用户名: 密码: 验证码:
裂解炉的辐射段模拟和横跨段结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯的产量和技术是石化行业发展的基础,而裂解炉又是乙烯产业的核心装置。2012年,我国年乙烯产能和产量均已经超过1700万吨,“十二五”期间,我国乙烯产业将向规模化方向发展。目前,国内单台裂解炉的年乙烯生产能力已达15万吨,随着乙烯产业的发展和技术进步,裂解炉的研究和优化显得尤为重要。本文主要利用计算流体力学(Computational Fluid Dynamics,简称CFD)技术对裂解炉进行模拟研究,分析其运行特点,实现其操作优化。
     裂解炉辐射段分成炉管内烃类裂解反应区域和炉管外燃料气燃烧放热区域,本文利用烃类裂解反应计算程序将管内烃类裂解反应转化为热量吸收的热强度,实现裂解炉辐射段管内和管外的耦合模拟计算。裂解炉燃烧器的燃料气燃烧是辐射段传热的关键步骤,燃烧模拟计算的准确性是裂解炉研究的基础,将对其优化起到关键作用,本文对模拟裂解炉的燃烧模型进行了研究,结果表明有限速率/涡耗散燃烧模型非常适合裂解炉燃烧器的燃料气和空气混合剧烈、喷射速度高和辐射段体积大等特点的燃烧模拟计算。
     裂解炉燃烧器的供热方式和比例直接决定和影响辐射段烟气温度场的分布,本文研究结果表明,在裂解炉辐射段2-1型炉管、石脑油为原料和丙乙烯比0.5的条件下,底部燃烧器和侧壁燃烧器联合供热且比例为7:3是炉管内烃类裂解反应的最佳条件。在裂解炉节能降耗的诸多方法中,底部燃烧器加装空气预热器是一个很好的办法,目前,乙烯企业的空气预热热源种类多和预热温度范围不同。本文以上述裂解炉辐射段运行为基础,对企业常用的五种预热空气温度的裂解炉辐射段进行模拟研究,结果表明空气预热温度在353.15K左右是较佳的。
     双辐射段共用一个对流段的裂解炉是裂解炉大型化方向之一,为对这一新结构炉型的工艺条件优化提供理论指导,本文研究双辐射段裂解炉的工艺特点。模拟计算结果显示在分辐射段裂解工艺中,100%处理负荷的辐射段出口烟气平均温度较75%处理负荷高10K-15K,操作稳定;在分辐射段裂解和烧焦工艺中,裂解侧辐射段出口烟气平均温度高于烧焦侧70K-75K,由于在分辐射段烧焦工艺中,裂解侧的烟气温度远高于烧焦侧,造成了两侧烟气流入对流段后发生较大的热量传递,影响了对流段炉管加热相应管内物料的热量需求。研究发现将横跨段下端水平结构改为圆弧形结构可大大延缓对流段两侧烟气热量混合的程度,适合分辐射段裂解和烧焦时对流段预热原料的热量分配需求。
     通过本文的模拟研究和数据分析,掌握了裂解炉的运行状态,获取了很多工业裂解炉运行中不易测得的数据,确立裂解炉研究和优化的方向。本文的研究结果对裂解炉的生产和优化有重要的理论指导意义,为以后新型裂解炉的设计和研究提供重要的参数。
Ethylene production and technology are crucial to the development of the petrochemical industry. The core unit for the ethylene industry is always the cracking furnace. In China, the ethylene production capacity and output exceeded17million tons in2012, and the current maximum production capacity of a single cracking furnace arrived at150000tons annually. Within the period of the Twelfth Five-Year Plan, China will develop ethylene production with large scale. With the development and technological progress of ethylene industry, researches on the optimization of largescale cracking furnace have become particularly important. This paper used computational fluid dynamics (short for CFD) to simulate cracking furnace, analyzed its operational features, and optimized the working conditions.
     Radiant section of cracking furnace is commonly consisted of hydrocarbon cracking reaction zone inside tubes and combustion heat release zone outside tubes. In this paper, all hydrocarbon cracking reactions were translated into heat flux by the calculating program of hydrocarbon cracking reaction, so the coupling simulation of inside and outside of tubes had been achieved. Fuel gas combustion is the key step of heat transfer in the radiant section of cracking furnace. The computational accuracy of the combustion simulation is crucial to the research on cracking furnace, particularly in optimizing ethylene production equipment. This paper studied some combustion models of the radiant section simulation. The results showed that the finite rate/eddy dissipation combustion model is highly suitable for the simulation of cracking furnace burner because of the vigorous mixing of fuel gas and air, the high jet velocity, as well as the large volume of radiant section.
     The mode and proportion of heat in the burners of the cracking furnace directly determine the distribution of flue gas temperature field in the radiant section. The results showed that the joint heat of the hearth and wall burners at a ratio of7:3is the optimal heat condition of the cracking furnace with the processes of the2-1type tubes, naphtha material, and propylene and ethylene at a ratio of0.5. The air preheater installed into the hearth burner enables energy conservation in the cracking furnace presently. Given that the heat sources and temperature ranges vary in different ethylene plants, this paper studied five common air-preheated temperature levels to simulate the temperature fields of radiant section. The results showed that the optimal air-preheated temperature is about353.15K.
     A cracking furnace with double radiant sections, including one convection section was considered as the direction of development in a largescale cracking furnace. This paper studied the newly technological processes of a largescale cracking furnace containing double radiant sections to provide theoretical guidance for the optimization of operational conditions. The results showed that the average flue gas temperature of the radiant section exit under the100%processing capacity was10K-15K higher than that under the75%capacity in the different cracking processes. Under this operational condition, the status was stable and safe. The average flue gas temperature of the radiant section exit in the cracking process was70K-75K higher than that under coking when the double radiant sections were under the cracking and coking. Given that the flue gas temperature during the cracking is much higher than that during the coking, the flue gas of the two radiant sections flowing into the convection section produces more heat transfer. This phenomenon affected the heat demand of tubes in the convection section. The research results showed that the arc-shaped structure of the crossover section would considerably slow down the degree of mixing of flue gas flowing from both radiant sections, which met the heat demand of cracking and coking processes.
     Through numerical simulation and data analysis, the thesis determined the operational status of cracking furnace had been grasped. This paper also obtained data which were not easily measured in industrial production, and established a method for optimizing the operational conditions of cracking furnace. The results will give out theoretical significance in the production and optimization of cracking furnace, and provide a reference of the important parameters for the design of the new cracking furnaces.
引文
[1]王强.我国乙烯工业发展漫谈[J].乙烯工业,2008,20(1):60-64
    [2]朱和.中国乙烯行业回顾、展望和思考[J].炼化广角,2012,3:67-73
    [3]王松汉.乙烯装置技术与运行[M].北京:中国石化出版社,2009
    [4]王可,张洪林.当代乙烯技术进展[J].当代化工,2006,35(2):117-121
    [5]王国清,曾清泉.裂解技术进展[J].化工进展,2002,21(2):29-33
    [6]邹仁望.石油化工裂解技术与原理[M].北京:化工出版社,1981
    [7]徐强,陈丙珍,何小荣,张蕾.石脑油在SRT-Ⅳ型工业炉清洁辐射炉管中裂解的数学模[J].计算机与应用化学,2001,18(3):223-228
    [8]李红军.HS-Ⅱ型裂解炉在乙烯装置中的应用[D].华东理工大学,2012
    [9]刘时涛,王宏刚,钱锋,胡贵华.SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J].化工学报,2011,62(5):1308-1317
    [10]郑万军.2种炉管结构的USC裂解炉比较[J].石油化工设备,2008,37(2):87-89
    [11]张照,贾志刚.炉管壁面热强度对裂解反应影响的数值模拟[J].石油学报(石油加工),2010,26(1):67-72
    [12]周瀚章,贾志刚.乙烯裂解炉辐射段流动与燃烧的三维数值模拟[J].石油化工,2007,36(6):584-590
    [13]李国荣,张衍品,程剑锋.CBL-III型裂解炉在乙烯装置的应用[J].乙烯工业,2006,18(1):29-33
    [14]张磊,申海女,何细藕.国产化CBL裂解技术在裂解炉改造中的应用[J].石油化工设备技术,2008,29(4):48-53
    [15]陈喆.强化传热技术在SL-Ⅰ型裂解炉上的应用[J].乙烯工业,2009,21(1):51-54
    [16]中国石化.15万吨/年裂解炉-设计材料[R].2007
    [17]刘熠斌,肖家治等.双辐射室裂解炉不同横跨段结构实验及数值模拟[J].中国石油大学学报(自然科学版),2007,31(3):133-136
    [18]何细藕.乙烯裂解炉技术进展[J].现代化工,2001,21(9):13-17
    [19]柴诚敬,张国亮.化工流体流动与传热[M].北京:化学工业出版社,2000
    [20]王绍亭,陈涛.化工传递过程基础[M].北京:化学工业出版社,1987
    [21]向建福.管式裂解炉辐射室管外传热模型的研究进展[J].石油化工,2007,36(4):407-411
    [22]申海女,何细藕.计算流体力学在裂解炉设计上的应用[J].乙烯工业,2004,16(4):34-37
    [23]于遵宏,孙杏元,潘惠琴,蔡国强,曹恩洪.转化炉三维空间温度分布计算[J].华东化工学院学报,1984,3:285-295
    [24]于遵宏,潘惠琴,孙杏元,沈才大,曹恩洪.管式加热炉中传热过程分析[J].华东化工学院学报,1987,13(2):243-251
    [25]于遵宏,潘惠琴,孙杏元,于广锁,吴韬.延迟焦化炉的数学模拟[J].石油学报(石油加工),1997,13(1):82-87
    [26]于遵宏,沈才大,潘惠琴,蔡国强,孙杏元.圆筒形蒸汽过热炉的区域计算法[J].华东化工学院学报,1981,3:85-94
    [27]Heynderickx G J, Froment G F. A pyrolysis furnace with reactor tubes of elliptical cross section [J]. Ind. Eng. Chem. Res.,1996,35:2183-2189
    [28]MObus H, Gerlinger P, Bruggemann D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion [J]. Combust. Flame.,2003,132:3-24
    [29]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. Academic Press:London,1972
    [30]Spalding D B. Mixing and chemical reaction in steady confined turbulent flames[A]. In:13th Symp. (Int'l.) on Combustion[C]. The Combustion Institute,1970
    [31]Ramin K, Hamid R G, Mohammad G. Flowsheeting of steam cracking furnaces [J]. Chem. Eng. Res.Des.,2009,87:36-46
    [32]Michael J B, et al. Computational simulations of industrial furnaces[A]. In:Reaction Engineering International[C]. Salt Lake City, Utah USA,1998,1-9
    [33]OPrins J M, Heynderickx G J, Marin G B. Three-dimensional asymmetric flow and temperature fields in cracking furnace[J]. Ind. Eng. Chem. Res.,2001,40:5087-5094
    [34]Oprins J M, Heynderiekx G J. Calculation of three-dimensional flow and pressure fields in creaking furnaces[J]. Chem. Eng. Sci.,2003,58:4883-4893
    [35]Stefanidis G D, Merei B, Heynderiekx G J, et al. CFD simulations of steam cracking furnaces using detailed combustion mechanisms[J]. Comput. Chem. Eng.,2006,30:635-649
    [36]沙利,张红梅,高金森等.乙烯裂解炉管内流动反应历程的数值模拟(Ⅰ)-二维流动反应数学模型的建立[J].化工学报,2003,54(3):392-397
    [37]蓝兴英,高金森,徐春明等.乙烯裂解炉内传递和反应过程综合数值模拟(Ⅰ)-数学模型的建立[J].石油学报(石油加工),2003,19(5):80-85
    [38]蓝兴英,张红梅,高金森等.乙烯裂解炉内传递和反应过程综合数值模拟(Ⅱ)-反应管内传递和反应过程的数值模拟[J].石油学报(石油加工),2003,19(6):64-69
    [39]蓝兴英,高金森,徐春明.乙烯裂解炉内传递及反应过程综合数值模拟研究((Ⅲ)-炉膛内燃烧和传热过程的数值模拟[J].石油学报(石油加工),2004,20(1):46-51
    [40]Lan X, Gao J, Xu C, et al. Numerical simulation of transfer and reaction processes in ethylene furnaces[J]. Chem. Eng. Res. Des.,2007,85:1565-1579
    [41]蓝兴英,高金森,徐春明等.乙烯管式裂解炉的数值模拟[J].过程工程学报,2004,4(3):221-227
    [42]吴德飞,何细藕,孙丽丽,申海女.乙烯裂解炉辐射段三维流场和燃烧的数值模拟计算[J].石油化工,2005,34(8):749-753
    [43]李进锋,吴德飞,何细藕.乙烯裂解炉辐射段流动、传热和燃烧数值模拟研究进展[J].石油化工设备技术,2010,31(1):36-42
    [44]吴德飞等.复杂结构气体燃烧器三维流场和燃烧状况数值模拟[J].石油大学学报(自然科学版),2003,27(2):93-98
    [45]吴德飞等.燃料变化对气体燃烧器燃烧性能影响的数值模拟研究[J].石油化工设备技术,2003,24(1):3643
    [46]王国清.裂解炉数值模拟技术进展[J].石油化工,2010,39(5):476-481
    [47]王国清,张利军.裂解炉炉膛流动及传热状况的数值模拟[J].石油化工,2005,34(7):652-655
    [48]程相杰,章名耀,韩云龙等.SL-Ⅱ型乙烯裂解炉冷态流动特性的数值模拟[J].工业炉,2006,28(1):11-14
    [49]程相杰.SL-Ⅱ型乙烯裂解炉冷态流动特性试验研究及热态数值模拟[D].东南大学,2006
    [50]韩云龙,章名耀,程相杰,肖睿.SL-Ⅱ型乙烯裂解炉炉内流动特性的研究[J].实验流体力学,2007,21(3):44-48
    [51]韩云龙等.乙烯裂解炉内燃烧、传热与裂解反应的模拟计算[J].石油学报(石油加工),2006,22(6):63-68
    [52]韦刘轲,贾志刚.乙烯裂解炉非均匀传热对裂解产物收率的影响[J].石油学报(石油加工),2011,27(3):411-418
    [53]张朝环,黄国强,吴筱.USC型乙烯裂解炉炉膛燃烧过程数值模拟[J].化工进展,2008,27(2):255-260
    [54]吴筱.乙烯裂解炉炉膛燃烧过程研究[D].天津大学,2007
    [55]刘时涛,王宏刚,杜文莉等.乙烯裂解炉燃烧传热的CFD模拟[J].计算机与应用化学,2010,27(1):29-32
    [56]Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces[J]. Chem. Eng. Sci.,2010,58:1-12
    [57]Hu G H, Wang H G, Qian F, et al. Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners[J]. Comput. Chem. Eng.,2012,38:24-34
    [58]User's Guide of Fluent Documentation, version 6.3.26[CP/DK]. USA:ANSYS, Inc,2006
    [59]贾燕子.乙烯裂解炉及燃烧器喷嘴的CFD模拟研究[D].天津大学,2008
    [60]周立行.湍流两相流动和燃烧的数值模拟[M].北京:清华大学出版社,1991
    [61]Eastwick C N, Pickering S J, Aroussi A. Comparisons of two commercial computational fluid dynamics codes in modelling pulverised coal combustion for a 2.5 MW burner[J]. Appl. Mathe. Modell.,1999,23:437-446
    [62]Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusion flame, part 2. Influence of combustion modeling and finite-rate chemistry [J]. Combust. Sci. Tech.,1996: 119-191
    [63]Delarue B J, Pope S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Phys. Fluids.,1998,2(10):487-498
    [64]何琨,马紫峰,吴德荣等.大型乙烯裂解炉辐射传热的研究[J].化工进展,2004,23(7):767-770
    [65]Heynderickx G J, Nozawa M. High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces [J].Chem. Eng. Sci.,2004,59:5657-5662
    [66]郑志伟.基于FLUENT的加热炉模拟与优化[D].中国石油大学,2010
    [67]Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces [J]. Comput. Chem. Eng.,2007,31:1389-1406
    [68]Stefanidis G D, Van Geem K M, Heynderickx G J. et al. Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model[J]. Chem. Eng. J.,2008,137: 411-421
    [69]Stefanidis G D, Merci B, Heynderickx G J, et al. Gray/Nongray gas radiation modeling in steam cracker CFD calculations [J]. AIChE Journal 2007,53(7):1658-1669
    [70]胡益锋,李炜明,徐用懋等Kumar模型一次选择性系数的随机调整算法[J].计算工程与应用,2003,32:10-13
    [71]张红梅,王宗祥.轻质油裂解炉反应管的二维数学模型[J].石油学报(石油加工),1995,11(4):68-77
    [72]杨元一,曾清泉,黄文等.重质油裂解数学模型-裂解反应动力学模型[J].石油化工,1984,13:703-710
    [73]黄文,邹芝光,杨元一等.重质油裂解数学模型-裂解炉辐射段炉管工艺计算模型[J].石油化工,1986,15:1-9
    [74]杨元一.轻质油热裂解制乙烯裂解炉工艺数学模型[J].大庆石油学院学报,1981,3:70-98
    [75]张利军,张永刚,王国清.石脑油裂解反应模型研究及应用进展[J].化工进展,2010,29(8):1411-1417
    [76]李蔚,张兆斌,周丛等.裂解炉管自由基反应模型的研究进展[J].乙烯工业,2010,22(2):1-6
    [77]周先锋,杨元一,张利军等.采用数值模拟研究不同供热形式对裂解炉运行的影响[J].石油化工,2010,39(11):1221-1227
    [78]Eaton A M, Smoot L D, Hill S C, et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models[J]. Prog. Energy. Combust. Sci.,1999, 25:387-436
    [79]Ravelli S, Perdichizzi A, Barigozzi G. Description, applications and numerical modelling of bubbling fluidized bed combustion in waste-to-energy plant [J]. Prog. Energy. Combust. Sci., 2008,34:224-253
    [80]Nick S, Kurniawan K, Griffiths T, et al. Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes[J]. Fuel.,2007,86: 2221-2231
    [81]Khare S P, Wall T F, Farida A Z, et al. Factor influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel[J]. Fuel.,2008,87:1042-1049
    [82]Saario A, Rebola A, Coelho P J, et al. Heavy fuel oil combustion in a cylindrical laboratory furnace:measurements and modelling[J]. Fuel.,2005,84:359-369
    [83]Abbassi A, Khoshmanesh Kh. Numerical simulation and experimental analysis of an industrial glass melting furnace[J]. Appl. Therm. Eng.,2008,28:450-459
    [84]Masood M, Ishrat M M, Reddy A S. Computational combustion and emission analysis of hydrogen-diesel blends with experimental verification[J]. Int. J. Hydrogen Energy.,2007,32: 2539-2547
    [85]Mustafa Ilbas, Yilmaz Ilker, Kaplan Yuksel. Investigation of hydrogen and hydrogen-hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor[J]. Int. J. Hydrogen Energy.,2005,30:1139-1147
    [86]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):584-589
    [87]Yapici H, Kayatas N, Albayrak B, et al. Numerical calculation of local entropy generation in a methane-air burner[J]. Energy Convers. Manage.,2005(46):1885-1919
    [88]Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Prog. Energy. Combust. Sci.,1984,10:319-339
    [89]倪志宇.乙烯裂解炉内传热与反应过程的数值模拟研究[D].华东理工大学,2012
    [90]Zhou X F, Yang Y Y, Wang G Q, et al. Estimating the operation status of steam cracking furnace using numerical simulation with combustion models[J]. China. Pet. Process. Pe.,2012,14(4): 52-63
    [91]袁霞光.乙烯裂解炉燃烧器技术进展[J].化工机械,2011,38(3):255-259
    [92]李昌力.裂解炉供热与燃烧器[J].乙烯工业,2010,22(3):61-64
    [93]高云忠,李金科,刘韫砚等.CFD技术在乙烯裂解炉燃烧器研发过程中的应用[J].化工机械,2009,36(4):355-359
    [94]钱家麟.管式加热炉[M].北京:中国石化出版社,2003
    [95]Wang H Y, Zhao L L, Zhou Q T, et al. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant[J]. Energy.,2008,33:647-656
    [96]Wang H Y, Zhao L L, Zhou Q T, et al. The study on heat transfer model of tri-sectional rotary air preheater based on the semi-analytical method[J]. Appl. Therm. Eng.,2008,28:1882-1888
    [97]Zeng M, Du L X, D Liao, et al. Investigation on pressure drop and heat transfer performances of plate-fin iron air preheater unit with experimental and Genetic Algorithm methods[J]. Appl. Energy.,2012,92:725-732
    [98]Rittidech S, Dangeton W, Soponronnarit S. Closed-ended oscillating heat-pipe (CEOHP) air preheater for energy thrift in a dryer[J]. Appl. Energy.,2005,81:198-208
    [99]Meena P, Rittidech S, Poomsa-ad N. Application of closed-loop oscillating heat-pipe with check valves (CLOHP/CV) air preheater for reduced relative-humidity in drying systems[J]. Appl. Energy.,2007,84:553-564
    [100]Meena P, Rittidech S, Poomsa-ad N. Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air preheater for reducing relative humidity in drying systems[J]. Appl. Energy., 2007,84:363-373
    [101]Zeng M, Du L X, Liao D, et al. Investigation on pressure drop and heat transfer performances of plate-fin iron air preheater unit with experimental and Genetic Algorithm methods[J]. Appl. Energy.,2012,92:725-732
    [102]Wang H Y, Bi X L, Zhao L L, et al. A study on thermal stress deformation using analytical methods based on the temperature distribution of storage material in a rotary air preheater[J]. Appl. Therm. Eng.,2009,29:2350-2357
    [103]Nuntaphan A, Tiansuwan J, Kiatsiriroat T. Enhancement of heat transport in thermosyphon air preheater at high temperature with binary working fluid:A case study of TEG-water[J]. Appl. Therm. Eng.,2002,22:251-266
    [104]Ghodsipour N, Sadrameli M. Experimental and sensitivity analysis of a rotary air preheater for the flue gas heat recovery[J]. Appl. Therm. Eng.,2003,23:571-580
    [105]Wang H Y, Zhao L L, Zhou Q T, et al. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant[J]. Energy.,2008,33:647-656
    [106]Wang H Y, Zhao L L, Zhou Q T, et al. The study on heat transfer model of tri-sectional rotary air preheater based on the semi-analytical method[J]. Appl. Therm. Eng.,2008,28:1882-1888
    [107]Menasha J, Dunn-Rankin D, Muzio L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel.,2011,90:2445-2453
    [108]Leong K Y, Saidur R, Mahlia T M I, et al. Performance investigation of nanofluids as working fluid in a thermosyphon air preheater [J]. Int. Commun. Heat. Mass. Transfer.,2012,14: 2529-2535
    [109]袁崇伦,伍锐,钱永康,刘悦.乙烯裂解炉底部燃烧器空气预热器系统及方法[P].中国专利,200310115269.6.2008-10-29
    [110]贾广斌,程广慧,蒋明敬等.空气预热器技术在乙烯裂解炉的应用[J].石油化工与节能,2009(4):30-32
    [111]周玲娟.裂解炉燃烧器增设空气预热器的工业应用[J].石油化工技术与经济,2009,25(2):50-53
    [112]蒋俊平.空气预热器在乙烯装置裂解炉的应用[J].化学工业与工程技术,2010,31(3):59-60
    [113]邵晨.空气预热器在裂解炉中的应用[J].石油化工设备技术,2011,32(4):30-35
    [114]吴筱,黄国强,梁红英.天然气燃烧中NOx减排的数学模型[J].化工进展,2007,26(1):109-112
    [115]Sheng C D, Moghtaderi B, Gupta R, et al. A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverised coal-fired furnace[J]. Fuel.,2004,83: 1543-1552
    [116]Frassoldati A, Frigerio S, Colombo E, et al. Determination of NOx emissions from strong swirling confined flames with an integrated CFD-based procedure[J]. Chem. Eng. Sci.,2005,60: 2851-2869
    [117]Jiang B, Liang H Y, Huang G Q, et al. Study on NOx formation in CH4/air jet combustion [J]. Chinese J. Chem. Eng.,2006,14(6):723-728
    [118]张玉明,程振民.乙烯裂解炉的蒸汽-空气烧焦过程模拟[J].石油学报(石油加工),2003,19(2):50-56
    [119]中国石化.15万吨/年裂解炉工业化应用-技术材料[R].2011
    [120]周先锋,王国清,张利军等.裂解/烧焦切换操作的双辐射段裂解炉的数值模拟[J].化工进展,2010,29(12):2234-2241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700