大间隙环流壁面摩擦及偏心转子静特性研究[J].摩擦学学报.1999(3):261-265.
    [84]徐育,顾家柳.环形密封整体流动模型流场解的改进[J].机械科学与技术.1998(1):44-47.
    [85]孙晓林,于慎波,曹玉林.离心泵密封口环动力学特性系数计算[J].润滑与密封. 1998(6):44-46.
    [86]姜培林,虞烈.水轮机阶梯式口环水封的转子动力特性系数的计算[J].水力发电学报.1998(4):57-66.
    [87]张新敏,李良,贺伟.锥形密封环对离心泵转子动态特性的影响[J].水泵技术.1996(6):16-19.
    [88]Jennings A. ADDED Mass For Fluid-Structure Vibration Problems.[J]. International Journal for Numerical Methods in Fluids.1985,5(9):817-830.
    [89]Chilukuri R. Added Mass And Damping For Cylinder Vibrations Within A Confined Fluid Using Deforming Finite Elements.[J]. Journal of Fluids Engineering, Transactions of the ASME.1987,109(3):283-288.
    [90]王辉.大型水轮机振动分析及粘性流体与弹性结构耦合的有限元格式[D].清华大学,1997.
    [91]王正伟.考虑液固耦合作用的水轮机叶片动力特性分析[D].清华大学,1996.
    [92]J. Rajasankar N R I T. a new 3-d finite element model to evaluate added mass or analysis of fluid-structure interaction problems[J]. international journal for numerical methods in Engineering.1993,36(6):997-1012.
    [93]王永辉.流体与结构相耦合系统的有限元法研究[D].清华大学,1990.
    [94]Liu Wing Kam D L T B. finite element method for hydrodynamic mass with no stationary fluid [J]. Computer methods in Applied Mechanics and Engineering.1984, 44(1):177-211.
    [95]Myklestad N 0. a new method for calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams [J]. Journal of Aerospace Science. 1944,11:153-162.
    [96]Prohl M A. a general method for calculating critical speeds of flexible rotors[J]. Journal of Applied Mechanics-Transactions Of The Asme.1945,12(3):142-148.
    [97]L. D R. dynamics of distributed parameter turborotor systems [D]. Ithaca N.Y.:Cornell University,1970.
    [98]Nelson H D. A Finite Rotating Shaft Element Using Timoshenko Beam Theory[J]. Journal of Mechanical Design.1980,102(4):793-803.
    [99]Rouch K E, Kao J S. Dynamic Reduction in Rotor Dynamics by the Finite Element Method [J]. Journal of Mechanical Design.1980,102(2):360-368.
    [100]Hashish E, Sankar T S. Finite Element and Modal Analyses of Rotor-Bearing Systems under Stochastic Loading Conditions. [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design.1984,106(1):80-89.
    [101]Zorzi E S, Nelson H D. Finite Element Simulation of Rotor-Bearing Systems with Internal Damping. [J]. Journal of Engineering for Power, Transactions AS ME.1977, 99SerA(1):71-76.
    [102]Nelson H D, Mcvaugh J M. The Dynamics of Rotor-Bearing Systems Using Finite Elements [J]. Journal of Engineering for Industry.1976,98(2):593-600.
    [103]Gasch R. Vibration of Large Turbo-Rotors in Fluid-Film Bearings on an Elastic Foundation. [J]. Journal of Sound and Vibration.1976,47(1):53-73.
    [104]蒋庆磊,吴大转,谭善光,等.齿轮传动多转子耦合系统振动特性研究[J].振动工程学报.2010(3):254-259.
    [105]Jacquet Richardet G, Rieutord P. A three-dimensional fluid-structure coupled analysis of rotating flexible assemblies of turbomachines [J]. Journal of Sound and Vibration. 1998,209(1):61-76.
    [106]D. Lornage etc. Effects of wheel-shaft-fluid coupling and local wheel deformations on the global behavior of shaft lines,2002,124:953-957
    [107]Lornage D, Chatelet E, Jacquet Richardet G. Effects of wheel-shaft-fluid coupling and local wheel deformations on the global behavior of shaft lines [J]. Journal of Engineering for Gas Turbines and Power.2002,124(4):953-957.
    [108]Carstens V, Kemme R, Schmitt S. Coupled simulation of flow-structure interaction in turbo machinery [J]. Aerospace Science and Technology.2003,7(4):298-306.
    [109]Tran D M, Liauzun C, Labaste C. Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[J]. Journal of Fluids and Structures.2003,17(8):1161-1180.
    [110]Berger T, Fischer M, Strohmeier K. Fluid-Structure Interaction of Stirrers in Mixing Vessels [J]. Journal of Pressure Vessel Technology, Transactions of the ASME.2003, 125(4):440-445.
    [111]Grunenwald T, Axisa F, Bennett G, et al. Dynamics of rotors immersed in eccentric annular flow. Part 2:Experiments [J]. Journal of Fluids and Structures.1996,10(8): 919-944.
    [112]袁振伟,褚福磊,林言丽,等.考虑流体作用的转子动力学有限元模型[J].动力工程.2005(4):457-461.
    [113]孙启国,虞烈.流体机械中浸液转子动力学特性的研究[J].动力工程.2000,20(5):906-910.
    [114]钟一鄂.转子动力学[M].北京:清华大学出版社,1987.
    [115]Childs D W. turbomachinery rotordynamics:phenomena, modeling, and analysis[M]. New York:John Wiley & Sons, Inc.,1993.
    [116]Hirs G G. A Bulk-Flow Theory for Turbulence in Lubricant Films [J]. ASME Journal of Lubrication Technology,1973,95:137-146
    [117]E.A. Baskharone. Rotordynamic Effects of The Shroud-to-Housing Leakage Flow in Centrifugal Pumps[J]. ASME Journal of Fluids Engineering,1994,116:558-563
    [118]Nelson C C. Rotordynamic Coefficients for Compressible Flow in Tapered Annular Seals.[J]. Journal of Tribology.1985,107(3):318-325.
    [119]Szeri A Z. Tribology:Friction, Lubrication and Wear [M]. New York:Mcgraw-Hill, 1980:60-62.
    [120]Yutaka Y. resistance of flow through an annulus with an inner rotating cylinder [J]. Bulletin of JSME.1962,5(18):302-310.
    [121]Nelson C C, Nguyen D T. Comparison of Hirs'Equation with Moody's Equation for Determining Rotordynamic Coefficients of Annular Pressure Seals.[J]. Journal of Tribology.1987,109(1):144-148.
    [122]Childs D W. Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals [J]. ASME Journal of lubrication technology,1983,105:437-445.
    [123]San Andres L. Annular Pressure Seals and Hydrostatic Bearings[R]. DTIC Document, 2006.
    [124]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987.
    [125]Kanemori Y, Iwatsubo T. Experimental Study of Dynamic Fluid Forces and Moments for a Long Annular Seal [J]. Journal of Tribology.1992,114(4):773-778.
    [126]Guinzburg A, Brennen C E, Acosta A J, et al. The Effect of Inlet Swirl on the Rotordynamic Shroud Forces in a Centrifugal Pump [J]. Journal of Engineering for Gas Turbines and Power.1993,115(2):287-293.
    [127]Yoshida Y, Tsujimoto Y, Ishii N, et al. The Rotordynamic Forces on an Open-Type Centrifugal Compressor Impeller in Whirling Motion [J]. Journal of Fluids Engineering.1999,121(2):259-265.
    [128]Uy R V, Brennen C E. Experimental Measurements of Rotordynamic Forces Caused by Front Shroud Pump Leakage [J]. Journal of Fluids Engineering.1999,121(3): 633-637.
    [129]Moore J J, Palazzolo A B. Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques [J]. Journal of Engineering for Gas Turbines and Power.2001,123(4):910-918.
    [130]Hsu Y, Brennen C E. Effect of Swirl on Rotordynamic Forces Caused by Front Shroud Pump Leakage [J]. Journal of Fluids Engineering.2002,124(4):1005-1010.
    [131]Guelich J, Jud W, Hughes S F. Review of Parameters Influencing Hydraulic Forces on Centrifugal Impellers.[J]. Proceedings of the Institution of Mechanical Engineers. Part A. Power and process engineering.1987,201(3):163-1174.
    [132]Roberts J B, Hinton R E. Pressure Distributions in A Superlaminar Journal Bearing [J]. ASME Journal of lubrication technology,1982,104:187-195.
    [133]Yuji Kanemori, Takuzo Iwatsubo. Experimental study of dynamic fluid forces and moments for long annular seal [J]. ASME journal of tribology,1992,114:773-778.
    [134]Taylor C M, Dowson D. Turbulent lubrication theory-application to design [J]. ASME Journal of lubrication technology,1974,96(4):36-47.
    [135]Ng C W, Pan C H T. A linearised turbulence to calculation of lubrication flows [J]. ASME Journal of basic engineering,1965,87(4):675-688.
    [136]Black H F, Walton M H. Theoretical and experimental investigation of a short 360° journal-bearing in the transition superlaminar regime[J]. Journal of mechanical engineering science,1974,16(5):286-297.
    [137]Mason P J. An investigation of journal-bearing behavior in the superlaminar flow regime [D]. Bridlington:University of Sussex,1983.
    [138]陈伯贤裘祖干张慧生等.流体润滑理论及其应用[J].北京:机械工业出版社, 1991.
    [139]Y.Z. Liu, W.L. Chen, L.Q.Chen. Vibration mechanics [M]. High education press, 1998:31-32
    [140]Shigeo Yanabe A T. vibration of a shaft passing through a critical speed 1st report, experiments and numberical solutions [J]. Bulletin of the JSME.1971,14(76): 1050-1058.
    [141]Shigeo Yanabe A T. vibration of a shaft passing through a critical speed 2nd report, approximate equiations [J]. Bulletin of JSME.1972,15(89):1364-1374.
    [142]Meirovitch L. Introduction to dynamics and control [M]. Wiley,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700