用户名: 密码: 验证码:
微结构聚合物漫反射材料的设计及成型基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微光学元件具有体积小、质量轻、设计灵活、易于大批量复制形成阵列化等优点,因而广泛用作微光学体系中的微型元件。通过在聚合物基材表面构造球冠型微透镜及其阵列,可以得到聚合物微透镜光学材料,其表面微结构可以赋予聚合物材料许多特殊的功能。聚合物光反射材料的内部组成以及表面添加的球冠型微透镜阵列的微结构对于反射光的利用起着决定性的作用。本文以具有球冠型微透镜阵列微结构的聚合物漫反射复合材料为研究对象,采用理论研究、仿真试验、成型试验和光效对比相结合的方法,对微结构聚合物漫反射复合材料的体系进行了设计,给出了其反射性能表征及测试方法;在仿真试验的基础上,采用挤出辊压技术制备了具有球冠型微透镜阵列微结构的漫反射复合材料,最后注塑成型了漫反射罩,并对其光学性能进行了分析。研究的主要内容如下:
     (1)对微结构聚合物漫反射材料的体系进行了设计。提出在聚合物基材内部添加具有高折射率的反射粒子的同时在聚合物基材表面添加球冠型微透镜阵列的微结构,得到一种微结构漫反射复合材料;通过理论分析,材料可以具备较好的反射性能和光照均匀度。
     (2)基于蒙特卡洛光线追迹法,建立了漫反射材料光学性能测试仿真模型。采用光学设计软件(Light Tools)分别建立了漫反射复合材料、微结构漫反射材料以及微结构漫反射复合材料光学性能测试模型,给出了测试方法并对所建模型进行了误差分析。
     (3)基于光学设计软件对不同漫反射材料分别进行了仿真实验。重点研究了反射粒子的添加浓度、粒径以及折射率对漫反射复合材料光学性能的影响。结果表明,当粒子的添加浓度为90万个/mm3,粒径4μm,粒子折射率为2.4时,漫反射复合材料具有较好的反射性能和光照均匀度。
     (4)研究了微结构的高度、半径以及排布方式对微结构漫反射材料光学性能的影响。结果表明,当基材表面添加以优化正六边形排布的球冠型微透镜阵列的微结构,且微结构的高度和半径均为0.1mm时,微结构漫反射材料具有较好的光学性能。在此基础上,向基材内部添加反射粒子,当粒子的添加浓度为90万个/mm3,粒径41μm,粒子折射率为2.4时,微结构漫反射复合材料具有较好的光学性能。
     (5)对微结构漫反射复合材料的成型工艺进行了研究。采用挤出辊压法成型了微结构漫反射复合材料,研究了二氧化钛的添加浓度,微结构的高度、半径以及排布方式对漫反射材料光学性能的影响。结果表明,漫反射复合材料总反射比为91.4%,漫反射比为88.7%,漫反射比占总反射比的97%,光照均匀度为61.3%;微结构漫反射材料总反射比为90.6%,漫反射比为86.2%,漫反射比占总反射比的95.1%,光照均匀度为62.9%;微结构漫反射复合材料总反射比为93%,漫反射比为91%,漫反射比占总反射比的98%,光照均匀度为63%。试验结果和仿真结果具有很好的一致性。
     (6)采用超细电火花技术在反射罩模具型芯表面制作了球冠型微透镜阵列的微结构。通过挤出成型,注塑成型,得到具有微结构的漫反射罩;和金属反射罩进行光效对比,结果表明所制得的漫反射罩光能利用率高,光照均匀度较好。
Micro-optical elements have the advantages of small size, light weight, flexible design, and easily mass-produced reproductions to form arrays. Therefore, it's widely used as microcomponent in micro-optics system. Through structuring spherical microlens array on the surface of polymer material, the polymer microlens optical material can be obtained, the microstructure on surface can give many special function to polymer material. The internal composition and microstructure of spherical microlens array of polymeric reflective materials play a decisive role in the use of reflected light. This paper takes the polymer diffuse reflection composite material with spherical microlens array microstructure as the research object, and with the combination of theoretical research, simulation test, forming test and light effect contrast, the system of the polymer microstructure diffuse reflection composite materials is designed, and its reflection performance characterization and testing method are given out. On the basis of simulation test, the spherical microlens array microstructure diffuse reflection composite materials is produced by the squeeze roller technology, the diffuse reflection cover is processed by injection molding finally, and the optical performance is analyzed. The main research content is as follows:
     (1) The system of microstructure polymer diffuse reflection material is design. Putting forward within the polymer material to add reflective particles with high refractive index of polymer material surface, at the same time add microstructure of a spherical microlens array, a microstructure diffuse reflection composite material can be obtained, through theory analysis, the material can have a good reflection performance and illumination uniformity.
     (2) Based on the Monte Carlo ray tracing method, the test simulation mode for optical performance of diffuse reflection material is established. By using Light Tools, the diffuse reflection composite materials, and the microstructure diffuse reflection optical composite materials, and microstructure performance testing model is respectively established, the test method is obtained and the error of the model is analyzed.
     (3) Based on the optical design software, different diffuse reflection material simulation experiment was carried out respectively. Research is mainly focused on the adding concentration of reflective particles, particle size and the influence of refractive index on diffuse reflection composite optical performance. Results show that when the concentration of particles are added to900000/mm3, size4μm, particle refractive index of2.4, diffuse reflection composite material has good reflection performance and illumination uniformity.
     (4) The influence of height, radius and configuration mode of microstructure on optical properties of microstructure diffuse reflection material is researched. Results show that the reflective properties of the material were preferable when the radius and height of the microstructure were both0.1mm and the microstructure was optimized hexagonal arrangement. On this basis, by adding reflective particles into the material, When the concentration of particles was added to900000/mm3, size4μm, particle refractive index of2.4, microstructure diffuse reflection composite material has good optical properties.
     (5) The molding process of diffuse reflection composites with microstructure is researched, the diffuse reflection composites with microstructure is formed by squeeze roller pressuring method, the adding concentration of titanium dioxide, the height, radius, configuration mode of the microstructure and their influence on optical properties of diffuse reflection material is researched. The total reflectance of diffuse reflection composites is91.4%, diffuse reflection ratio is88.7%, accounted for97%of the total reflectance, illumination uniformity is 61.3%. The total reflectance of diffuse reflection material with microstructure is90.6%, diffuse reflection ratio is86.2%, accounted for95.1%of the total reflectance, illumination uniformity is62.9%. The total reflectance of microstructure diffuse composites is93%, diffuse reflection ratio is91%, accounted for98%of the total reflectance, illumination uniformity is63%. The test results and simulation results have good consistency.
     (6) The MEDM was used to produce microstructure of spherical microlens array on reflector surface of mould core. Through the extrusion molding, injection molding, diffuse reflecting cover with microstructure was produced. Compared with metal reflecting cover, the results show that the light energy utilization rate of the diffuse reflecting cover is higher, and the illumination uniformity is better.
引文
[1]K. Nisbizawa, et al. Micro-optics Research Activities in Japan[J]. SPIE,1992:1751-1754
    [2]伊贺健一.微小光学.应用物理,1986,55(7):661-668
    [3]田中傻一.激光学技术的现状和将来.光学,1987,16(2):42-47
    [4]庄孝磊.微区压印法制作微透镜阵列扩散片研究[D].苏州:苏州大学,2010
    [5]何伟.LED路灯光学系统的设计与研究[D].陕西:陕西科技大学,2009
    [6]李明,季旭.槽式聚光太阳能系统的热电能量转换与利用[M].北京:科学出版社,2011,122-131
    [7]蔡其文.高反射率太阳能薄膜反射材料的性能研究及膜系设计[D].广东:华南理工大学,2012
    [8]赵印中,许旻,李林,等.磁控溅射法制备高反射铝膜[J].真空与低温,2008,14(3):164-166
    [9]R. E. Hummel. Reflectivity of silver and aluminum-based alloys for solar reflectors[J]. Solar Energy,1981,27(6):449-455
    [10]F. L. Bouquet, R. G. Helms, C. R. Maag. Recent advances in long-lived mirrors for terrestrial and space applications[J]. Sol. Energy Mater,1987,16:423-433
    [11]Yongjian Xu, Kaif Huo, Jiang Jiang, et al. Optical properties of plastic scintillators coated with copper, aluminum and silver by magnetron sputtering[J]. Thin Solid Films,2009, 517:4443-4447
    [12]Lasia A, Conway B E, Bockris J, et al. Modern aspects of electrochemistry, vol.32Kluwer Academic[J]. New York,1999:143-248
    [13]盛玉林.能使光线反射的材料结构[P].CN:102200598A,2011-09-28
    [14]P. Schissel, G. Jorgensen, C. Kennedy, et al. Silvered-PMMA reflectors[J]. Solar Energy Materials & Solar Cells,1994,33,183-197
    [15]Maria Brogren, Anna Helgesson, Bjorn Karlsson, et al. Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators[J]. Solar Energy Materials & Solar Cells,2004,82(3):387-412
    [16]蔡积庆.LED用白色反射材料和陶瓷封装技术[J].印制电路信息,2011,2:12-17
    [17]马承银,李延升,段远琼.二氧化钛包覆中空玻璃微珠制备近红外反射材料[J].中南大学学报:自然科学版,2004,35(5):806-809
    [18]宫一忠,王楠森,张仁健,等.填充有功能型光反射材料的闪烁探测器及其制作方法[P].CN:1632614A,2005-06-29
    [19]田崎益次,五十岚直人,小田喜勉,等.白色反射材料及其制造方法[P].CN:102473824A,2012-05-23
    [20]张明昌.白光LED中导热材料与反光材料的研究[D].上海:华东师范大学,2010
    [21]宋杰.复合型漫反射材料及制造方法[P].CN:1066511A,1992-1 1-25
    [22]姜喜范.反射屏及其制造方法[P].CN:101809497A,2010-08-18
    [23]张贵芳,杨茹媛,陈宏毅.使用复合材料的反射板制备方法[P].CN:102453339A,2012-05-16
    [24]田中兴一,江森洋之.反射板及半透射反射板[P].CN:131 1863A,2001-09-05
    [25]船本昭宏,青山茂.反射板和反射板的制造方法、以及反射型液晶显示装置[P].CN:1455270A.2003-11-12
    [26]刘颖,计红艳,吴大鸣,等.一种高分子基复合结构漫反射材料[P].CN:102590906A,2012-07-18
    [27]铃木修,能宗良幸,森田修幸,等.光反射板[P].CN:1910482A,2007-02-07
    [28]吉田贤一,新堂雅浩,人见一迅,等.反射板用发泡片材、反射板及反射板用发泡片材的制造方法[P].CN:101156090A,2008-04-02
    [29]周雪晖.反光材料的类别与应用[J].中国个体防护装备,2006,6:004
    [30]李景镇.光学手册·上卷[M].西安:陕西科学技术出版社,2010.541
    [31]HOCENSKI ZELJ KO, DIZDAR ADRIANA,HOCENSKI VERICA. Illumination design of a control system for visual inspection of ceramic tiles[C]//2008 IEEE International Symposium on Industrial Electronics. Cambridge:IEEE,2008:1093-1097
    [32]A HN, J IN-SOO. Difference in the translucency of all-ceramics by the illuminant [J]. Dental Materials,2008,24 (11):1539-1544
    [33]E·海尔比希.测光技术基础[M].北京:轻工业出版社,1987
    [34]P. Kadkhoda, h. Blaschke, J. Kohlhaas etc. Investigations of transmittance and reflectance in the DUV/VUV spectral range [J]. SPIE 2000,4099:311-318
    [35]HU Yongming, CHEN Zhe, LIAO yanbiao. The apparatus for high accurate measurements of transmittance and reflectance of large size optical components[J]. SPIE 1998,3558:630-636
    [36]杨本永,张黎明,沈政国,等.光学传感器星上定标漫射板的特性测量[J].光学精密工程,2009,17(8):1851-1858
    [37]D Bergstrom, J Powell, AFH Kaplan. The absorptance of steels to Nd:YLF and Nd: YAG laser light at room temperature[J]. Applied Surface Science,2007,253(1): 5017-5028
    [38]JT NEU. Measurement of hemispherical directional reflectance in the infrared[J]. SPIE, 1995:101-120
    [39]BERGSTROM D, KAPLAN A, POWELL J. et al. Laser Absorptance Measurements in Opaque Solids[C]. Proc. of 10th Nordic Laser Materials Processing Conference,2005: 91-115
    [40]GINDELEK. Spectral reflectance measurement using an integrating sphere in the infrared[J]. Applied Optics,1985,24(12):1757-1760
    [41]KARI T. Reflectance and transmission measurements with an integrating sphere and Fourier transform infrared spectrometer[J]. Applied Optics,1992,31(22):4582-4589
    [42]LEONARD HANSSEN. Integrating-sphere system and method for absolute measurement of transmittance and absorptance of specular samples [J]. Applied Optics,2001,40(19): 3196-3204
    [43]李景镇.光学手册·下卷[M].西安:陕西科学技术出版社,2010.2719
    [44]柏成玉,原遵东,董伟.漫射样品光谱发射率间接测量装置[J].2007中国仪器仪表与测控技术交流大会论文集(二),2007,2:691-694
    [45]武培筠,顾培夫,唐晋发.等.光谱透反射率测定装置[J].仪器仪表学报,1994,14(4):396-401
    [46]Hanssen L M, Kaplan S G Problems posed by scattering transmissive materials for accurate transmittance and reflectance measurements[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics,1998:28-36
    [47]吴栋,管荷兰,方锡武.一种材料反射比测量装置的设计[J].仪表技术,2001,2:41-42
    [48]王建,王风贺,包国彬.漫反射板双向反射比系数的测量[J].光电技术应用,200520(4):32-34
    [49]盛建军,张黎明.标准漫反射板绝对反射比因子测量装置[J].光学精密工程,2010,18(7):1498-1503
    [50]冉茂宇,赵红利.扩散材料光反射比简易测试新原理与方法[J].华侨大学学报(自然科学版),2013,34(1):96-99
    [51]闵桂荣.卫星热控制技术[M].北京:宇航出版社,1991
    [52]ANDREW I S,DONALD F S, R E C,et al. Temperature Effects on Reflectance and Emittance Measurements of Martin Black and Enhanced Martin Blacks Surfaces[J]. SPIE, 1996,2864:387-405
    [53]FREEMAN R K, RIGBY F A, DOERR S E, el al. Reflectance of Laser Damaged Spacecraft Thermal Control Materials[J]. SPJE,1998,3343:983-994
    [54]FREEM AN R K, RIGBY F A. Temperature-De-pendent Reflectance of Plated Metals and Composite Materials Under Laser Irradiation[J]. Journal of Thermophysics and Heat Transfer,2000,14(3):305-312
    [55]ZHANG Z, MODEST M F. Temperature-De-pendent Absorptance of Ceramics for Nd YAG and CO2 Laser Processing Applications[J]. ASME Journal of Heat Transfer,1998, 120(2):322-327
    [56]Lee Chengkuo, Itoh Toshihiro, Suga Tadatomo. Micromachined Piezoelectric force sensor based on PZT thin film [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1996, (4):553-559
    [57]蒋炳炎,申瑞霞,沈龙江,等.注射成型工艺参数对微结构零件复制度的影响[J].光学精密工程,2008,16(2):248-255
    [58]沈龙江.微透镜阵列注射成型复制度评价与工艺参数优化[D].长沙:中南大学,2007
    [59]庄俭,于同敏,王敏杰,等UV-LIGA技术在微型模具型腔加工中的应用研究[J].哈尔滨工业大学学报,2009,41(5):106-109
    [60]杜立群,莫顺培,张余升,等.UV-LIGA和微细电火花加工技术组合制作三维金属微结构[J].光学精密工程,2010,18(2):363-368
    [61]Huang M S, Li C G, Yu J C, et al. Robust parameter design of micro- injection molded gears using a LIGA like fabricated mold insert[J]. Journal of Materials Processing Technology,2009,209:5690-5701
    [62]Thian S, Tang Y, Fuh J Y H, et al. Formation of micromoulds via UV lithograph of SU8 photoresist and nickle electrodeosition[J]. Journal of Engineering Manufacture,2005, 220:329-333
    [63]Despa M S, Kelly K W and Collier J R. Injection molding of polymeric LIGA HARMs[J]. Microsys. Tech,1999,6(2):60-66
    [64]Ding H, Ibrahim R, Cheng K, et al. Experimental study on machinability improvement of hardened tool steel using two dimensional vibration- assisted micro-end-milling[J]. International Journal of Machine Tools & Manufacture,2010,50:1115-1118
    [65]Weulel H, Huntrup V, Tritschler H.Micro-Cutting of steel to meet new requirements in miniaturization[J]. Cirp Annals-Manufacturing Technology,2001,50(1):61-64
    [66]Mecomber J S, Hurd D, Limbach P A. Enhanced machining of micron-scale features in microchip molding masters by CNC milling[J]. International Journal of Machine Tools & Manufacture,2005,45:1542-1550
    [67]曹凤国,主编.电火花加工技术[M].北京:化学工业出版社,2005
    [68]Lim H S, Wong Y S, Rahman M, et al. A study on the machining of high-aspect ratio micro-structures using micro-EDM[J]. Journal of Materials Processing Technology,2003, 140:318-325
    [69]杜连明,张勤河,张建华,等.基于PZT激励同步压缩放电通道的微细电火花加工技术[J].机械工程学报,2013年
    [70]Tong H, Li Y, Wang Y. Experimental research on vibration assisted EDM of micro structures with non circular cross section[J]. Journal of Materials Processing Technology, 2008,208:289-298
    [71]Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses-a versatile method with lithographical precision[J]. Electrochimica Acta,2003, 48(20):3213-3219
    [72]卢振,张凯峰.微注射成型制品质量影响因素分析[J].机械工程学报,2009,45(12)295-299
    [73]Friedl R. W. Injection Molding of Sub-μm Grating Optical Elements[J]. Injection Molding Technol,2000,4(2):78-83
    [74]Heyel P, Olschewski T, Wijnaendts R W. Manufacturing of 3D structures for micro-tools using laser ablation[J]. MICROELECTRONIC ENGINEERING,2001,57-58:775-780
    [75]Oikawa M, Iga K... Array of distributed index planar microlens and its application[J]. Appl Opt,1982,21(9):1052-1056
    [76]Borreli N F, Morse D L, Bellman R H, Morgan W L. Photolytic technique for Producing Microlenses in Photosensitive glass[J].Appl Opt,1988,24(16):2520-2525
    [77]Lin Che-Ping, Yang Hsiharng, Chao Ching-Kong. Hexagonal microlens array modeling and fabrication using a thermal reflow process[J]. Journal of Micromechanics and Microengineering, September 2003,13(5):775-781
    [78]C. Croutxe-Barghom, O. Soppera, D. J. Lougnot. Fabrication of microlenses by direct photo-induced crosslinking polymerization[J]. Applied Surface Science,2000,168:89-91
    [79]F Gex, D Horville, G Leli'evre and D Mercier. Improvement of a manufacturing technique for long focal length microlens arrays[J]. Pure Appl.Opt,1996,5:863-872
    [80]McCormick M, Davies N, Cartwright P. Large area full fill factor microlens arrays[C]//Microengineering Applications in Optoelectronics, IEE Colloquium on. IET, 1996:10/1-10/3
    [81]I. N. Ozerow, V. M. Petrov, V. A. Shishkinaetal. Shaping the contours of dies for manufacturing lens arrays having spherical elements[J]. Sov. J.Opt.TechnOl,1981,48(1): 49-50
    [82]Oikawa M, Iga K, Sanada T, et al. Array of distributed-index planar micro-lenses prepared from ion exchange technique[J]. Japanese journal of applied physics,1981,20(4): L296-L298.
    [83]Peake G M, Sun S Z, Hersee S D. GaAs microlens arrays grown by shadow masked MOVPE[J]. Journal of Electronic Materials,1997,26(10):1134-1138
    [84]许乔.微透镜阵列反应离子束蚀刻传递研究[J].光学学报,1998,18(11):1523-1527
    [85]Nishihara H, Suhara. Micro Fresnel lenses[J]. Progress in Optics,1987,24(1)
    [86]Hossack W J, McOwan P, Burge R E. Computer generated optical fan-out element[J]. Optics communications,1988,68(2):97-102
    [87]Gottert J, Fischer M, Muller A. High-aperture surface relief microlenses fabricated by x-ray lithography and melting[C]//Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK,1995).1995:21-25
    [88]Rossi M, Blough C G, Raguin D H, Popov E K and Maystre D. Diffraction efficiency of high-NA continuous-relief diffractive lenses Diffractive Optics and Micro-Optics[J]. OSA Technical Digest Series,1996,5:233-240
    [89]Furumiya M, Hatano K, Murakami I, et al. A 1/3-in 1.3 m-pixel single-layer electrode ccd with a high-frame-rate skip mode[J]. Electron Devices, IEEE Transactions on,2001, 48(9):1915-1921
    [90]F. W. Ostemayer. Photoelectrochemical etching of integral lens on InGap/InP[J]. Applied Physics Letter,1983,43(7):337-340.
    [91]Y. Fu, B.K.A.Ngoi. Investigation of diffractive-fefractive microlens array fabricated by focused ion beam technology [J]. Optical Engineering,2001,40(4):511-516.
    [92]M.Kubo, M.Hanabusa. Fabracation of microlens by laser chemical vapor deposition[J]. Applied Optics,1990,29(18):2755-2759
    [93]Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied physics letters,1995,67:3114
    [94]Lebib A, Chen Y, Bourneix J. et al. Nanoimprint lithography for a large area pattern replication [J]. Microelectronic Engineering,1999,46(1-4):319-322
    [95]Studer V, Pepin A, Chen Y. Nanoembossing of thermoplastic polymers for microfluidic applications[J]. Applied Physics Letters,2002,80(19):3614-3616
    [96]Kehagias N, Zelsmann M, Torres C M S. Polymer optical devices made by reverse and 3D nanoimprint lithography[C]//OPTO-Ireland. International Society for Optics and Photonics,2005:654-660
    [97]Haisma J, Nanoimprint lithography combined with direct bonding:A possibility to construct quantum dots, wires, and planes in vertical cascade[J]. Applied Physics Letters, 2006,89:89-91
    [98]Chang C Y, Yang S Y, Chu M H. Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process[J]. Microelectronic engineering,2007,84(2): 355-361
    [99]邱建仁.挤出滚压复合制成的开发研究[D].台湾:台湾大学,2006
    [100]高长有,杨柏,沈家璁,等.当前光学塑料的研究方向及综合性能的均衡[J].高分子通报,1998,1:59-64
    [101]吴秀丽.光学玻璃和光学塑料的种类及特性[J].光机电信息,1998,15(9):4-7
    [102]石安富,龚云表.工程塑料手册[M].上海:上海科学技术出版社,2001
    [103]安智珠.聚合物分子设计原理[M].湖南:湖南科学技术出版社,1985
    [104]干福熹.光学玻璃[M].第二版.北京:科学出版社,1982
    [105]FUNAKI K, KOGURE M, AKAMINE H, et al. Light reflection sheet, process for producing the same and molding thereof:WIPO Patent 2005008300[P].2005-1-28.
    [106]王克强.应用基团贡献法计算摩尔折射度[J].河北师范大学学报,2000,4:493-496.
    [107]陈大华,岑茵,郑一泉,等.光反射聚碳酸酯反射性能的研究进展[J].塑料工业,201 1,39(8):6-9
    [108]Nagata Teruyki [JP], Okazaki Koju [JP], Miura Tohruu[JP]. Resin having large refractive index, lenses comprising resin and process for preparing lens[P]. CN,1039429A. 1990-2-7
    [109]陈用烈,曾兆华,杨建文.辐射固化材料及其应用[M].北京:化学工业出版社,2003
    [110]Miyazaki Takeshi, Amaya Naoyuki, Anami Keizo et al. High-refractive index optical resin[P].JP,3041110.1991,10
    [111]Shingo M, Masahiro A, Toshihiro N. Thiocarboxylic acid ester compound and production thereof, et al:Japan Patent 3011054[P].1992
    [112]Van Krevelen D W, Te Nijenhuis K. Properties of polymers:their correlation with chemical structure; their numerical estimation and prediction from additive group contributions[M]. Elsevier Science,2009
    [113]胡建.高折光指数聚氨酯丙烯酸酯涂料的制备及性能[D].浙江:浙江大学,2008
    [114]韩克清,余木火.PET/纳米TiO2复合材料的结晶性能[J].塑料工业,2004,32(11):36-38
    [115]黄昆.固体物理学[M].北京:高等教育出版社,2000
    [116]唐晋发,郑权.应用薄膜光学[M].上海:上海科技出版社,1984
    [117]洪啸吟,冯汉保.涂料化学[M].北京:科学出版社,2000
    [118]郑晓东,汪扬春,秦文红.非序列光线追迹程序照度分布计算的随机误差分析[J].光子学报,2008,37(10):1970-1974
    [119]韩军,刘钧.工程光学[M].北京:国防工业出版社,2012.65-70
    [120]岳钦釜,杨伟锋,洪律,等.利用积分球实现可调照度漫射定标检测光源[J].大气与环境光学学报,2007,2(2):1 56-1 60
    [121]毛祥光.球面反射率测量系统[D].浙江:浙江大学,2006
    [122]Hongyan Ji, Ying Liu, Xiuting Zheng, act. Study on the Reflecting Properties of PET Composites with TIO2, Glass Bends and Fluorescent Brightener[J]. Applied Mechanics and Materials,2012, vols.229-231:44-50
    [123]童铭康.高折光高透光聚苯乙烯基杂化材料的制备和研究[D].上海:上海交通大学,2011
    [124]成红.成型工艺参数对PS 688B性能测试结果的影响[J].石化技术,2009,16(2):23-26
    [125]王晓伟.挤出滚压法制备聚合物微结构成型技术的开发与研究[D].北京:北京化工大学,2011
    [126]王恺.大功率LED封装与应用的自由曲面光学研究[D].武汉:华中科技大学,2011
    [127]蔡君质,灯具反射板的改进[J].中国照明电器,1997,5:21-22
    [128]曹凤国.电火花加工技术[M].北京:化学工业出版社,2005
    [129]莫锦秋,梁庆华,汪国宝,等.微机电系统设计与制造[M].北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700