用户名: 密码: 验证码:
重金属污染稻田土壤温室气体产生相关的微生物群落结构及活性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田是农业发展的特色土地利用类型,在我国粮食安全和农田土壤碳库保持中占有重要地位;稻田固碳和温室气体减排在应对气候变化的农业可持续发展中具有重要意义。上世纪中后期以来,中国稻田土壤重金属污染日益严重,特别是在珠江、湘江和长江中下游地区。稻田土壤重金属污染除引发日益严峻的稻米食物安全风险外,同时可能影响土壤的生物化学过程,从而可能影响稻田碳氮循环及温室气体产生和排放。因此,探讨重金属污染稻田土壤微生物区系和活性变化,特别是与稻田土壤碳氮循环及温室气体产生相关的功能微生物类群的群落结构多样性、丰度及活性的变化将有助于认识重金属污染的固碳减排效应,为保持和提高稻田土壤碳汇提供科学依据。
     为此,本研究选择江苏宜兴、江西德兴和大余以及广东大宝山等4个污染地区的稻田土壤,采集重金属污染和未明显污染的稻田土壤表土,进行土壤微生物区系和群落结构及其活性的多地、多方法比较研究。测定分析了土壤重金属含量及重金属污染程度、土壤基本性质、土壤微生物生物量碳氮等;用稀释平板计数法研究了可培养细菌与可培养真菌的数目;用磷脂脂肪酸分析法(PLFA)分析了土壤的活性微生物区系;用定量PCR (qPCR)和变性梯度凝胶电泳(DGGE)技术分析了细菌、真菌、产甲烷菌、甲烷氧化菌、氨氧化细菌(AOB)、氨氧化古菌(AOA)以及反硝化细菌的基因丰度和群落结构多样性,并挑选重要DGGE条带进行克隆测序及系统发育分析。为了探索微生物区系变化与土壤碳氮代谢过程变化的可能关系,通过实验室培养分析测定了土壤蔗糖酶、淀粉酶、β-葡萄糖苷酶及多酚氧化酶等酶活性,进一步采用化学法分析了土壤基础呼吸、底物诱导呼吸、产甲烷活性、甲烷氧化活性、硝化活性以及反硝化活性。试图从多方面探讨重金属污染稻田土壤中微生物类群的群落结构多样性、丰度以及活性的变化及其与温室气体产生的可能关系,主要研究结果如下:
     一重金属污染下土壤微生物生物量、微生物群落结构、酶活性及呼吸活性的变化
     1.微生物生物量碳氮在重金属污染稻田土壤中均较其参照有所降低,且微生物商显著降低。真菌的可培养数目、PLFA含量及基因拷贝数在重金属污染土壤中均有不同程度的降低;然而,细菌在各个重金属污染土壤中没有如此一致性的变化。此外,真菌与细菌的PLFA含量之比在所有污染土壤中均较其参照显著降低,其幅度从6%到50%。因而,与细菌相比,真菌可能对稻田土壤重金属污染更为敏感,其相对优势度会下降。并且,重金属污染下微生物商降低程度与真菌/细菌PLFA含量之比的降低程度显著相关。另外,基于基础呼吸的代谢商在污染下显著升高,其幅度从7%到70%。代谢商的升高程度与微生物商的降低程度显著相关;与真菌/细菌PLFA含量之比的降低程度在p=0.10水平上相关,说明可能由于土壤真菌相对优势度下降而引发微生物碳源利用效率降低,致使微生物商降低,造成重金属污染下代谢商增高。
     2.脂肪酸18:4ω3c存在于所有重金属污染土壤中,却只在大余参照土壤中被检测到;而18:1ω5c的含量在宜兴污染土壤中较其参照降低,在其它污染土壤中不能被检测到;脂肪酸18:1ω9t(真菌代表性脂肪酸之一)的含量在所有污染土壤中均较其对照而降低。环境胁迫指标:G+菌/G-菌之比以及饱和脂肪酸单不饱和脂肪酸之比在污染土壤中较其参照土壤显著提高。PLFA组分的主成分分析,以及细菌和真菌DGGE图谱的主成分分析均表明,微生物群落结构在重金属污染土壤中有一定程度改变。
     3.不同重金属污染土壤中蔗糖酶、淀粉酶、β-葡萄糖苷酶及多酚氧化酶的酶活性变化并不一致:与参照土壤相比,在宜兴和大宝山的污染土壤中四种酶的酶活性均没有显著改变;在大余污染土壤中蔗糖酶和淀粉酶的酶活性显著降低,而多酚氧化酶活性反而提高,β-葡萄糖苷酶活性未明显变化;在德兴污染土壤中β-葡萄糖苷酶和多酚氧化酶的酶活性显著降低,另两种酶的酶活性没有显著变化。
     4.氨基葡萄糖、纤维二糖或对羟基苯甲酸三种底物分别诱导的呼吸速率达到最大之前的滞留时间,在重金属污染土壤中均延长,说明重金属污染下微生物代谢多样性降低。在纤维二糖矿化高峰时,重金属污染下总的、细菌的、真菌的PLFA含量以及真菌/细菌之比显著低于参照;微生物群落结构与参照之间的差异程度低于本底土壤,活性细菌群落结构仍有所改变,而真菌群落结构没有显著变化。
     二重金属污染下与甲烷产生和氧化相关微生物群落结构、丰度及活性的变化
     1.产甲烷菌-mcrA和甲烷氧化菌-pmoA基因DGGE图谱的主成分分析表明,产甲烷菌和甲烷氧化菌群落结构在重金属污染土壤中均较其参照在PC1或PC2上显著变化。
     从系统发育分析来看,宜兴、德兴和大宝山污染土壤中分离的产甲烷菌分别属于产甲烷杆菌(Methanobacteriacea)、氢型产甲烷菌Methanocellales (Rice cluster)和甲烷螺菌科(Methanospirillaceae)等不同类群。分离自德兴污染及参照土壤的甲烷氧化菌菌株均属于Ⅰ型甲烷氧化菌,但其分布在两个不同分支上,说明二者亲缘关系较远。大余污染土壤的两株氧化菌分别属于Ⅰ型和Ⅱ型甲烷氧化菌,与其污染土壤的两个菌株相比,这四株菌的亲缘关系均较远。此结果在一定程度上说明德兴和大余重金属污染土壤的甲烷氧化菌在系统发育上均较其参照有所改变。
     2.与参照土壤相比,产甲烷菌丰度只在重金属污染程度最高的大余土壤中被显著抑制,在其它样点没有显著变化;而其多样性在大余污染土壤中显著降低,在大宝山无变化,在另两样点显著提高。然而,除德兴样点外,甲烷氧化菌丰度在重金属污染土壤中较其参照显著降低,其幅度从16%到74%;而其多样性在宜兴和德兴污染土壤中显著降低,在大余无显著变化,在污染程度最轻的大宝山显著升高。
     3.产甲烷活性只在大余污染土壤中较其参照显著降低,在其它样点没有显著改变。甲烷氧化活性较产甲烷活性可能对重金属污染更为敏感,除德兴样点外,其在污染土壤中均较其参照而显著下降,其幅度从37%到56%。
     三重金属污染稻田土壤与N2O产生相关微生物群落结构、丰度及活性的变化
     (一)氨氧化细菌(AOB)与古菌(AOA)群落结构、丰度及硝化活性
     1. AOB-amoA和AOA-amoA基因DGGE图谱的主成分分析表明,AOB群落结构仅在宜兴和大宝山污染土壤中较其参照有所改变;而AOA群落结构在所有污染土壤中均较其参照在PC1或PC2上显著改变。
     从系统发育分析来看,所分离AOB菌株分布在亚硝化螺菌属(Nitrosospira)的多个分支上,而分离自宜兴和大宝山参照土壤的AOB菌株,分别归属于类群3a.1和类群4,其在相应污染土壤中几乎不能被检测到,说明类群3a.1与类群4中某些AOB菌株可能对重金属污染较为敏感。分离自宜兴和大余污染土壤的两个AOA菌株归属于泉古菌门的soil/sediment类群,其它三株菌分类地位尚不明确;而来自于大余参照土壤的AOA菌株归于water column类群。
     2.AOB丰度在德兴和大宝山重金属污染土壤中显著降低,在另两样点无显著变化;而其多样性在德兴污染土壤中没有显著变化,在大宝山显著降低,在另两样点却显著升高。AOA丰度及其多样性在宜兴污染土壤中较其参照未显著改变;在德兴污染土壤中均下降;大余污染土壤中其丰度升高但多样性降低;大宝山污染土壤中其丰度无显著变化,而多样性升高。
     3.硝化活性在德兴和大宝山重金属污染稻田土壤中较其参照显著降低,其幅度达60%以上,在其它两样点无显著变化。
     (二)反硝化细菌群落结构、丰度及反硝化活性
     1.反硝化细菌-nirK及-nosZ基因DGGE图谱的主成分分析表明,其群落结构在重金属污染土壤中均较其参照在PC1或PC2上显著变化,仅大宝山污染土壤中nirK群落结构较其参照未明显改变。
     从系统发育分析看,所分离nirK克隆不属于α-或β-变形菌;而绝大多数nosZ克隆归属于α-变形菌,但两者均与已知可培养菌株亲缘关系较远。总体分析所有污染土壤或参照土壤的nirK或nosZ克隆,其均分布在细菌的多个不同类群中;但单个研究样点内,分离自污染及参照土壤的nirK或nosZ克隆在系统发育上有一定程度的不同。
     2.与参照土壤相比,nirK和nosZ的丰度在宜兴和大余污染土壤中均显著降低,在另外两样点均未显著改变;nirK的多样性在大余污染土壤中显著降低,在其它样点无显著变化;nosZ多样性在德兴和大宝山污染土壤中显著升高,在另外两样点无显著改变。
     3.在重金属污染程度最轻的大宝山样点,反硝化活性没有显著变化。而在其它三个样点的污染土壤中,反硝化活性较其参照显著降低;且N20的产生速率也均有所下降。但是N20的还原速率只在德兴污染土壤中显著被抑制,说明在污染较为严重的稻田土壤中,反硝化过程中N20的产生活性比其还原活性受到的抑制程度可能更大。
     综上所述,重金属污染稻田土壤中,真菌较细菌相对优势度降低,微生物商降低,而代谢商显著增高,重金属污染下的这些共性变化可能会影响对稻田土壤中与碳素周转相关的生物化学过程及CO2排放。相比产甲烷菌丰度及产甲烷活性,甲烷氧化菌丰度与甲烷氧化活性在重金属污染稻田土壤中所受抑制程度更大,因而可能通过抑制CH4的氧化而加剧了重金属污染稻田的CH4排放,此仍需更多的田间实验验证。而与N20产生相关的氨氧化细菌或古菌与硝化活性、反硝化细菌与反硝化活性在重金属污染下的变化因不同土壤或不同金属污染而有较大差异。
     重金属污染稻田土壤中各种微生物活性之变化与其相应功能微生物群落结构多样性变化之间的格局较为复杂。然而,重金属污染下,代谢商增高程度与真菌/细菌PLFA含量之比降低程度在p=0.10水平上相关;产甲烷活性与产甲烷菌丰度、甲烷氧化活性与甲烷氧化菌丰度以及硝化活性与AOB丰度或同时显著降低,或同时无显著变化,说明土壤微生物多样性所维系的一定范围内,微生物活性高低与其丰度变化之间联系可能更为紧密。不过,本研究未得到微生物活性变化与其丰度变化之间的显著相关关系,这提示仍需从微生物本体之外的其它角度探讨重金属污染下温室气体排放发生变化的原因。
Rice paddy is a special land use type in argriculture, which plays an important role in maintaining food safty and soil carbon in China. Carbon sequentation and greenhouse gases (GHGs) mitigation in paddy soils is an important strategy in addressing climatic change. However, rice paddies in China have been increasingly subject to heavy metal pollution since1950s', expecially in the area of Pearl River delta, Xiang river basin and lower Yangtze region. Heavy metal pollution in paddy soils not only threats the food safty, but probably affects soil biochemical processes, which may further influence soil carbon and nitrogen cycling as well as GHGs production and emission. Thus, study in changes of microbial groups and activities in heavy metal polluted rice paddies, especially in variation of soil microbial community structure, abundance and activity related to GHGs production, could be helpful to understand the carbon sequestration and mitigation in heavy metal polluted rice paddies; and could provide the scientific basis for maintaining and enhancing carbon stock in paddy soils.
     In the present study, topsoils were collected from heavy metal polluted rice paddies and their counterparts in four sites (Yixing [YX], Dexing [DX], Dayu [DY] and Dabaoshan [DBS]) across South China to conduct a cross-site study, to investigate soil microbial community structure and activity with several methods. Heavy metal contents were determined and the pollution degree was analyzed. Soil basic physicochemical properties and microbial biomass carbon and nitrogen were examined. Culturable colonies of bacteria and fungi were measured with plate counting method; active microbial biomass and community were detected by phospholipids fatty acids (PLFAs) analysis; while the abundance and community structure diversity of bacteria, fungi, methanogens, methanotrophs, ammonia oxidizing bacteria (AOB) and archaea (AOA) as well as denitrifying bacteria were detected with real time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE) respectively, and some important bands retrieved from DGGE gel were sequenced for phylogenetic analysis. Moreover, the parallel studies of four enzymes (Invertase, Amylase, β-Glucosidase and Polyphenol oxidase) relating to carbon turnover in soil, of soil basal respiration, substrate induced respiration, methanogenic activity, methane oxidation activity, nitrifying activity and denitrifying activity were also conducted. Compared to the corresponding background soil, changes under pollution in the microbial communities, abundances and activities, as well as the relationship among them were investigated. The main results were as follows:
     1. Changes in soil microbial biomass, community structure, enzyme activity and soil respiration under heavy metal pollution
     1) Compared with the corresponding background soils, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) had a decreased trendy in all the polluted soils, and microbial quotient reduced significantly. Cultural population size, PLFA content and gene copies of fungi simultaneously showed a consistent decreace in all the polluted soils at different degrees. However, bacteria did not reveal so consistent change in the different polluted soils. Moreover, the ratio of fungal-to-bacterial PLFA contents decreased significantly in all the polluted soils, at a degree of6%to50%. Thus, fungi appeared to be more sensitive than bacteria in heavy metal polluted paddy soils, and fungal dominance decreased. And the decrease of microbial quotient under pollution was significantly connected to the decrease of fungal-to-bacterial ratio. Furthermore, there did occur a significantly increase in metabolic quotient (qCO2)(at a degree of7%to70%) under pollution across the sites. And the increase of qCO2was sharply related to the decrease of microbial quotient; and slightly related (p=0.10) to the decrease of fungal-to-bacterial PLFAs ratio. These observations supported a shift of microbial community with decreased fungal dominance and thus C utilization efficiency under pollution in rice paddies, which may caused the decrease of microbial quotient and increase in qCO2.
     2) Fatty acid18:4w3c was detected in all polluted soils, while only in the background soils of DY; whereas, the18:1w5c was not detected in the polluted soils, except in that of YX where its content decreased. The concentration of fatty acid18:1w9t (one of fungal biomarkers) reduced in all the polluted soils. Moreover, the ratio of G+to G-bacteria and of saturated to monounsaturated fatty acids (indexes of environmental stress) increased significantly in all the polluted soils compared with their counterparts. Comparison of microbial community structure by principal component analysis (PCA) of PLFA composition and bacterial and fungal DGGE profiles revealed difference between the polluted soils and their counterparts.
     3) The four studied enzymes (Invertase, Amylase, β-Glucosidase and Polyphenol oxidase) responded differently to heavy metal pollution across the studied sites. Compared with their counterparts, the activities of all the four enzymes did not change significantly in the polluted soils of YX and DBS. In the polluted soils of DY, the activities of invertase and amylase decreased significantly,β-Glucosidase activity did not change, while polyphenol oxidase activity increased. In the polluted soils of DX, β-Glucosidase and polyphenol oxidase activities reduced significantly, yet the activities of other two enzymes did not change clearly.
     4) Lag time before the priming CO2flush induced by glucosamine, cellobiose or4-hydroxybenzoate in all the polluted soils was longer than that in their counterparts, indicating decreased catabolic versatilities in heavy metal polluted soils. Furthermore, when cellobiose was decomposed actively, total, bacterial and fungal PLFA contents as well as fungal-to-bacterial ratio decreased significantly under pollution; difference of microbial community between polluted and background soils was smaller than that in soils without substrate amended, and the active community of bacteria shifted, yet that of fungi did not change under pollution.
     2. Changes in soil microbial community structure, abundance and activity with special reference to CH4production and oxidation under heavy metal pollution
     1) Comparison of the community structures of both methanogens and methanotrophs by PCA of DGGE profiles revealed difference along PC1or PC2between the polluted soils and their counterparts.
     Phylogenetic analysis showed that the retrieved species of methanogens from the polluted soils of YX, DX and DBS affiliated with Methanobacteriacea, Methanocellales (Rice cluster) and Methanospirillaceae, respectively. The methanotrophs'clones from the polluted and background soils in DX affiliated with type I methanotrophs, while they grouped into two different clusters. Two clones from DY polluted soils, belonging to type I and typeⅡ methanotrophs respectively, did not grouped into the same cluster with that from their counterparts. These indicated that, to an extent, the methanothrophs in the polluted soils of DX or DY differed in phylogenesis from that in their counterparts.
     2) In the polluted soils, the abundances of methanogens decreased significantly in DY, yet did not change clearly in other sites; while its diversities reduced in DY, did not change in DBS, increased significantly in YX and DX. However, the abundances of methanotrophs reduced significantly in the polluted soils, at a degree of16%to74%, except in DX, while its diversities decreased clearly in the polluted soils of YX and DX, did not change in that of DY, but increased significantly in that of DBS.
     3) The methanogenic activity decreased significantly in the polluted soils of DY, yet did not change clearly in those of other sites; while the methane oxidation activity appeared to be more sensitive to metal pollution, the activity decreased significantly in the polluted soils, at a degree of37%to56%, except in DX.
     3. Changes in soil microbial community structure, abundance and activity with special reference to N2O production under heavy metal pollution
     (1) Ammonia oxidizers'community structure and abundance as well as nitrifying activity
     1) Comparison of the community structures of AOB and AOA by PC A of DGGE profiles revealed that the difference of AOB community between the polluted and background soils was only found in YX and DBS, while the AOA community differed along PC1or PC2in all the polluted soils from their counterparts.
     Phylogenetic analysis showed that all the retrieved AOB sequences in this study fell into different clusters in the genus Nitrosospira. Clones retrived from the background soils in YX and DBS respectively grouped into Cluster3a.1and Cluster4, which almost can not be detected in the polluted soils. These indicated some species in Cluster3a.1and Cluster4were more sensitive to heavy metal pollution. Two AOA sequences from the polluted soils in YX and DY distributed in soil/sediment cluster of phylum Crenarchaeote, while other three clones fall outside of all of the known three clusters; whereas, clones from the background soils in DY affiliated with water column cluster.
     2) AOB abundances decreased significantly in the heavy metal polluted soils of DX and DBS, did not change clearly in other two sites; while it diversities did not change in DX polluted soils, decreased clearly in DBS, increased in other two sites. While AOA abundances and diversities did not change significantly in the polluted soils of YX, decreased in that of DX, but changed inconsistent in that of DY or DBS.
     3) Nitrifying activity was inhibited significantly in the polluted soils of DX and DBS, at a degree more than60%, but did not change clearly in other two sites.
     (2) Denitrifers'community structure and abundance as well as denitrifying activity
     1) Comparison of the community structures of nirK-and nosZ-denitrifiers by PCA of DGGE profiles revealed difference along PC1or PC2between the polluted soils and their counterparts, except the nirK community in DBS.
     All the retrived nirK clones did not belong to either α-or β-proteobacteria, while most of the nosZ species affiliated with a-proteobacteria. All the nirK and nosZ clones were not closely related to known cultural species in phylogenesis, and were widespread among different bacterial genera. While in a single site, the nirK-or nosZ-denitrifers from the polluted and background soils were different in phylogenesis to an extent.
     2) Abundances of nirK and nosZ decreased significantly in the metal polluted soils in YX and DY, did not change clearly in other sites. Diversities of nirK reduced significantly in DY polluted soils, did not change in other soils; while that of nosZ increased clearly in the polluted soils in DX and DBS, yet not change significantly in other sites.
     3) Denitrifying activity reduced significantly in polluted soils in YX, DX and DY, and N2O production rate also reduced more or less under pollution in the three sites, yet N2O reduction rate decreased significantly in DX site only. These suggested that comparing with N2O reduction activity, N2O production activity may be more inhibited in the relatively seriously polluted paddy soils.
     In a word, in the four heavy metal polluted rice paddies, there did occur a decline in fungal dominance, in microbial quotient and an increase in metabolic quotient, which were the common change and may exert an impact on soil biogeochemical process related to C metabolism and CO2evolution in polluted rice paddies. Compared with methanogens and methanogenic activity, methanotrophs and methane oxidation activity seemed to be more sensitive to heavy metal pollution in paddy soils, which probably enhance CH4emission from paddy soils and deserve more field studies to examine. However, the changes of ammonia oxidizers and nitrifying activity, as well as denitrifers and denitrifying activity varied in different soils or due to different heavy metal elements or contents.
     The changes in the several microbial activities detemined in this study had ambiguous relationships with the changes in community structures or diversities of the related functional microorganisms. However, under heavy metal pollution, increase in qCO2was related to decrease in fungal-to-bacterial PLFAs ratio (p=0.10); methanogenic activity and methanogenes'abundance, methane oxidation activity and methanotrophs'abundance, as well as nitrifying activity and AOB abundance reduced significantly and consistently or unchanged simultaneously. These indicated that, when soil microbial diversities maintained stability in a certain extent, microbial activities appeared to be more related to their abundances. However, no significant relationship between the change in microbial activity and in its abundance were observed in this study, which indicated that other aspects except for microorganisms probably should be concerned to explore the changes in GHGs emission under heavy metal pollution.
引文
Abaye D.A., Lawlor K., Hirsch P.R., Brookes P.C. Changes in the microbial community of an arable soil caused by long-term metal contamination [J]. Eur J Soil Sci,2005,56:93-102
    Adhya T.K, Rath A.K., Gupta P.K., Rao V.R., Das S.N., Parida K.M., Parashar D.C., Sethunathan N. Methane emission from flooded rice fields under irrigated conditions [J]. Biol Fertil Soils, 1994,18 (3):245-248
    Adriano, D.C. Trace elements in terrestrial environments; Biochemistry, bioavailability and risks of metals [M]. Springer-Verlag, New York.2001
    Ahn J.H., Kim Y.J., Kim T., Song H.G., Kang C.H., K J.O. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR [J]. J Microbiol Methods, 2009,78:216-222
    Akerblom S., Baath E., Bringmark L., Bringmark E. Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers [J]. Biol Fertil Soils,2007,44: 79-91
    Alef K., Nannipieri P. r β-Glucosidase activity. In:Alef, K., Nannipieri, P. (Eds.), Methods in Applied Soil Microbiology and Biochemistry [M]. Academic Press, London, UK,1995, pp.24-28
    Alloway, B.J., Alloway, B. Soil processes and the behaviour of heavy metals. In:Heavy metals in soils. (Eds) [M]. Chapman & Hall, New York,1995,11-37
    Alzerreca J.J., Norton J.M., Klotz M.G. The amo operon in marine, ammonia-oxidizing γ-proteobacteria [J]. FEMS Microbiol Lett,1999,180:21-29
    Anderson T.H., Domsch K.H. Application of ecophysiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories [J]. Soil Biol Biochem,1990,22:251-255
    Anderson T.H., Domsch K.H. Determination of ecophysiological maintenance carbon requirements of soil-microorganisms in a dormant state [J]. Biol Fert Soils,1985,1:81-89
    Aoyama M., Nagumo T. Comparison of the effects of Cu, Pb, and As on plant residue decomposition, microbial biomass, and soil respiration [J]. Soil Sci Plant Nutr,1997,43:613-622
    Arp D.J., Sayavedra-Soto L.A., Hommes N.G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea [J]. Arch Microbiol,2002,178:250-255
    Artursson V., Jansson J.K. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae [J]. Appl. Environ. Microbiol,2003,6208-6215
    Attard E., Recous S., Chabbi A., De Berranger C., Guillaumaud N., Labreuche J., Philippot L., Schmid B., Le Roux X. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses [J]. Global Change Biol,2011,17 (5): 1975-1989
    Auman A.J., Stolyar S., Anney L. Molecular characterization of methanotrophic isolates from fresh water lake sediment [J]. Appl Environ Microbiol,2000,66:5259-5266
    Baath E. Effects of heavy metals in soil on microbial processes and populations (a review) [J]. Water Air Soil Pollut,1989,47:335-79
    Baath E., Di'Az-Ravin A.M., Frostegard A., Campbell C. Effect of Metal-Rich Sludge Amendments on the Soil Microbial Community [J]. Appl Environ Microbiol,1998,1:238-245
    Babich H., Stotzky G. Developing standards for environmental toxicants:the need to consider abiotic environmental factors and microbe-mediated ecologic processes [J]. Environ Health Perspect, 1983c,49:247-260
    Babich H., Stotzky G. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms [J]. CRC Critical Reviews in Microbiol,1980,8:99-145
    Babich H., Stotzky G. Heavy-metal toxicity to microbe-mediated ecologic processes-a review and potential application to regulatory policies [J]. Environ Res,1985,36:111-137
    Babich H., Stotzky G. Toxicity of nickel to microbes:environmental aspects [J]. Adv Appl Microbiol, 1983b,29:195-265
    Bailey V.L., Smith J.L., Bolton H.J. Fungal-to-bacterial ratios in soils investigated for enhanced carbon sequestration [J]. Soil Biol Biochem,2002,34:1385-1389
    Baker A.J.M., Walker P.L., Shaw A. (Eds). Ecophysiology of metal uptake by tolerant plants [C]. In: Heavy metal tolerance in plants-Evolutionary aspects. CRC Press VCI, Copper history/Future, Van Commodities Inc.,2011:155-177
    Baldrian P. Interactions of heavy metals with white-rot fungi [J]. Enzyme and Microbial Technology, 2003,32:78-91
    Baldwin D.R., Marshall W.J. Heavy metal poisoning and its laboratory investigation [J]. Ann Clin Biochem,1999,36 (3):267-300
    Bapteste B.C., Boucher Y. Higher-level classification of the Archaea:evolution of methanogenesis and methanogens [J]. Archaea,2005,1(5):353-363
    Bardgett R.D., Saggar S. Effects of heavy metal contamination on the short-term decomposition of labelled [14C] glucose in a pasture soil [J]. Soil Biol Biochem,1994,26 (6):727-733
    Bardgett R.D., Speir T.W., Ross D.J., Yeates G.W., Kettles H.A. Impact of pasture contamination by copper, chromium, and arsenic timber preservative and soil microbial properties and nematodes [J]. Biol Fert Soils,1994,18:71-79
    Beman J.M., Francis C.A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary:Bahia del Tobari, Mexico [J]. Appl Environ Microbiol, 2006,72:7767-7777
    Bossio D.A., Scow K.M. Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns [J]. Microb Ecol,1998,35:265-278
    Bouwman A.F. Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere. In: Bouwman AF (ed) [J]. Soils Greenhouse Effect. Wiley, New York,1990:61-127
    Bowman J.P., Sly L.I. Hayward Patterns of tolerance to heavy metals among methane-utilizing bacteria [J]. Lett Appl Microbiol,1990,10 (2):85-87
    Braker G., Fesefeldt A., Witzel K.P. Development of PCR primer system for application of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples [J]. Appl Environ Microbiol,1998,64:3769-3775
    Bremer C., Braker G, Matthies D., Reuter A., Engels C., Conrad R. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil [J]. Appl Environ Microbiol,2007,73:6876-6884
    Brookes P.C. The use of microbial parameters in monitoring soil pollution by heavy metals [J]. Biol Fert Soils,1995,19:269-279
    Brookes P.C., Kragt J.F., Powlson D.S., Jenkinson D.S. Chloroform fumigation and release of soil nitrogen:the effect of fumigation time and temperature [J]. Soil Biol Biochem,1985,17: 831-835
    Broos K., Mertens J., Smolders E. Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays:A comparative study [J]. Environ Toxicol Chem,2005,24:634-640
    Brouwere D.K., Hertigers S., Smolders E. Zinc toxicity on N2O reduction declines with time in laboratory spiked soils and is undetectable in field contaminated soils [J], Soil. Biol. Biochem., 2007,39:3167-3176
    Brus D., Li Z.B., Temminghoffd E.J.M., Song J., Koopmans GF., Luo Y.M., Valley P.R. Japenga J. Predictions of spatially averaged cadmium contents in rice grains in the Fuyang China [J]. J Environ Qual,2009,38:1126-1136
    Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., Sutton GG, Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii [J]. Science,1996,273:1058-1073
    Cavagnaro T., Jackson L., Scow K., Hristova K. Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil [J]. Microb Ecol,2007,54:618-626
    Cavagnaro T.R., Jackson L.E., Hristova K., Scow K.M. Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil [J]. Appl Soil Ecol,2008,40:13-18
    Celo V, Babi D, Baraj B, Cullaj A. An Assessment of heavy metal pollution in the sediments along the Albanian Coast [J]. Water Air Soil Pollut,1999,111:235-50
    Chander K., Brookes P.C., Microbial biomass dynamics during the decomposition of glucose and maize in metal-contaminated and non-contaminated soils [J]. Soil Biol Biochem,1991,23:917-925
    Chen X., Zhang L.M., Shen J.P., Xu Z.H., He J.Z. Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils [J]. J Soil Sediment,2010,10:1510-1516
    Chon K., Chang J., Lee E., Lee J., Ryu J., Cho J. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands [J]. Ecol Eng,2011,37:64-69
    Christensen T.H. Cadmium soil sorption at low concentrations. I. Eects of time, cadmium load, pH and calcium [J]. Water Air Soil Poll.1984,21(1-4):105-114
    Chronakova A., Radl V., Cuhel J., Simek M., Elhottova D., Engel M., Schloter M. Overwintering management on upland pasture causes shifts in an abundance of denitrifying microbial communities, their activity and N2O-reducing ability [J]. Soil Biol Biochem,2009,41: 1132-1138
    Collins M.L.P., Bucholzl L.A. Effect of copper on Methylosinusalbus BG8 [J]. Appl Environ Microbiol, 1991,57:1261-1264
    Compant S., van der Heijden M.GA., Sessitsch A. Climate change effects on beneficial plant-microorganism interactions [J]. FEMS Microbiol Ecol,2010,73:197-214
    Conrad R., Erkel C., Liesack W. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil [J]. Curr Opin Biotech,2006,17:262-267
    Coolen M.J.L., Abbas B., Van Bleijswijk J., Hopmans E.C., Kuypers M.M.M., Wakeham S.G., Damste J.S.S.S. Putative ammonia oxidizing Crenarchaeota in suboxic waters of the Black Sea:a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids [J]. Environ Microbiol,2007,9:1001-1016
    Costello AM., Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments [J]. Appl Environ Microbiol,1999,65: 5066-5074.
    Coyne, M., Arunakumari A., Averill B., Tiedje J. Immunological identification and distribution of dissmilatory heme cdl and non heme copper nirtratereductase in denitrifying bacteria [J]. Appl Environ Microbiol,1989,55:2924-2931
    Dalal R.C. Soil microbial biomass-what do the numbers really mean [J]. Aust J Exp Agr,1998,38: 649-665
    Dandie C.E., Burton D.L., Zebarth B.J., Trevors J.T., Goyer C. Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems [J]. Syst Appl Microbiol,2007,30(2):128-138
    Dandie C.E., Wertz S., Leclair C.L., Goyer C., Burton D.L., Patten C.L., Zebarth B.J., Trevors, J.T. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones [J], FEMS Microbiol Ecol,2011,77:69-82
    Davies B.E., Jones L.H.P., Growth, A. Wild, Ed., John W.S. "Micronutrients and toxic elements," in Russell's Soil Conditions and Plant Interscience [J]. New York, NY, USA,11th edition, 1988:781-814
    de la Torre J.R., Walker C.B., Ingalls A.E., Konneke M., Stahl D.A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol [J]. Environ Microbiol,2008,10: 810-818
    Dedysh S.N., Liesack W, Khmelenina V.N., Suzina N.E., Trotsenko Y.A., Semrau J.D. Methylocella palustrisgennow, a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs [J]. Int J Syst Evol Microbiol,2000,50: 955-969
    Degens B.P., Schipper L.A., Sparling GP., Duncan L.C. Is the microbial community-in a soil with reduced catabolic diversity less resistant to stress or disturbance? [J]. Soil Biol Biochem,2001, 33:1143-1153
    Dell'acqua S., Pauleta S.R., Monzani E., Pereira A.S., Casella L, Moura J.J.G., Moura I. Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica:kinetic, nuclear magnetic resonance, and docking studies [J]. Biochem,2008,47: 10852-10862
    Deppenmeier U. The unique biochemistry of methanogenesis [J]. Prog Nucleic Acid Re,2002,71: 223-283
    Di HJ., Cameron K.C., Shen J.P., Winefield C.S., O'Callaghan M., Bowatte S., He J.Z. Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils [J]. J Soils Sediments,2011,11:432-439
    Diaz-Ravina M., Baath E., Frostegard A. Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique [J]. Appl Environ Microbiol, 1994,60:2238-2247
    Dick R.P., Pankhurst C.E., Doube B.M., Gupta V.V.S.R. (eds). Soil enzyme activities as integrative indicators of soil health. In:Biological indicators of soil health [J]. CAB International, New York,1997:121-156
    Ding H., Valentine D.L. Methanotrophic bacteria occupy benthic microbialmats in shallow marine hydrocarbon seeps, Coal Oil Point California [J]. J Geophys Res,2008,113:1015-1021
    Doelman E., Haanstra L. Effects of lead on the decomposition of organic matter [J]. Soil Biol Biochem, 1979b,11:481-485
    Doelman P and Haanstra L. Effct of lead on respiration and dehydrogenase activity [J]. Soil Biol Biochem,1979a,11:475-479
    Doelman P., Haanstra L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead, and zinc on soil microbial respiration in relation to abiotic soil factors [J]. Plant Soil,1984,79: 317-327
    Dumont M.G, Murrell J.C. Community-level analysis:key genes of aerobic methane oxidation [J]. Methods Enzymol,2005,397:413-427
    Effron D., Horra A.M., Defrieri R.L., Fontanive V., Palma P.M. Effect of cadmium, copper, and lead on different enzyme activities in a native forest soil [J]. Comm Soil Sci Plant Anal,2004,35: 1309-1321
    Eichner C.A., Erb R.W., Timmis K.N., Wagner-Dobler J. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community [J]. Appl Environ Microbiol,1999,65:103-109
    Ellis R.J., Morgan P., Weightman A.J., Fry J.C. Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil [J]. Appl Environ Microbiol, 2003,69:3223-3230
    Ellis R.J., Neish B., Trett M.W., Best J.G, Weightman A.J., Morgan P., Fry J.C. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination [J]. J Microbiol Methods,2001,45:171-185
    Ernst W.H.O., Vangronsveld J., Cunningham S.D. (Eds). The origin and ecology of contaminated, stabilized and non-pristine soils (Chapter 2) [M]. In:Metal-contaminated soil. Springer, New York.1998,17-29.
    Fait G, Broos K., Zrna S., Lombi E., Hamon R. Tolerance of nitrifying bacteria to copper and nickel [J]. Environ Toxicol Chem,2006,25 (8):2000-2005
    Federle T.W., Megusar F., Gantar M. (Eds.).Microbial distribution in the soil-new techniques. Perspectives in Microbial Ecology [M]. Slovene Society for Microbiology, Ljubljana, Slovenia, 1986:493-498
    Feris K., Ramsey P., Frazar C., Moore J.N., Gannon J.E., Holben W.E. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient [J]. Appl Environ Microbiol 2003,69:5563-5573
    Fierer N., Jackson J.A., Vilgalys R., Jackson R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Appl Environ Microbiol,2005,71, 4117-4120
    Findlay R.H. The use of phospholipids fatty acids to determine microbial community structure. In: Akkermans A.D.L., Van Elsas J.D., de Bruijn F., eds. Molecular Microbial Ecology Manual [M]. Dordrecht:Kluwer Academic Publishers,1996:1-17
    Fliebbach A., Martens R. Soil microbial biomass and activity in soil treated with heavy metal contaminated sewage sludge [J]. Soil Biol,1994,26:1201-1205
    Follett R.F., Paul E.A., Pruessner E.G. Soil carbon dynamics during a long term incubation study involving C-13 and C-14 measurements [J]. Soil Science,2007,172:189-208
    Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., Oakley B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. Proc Natl Acad Sci USA,2005,102:14683-14688
    Frankenberger R., Johanson J.B., Nelson C.O. Urease activity in sewage sludge amended soils [J]. Soil Biol Biochem,1983,15(5):543-549
    Frankenberger W.T., Johanson J.B. Factors affecting invertase activity in soils [J]. Plant Soil,1983,74: 313-323
    Fredrickson J.K., Balkwill D.L., Zachara J.M., Li S.M.W., Brockman F.J., Simmons M.A. Physiological diversity and distributions of heterotrophic bacteria in deep Cretaceous sediments of the Atlantic coastal plain [J]. Appl Environ Microbiol.1991,57:402-411
    Frey B., Pesaro M., Rudt A., Widmer F., Resilience of the rhizosphere pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar [J]. Environ Microbiol,2008,10:1433-1449
    Frey B., Stemmer M., Widmer F., Lustera J., Sperisen C. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem [J]. Soil Biol Biochem, 2006,38:1745-1756
    Frolking S., Qiu J., Boles S., Xiao X.M., Liu J.M., Zhuang Y.H., Li C.S., Qin X.G. Combing remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China [J]. Global Biogeochem Cycl,2002,16(4):1091
    Frostegard A., Baath E., Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis [J]. Soil Biol Biochem,1993a,25:723-730
    Frostegard A., Tunlid A., Baath E. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals [J]. Soil Biol Biochem,1996, 28:55-63
    Frostegard A., Tunlid A., Baath E. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals [J]. Appl Environ Microbiol,1993b,59:3605-3617
    Fu J., Zhou Q., Liu J., Liu W., Wang T., Zhang Q., Jiang G. High levels of heavy metals in rice(Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health [J]. Chemosphere,2008,71:1269-1275
    Fu L.J., Yang W.J., Wei Y.Y. Effects of copper pollution on the activity of soil invertase and urease in loquat orchards Chin [J]. J Geochem,2009,28:076-080
    Fuse H., Ohta M.. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase [J]. Biosci Biotechnol Biochem,1998,62: 1925-1931
    Gadd G.M., Griffiths A.J. Microorganisms and heavy metal toxicity [J]. Microb Ecol,1978,4:303-317
    Gallo M., Amonette R., Lauber C., Sinsabaugh R.L., Zak D.E. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils [J]. Microbiol Ecol, 2004,48:218-229
    Garcia J.L. Taxonomy and ecology of methanogens [J]. FEMS Microbiol Rev,1990,87:297-308
    Gates A.J., Richardson D J., Butt J.N. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus:exploring the activity of a redox-balancing enzyme as a function of electrochemical potential [J]. Biochem J,2008,409:159-168
    Ge C.R., Zhang Q.C. Microbial community structure and enzyme activities in a sequence of copper-polluted soils [J]. Pedosphere,2011,21:164-169
    Gillan D.C., Danis B., Pernet P., Joly G., Dubois P. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment [J]. Appl Environ Microbiol 2005,71:679-690
    Giller K.E., Witter E., McGrath S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review [J]. Soil Biol Biochem,1998,30:1389-1414
    Glass D.J. US and International Markets for Phytoremediation. Report. D. Glass Associates Inc., Needham, Massachusetts, USA,1999, http://www.dglassassociates.com/INFO/phytrept.htm
    Gong P., Siciliano S.D., Srivastava S., Greer C.W., Sunahara G.I. Assessment of pollution-induced microbial community tolerance to heavy metals in soil using ammonia-oxidizing bacteria and Biolog assay [J]. Hum Ecol Risk Assess,2002,8:1067-1081
    Grayston S.J., Griffith G.S., Mawdsley J.L., Campbell C.D., Bardgett R.D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems [J]. Soil Biol Biochem, 2001,33:533-551
    Gremion R, Chatzinotas A., Kaufmann K., Von Sigler W., Harms H. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment [J]. FEMS Microbiol Ecol,2004,48:273-283
    Griffiths B.S., Kuan H.L., Ritz K., Glover L.A., McCaig A.E., Fenwick C. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil [J]. Microb Ecol,2004,47:104-113
    Griffiths B.S., Ritz K., Bardgett R.D., Cook R., Christensen S., Ekelund F. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions:an examination of the biodiversity-ecosystem function relationship [J]. Oikos,2000,90:279-94
    Griffiths B.S., Ritz K., Wheatley R., Kuan H.L., Boag B., Christensen S. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities [J]. Soil Biol Biochem,2001,3:713-722
    GroBkopf R., Janssen H., Liesack W. Diversity and Structure of the Methanogenic Community in Anoxic Rice Paddy Soil Microcosms as Examined by Cultivation and Direct 16S rRNA Gene Sequence Retrieval [J] Appl Environ Microbiol,1998,64 (3):960-969
    Guckert J.B., Antworth C.P., Nichols P., White D.C. Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments [J]. FEMS Microbiol Ecol,1985,31:147-158
    Guckert J.B., Hood M.A., White D.C. Phospholipids ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:Increases in the ratio and proportions of cyclopropyl fatty acids [J]. Appl Environ Microbiol,1986,52:794-801
    Haanstra L., Doelman E. Glutamicaciddecomposition as asensitivemeasure of heavymetalpollution in soil. Soil Biol Biochem,1984,16,595-600.
    Haanstra L., Doelman E., Oude Voshaar J.H. The use of sigmoidal dose response curves in soil ecotoxicological research [J] Plant Soil,1985,84:293-297
    Hallin S., Jones C.M., Schloter M., Philippot L. Relationship between Ncycling communities and ecosystem functioning in a 50-year-old fertilization experiment [J]. ISME J,2009,3:597-605
    Hang X., Wang H., Zhou J., Ma C., Du C., Chen X. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta [J]. Environ Pollut,2009,157:2542-2549
    Hanson R.S. Ecology of methylotrophic bacteria. In:Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in Microbial Ecology [M]. Oxford University Press, New York,1998, pp. 137-162
    Hanson R.S., Hanson T.E. Methanotrophic bacteria [J]. Microbiol Rev,1996,60:439-471
    Hattori H., Influence of heavy metals on soil microbial activities [J]. Soil Sci Plant Nutr,1992,31, 93-100
    He J.Z., Shen J.P., Zhang L.M., Zhu Y.G, Zheng Y.M., Xu M.G., Di H.J. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environ Microbiol,2007, 9:2364-2374
    Head I., Hiorns, W.D., Embley T.M., Mccarthy A.J., Saunders J.R. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences [J]. J Gen Microbiol,1993,139:1147-1153
    Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land [J]. Soil Biol Biochem,2002,34:1299-1307
    Hedrick D.B., Peacock A., Stephen J.R, Macnaughton S.J., Bruggemann J., White D.C. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data [J]. J Microbiol Methods,2000,41:235-248
    Hemme C.L., Deng Y, Gentry T.J., Fields M.W., Wu L., Barua S., Barry K., Tringe S.G., Watson D.B., He Z., Hazen T.C., Tiedje J.M., Rubin E.M., Zhou J. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community [J]. ISME J,2010,4:660-672
    Henckel T., Roslev P., Conrad R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil [J]. Environ Microbiol,2000,2,666-679
    Heneghan L., Coleman D.C., Crossley D.A., Zou X. Nitrogen dynamics in decomposing chestnut oak (Quercus pinus L.) in mesic temperate and tropical forest [J]. Appl Soil Ecol,1999,13: 169-175
    Henry S., Baudoin E., Lopez-Gutierrez J.C., Martin-Laurent F., Baumann A., Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR [J]. J Microbiol Methods, 2004,59:327-335
    Henry S., Bru D., Stres B., Hallet S., Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narQ nirK, and nosZ genes in soils [J]. Appl Environ Microbiol,2006,72:5181-5189
    Henry, S., Texier, S., Hallet, S., Bru, D., Dambreville, C., Cheneby, D., Bizouard, R, Germon, J.C., Philippot, L. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:insight into the role of root exudates [J]. Environ Microbiol,2008,10:3082-3092
    Herawati N., Suzuki S., Hayashi, K. Rivai I.F., Koyama H. Cadmium, Copper, and Zinc Levels in Rice and Soil of Japan, Indonesia, and China by Soil Type [J]. Bull Environ Contam Toxicol,2000, 64:33-39
    Heribert I. Developments in soil microbiology since the mid 1960s [J]. Geoderma,2001,100:389-402
    Heuer H., Smalla K.,Marcel Dekker J.D., van Elsas J.T., Trevors E.M.H. Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities [M]. Wellington Modern soil microbiology, New York, USA,1997: 353-373
    Heylen K., Gevers D., Vanparys B., Wittebolle L., Geets J., Boon N., Vos P.D. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifyers [J]. Environ Microbiol,2006,8: 2012-2021
    Hinojosa M.B. Carreira J.A., Garcia-Ruiz R., Dick R.P. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts [J]. J Environ Qual,2005,34:1789-1800
    Hinojosa M.B., Carreira J.A., Garcia-Ruiz R. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contamiated and reclaimed soils [J]. Soil Biol Biochem,2004,36: 1559-1568
    Hinojosa M.B., Carreira J.A., Garcia-Ruiz R., Dick R.P. Microbial response to heavy metal Pb/Cd-polluted soils:community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts [J]. J Environ Qual,2005,34:1789-1800
    Hoffmann T., Horz H.P., Kemnitz D., Conrad R. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines [J]. Syst Appl Microbiol,2002,25:267-274
    Hole U.H., Vollack K.U., Zumft W.G., Eisenmann E., Siddiqui R.A., Friedrich B.,Kroneck P.M.H. Characterization of the membranous denitrification enzymes nitrite reductase (cytochrome cd(1)) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans [J]. Arch Microbiol,1996,165 (1):55-61
    Holland E.A., Coleman D.C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem [J]. Ecology,1987,68:425-433
    Holtan-Hartwig L., Bechmann M., Hoyas T.R., Linjordet R., Bakken L.R. Heavy metals tolerance of soil denitrifying communities:N2O dynamics [J]. Soil Biol Biochem,2002,34:1181-1190
    Holtkamp R., Kardol P., van der Wal A., Dekker S.C., van der Putten W.H., de Ruiter P.C.. Soil food web structure during ecosystem development after land abandonment [J]. Appl Soil Ecol,2008,39: 23-34
    Horz H.P., Yimga M.T., Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling [J]. Appl Environ Microbiol,2001,67:4177-4185
    Huang S.S., Liao Q.L., Hua M., Wu X.M., Bi K.S., Yan C.Y., Chen B., Zhang X.Y. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu province, China [J]. Chemosphere,2007,67:2148-2155
    Hussain Q., Liu Y, Jin Zh., Zhang A., Pan G, Li L., Crowley D., Zhang X., Song X., Cui L. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China [J]. Appl Soil Ecol,2011,48:210-218
    Ingwersen J., Poll C., Streck T., Kandeler E. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface [J]. Soil Biol Biochem,2008,40:872-886
    Insam H., Hutchinson T.C., Reber H.H. Effects of heavy metal stress on the metabolic quotient of the soil microflora [J]. Soil Biol Biochem,1996,28:691-694
    Intergovernmental Panel on Climate Change (IPCC), Solomon, S., Qin, D., Manning, M., et al. (Eds.). Changes in atmospheric constituents and in radiative forcing.Climate Change 2007a. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change [M]. Cambridge University Press, Cambridge, UK/New York,2007:498-540
    Intergovernmental Panel on Climate Change (IPCC). Emissions scenarios, special report of the intergovernmental panel on climate change [M]. Cambridge University Press, Cambridge, UK/New York,2000
    Jenkinson D.S., Powlson D.S. The effect of biocidal treatments on metabolism in soil. V:A method for measuring soil biomass [J]. Soil Biol Biochem,1979,8:209-213
    Jenkison D.S., Adams D.E., Wild A. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature,1991,351:304-306
    Jenkison, Ladd J.N., Paul E.A., Ladd J.N. (eds). Microbial biomass in soil:measurement and turnover in [M]. Soil Biochemistry, New York:Marcel Dekker INC,1981:415-471
    Jia Z.J., Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil [J]. Environ Microbiol,2009,11:1658-1671
    Jiao Y., Huang Y., Zong L., Zheng X., Sass R.L. Effects of copper concentration on methane emission from rice soils [J]. Chemosphere,2005,58:185-193
    Joergensen R.G, Emmerling C. Human impact on soil organisms and on current measurement methods [J]. J Plant Nutr Soil Sc,2006,169:295-309
    Jones C.M., Stres B., Rosenquist M., Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification [J]. Mol Biol Evol,2008,25 (9):1955-1966
    Kabata-Pendias A., Pendias H. Trace Metals in Soils and Plants [M]. CRC Press, Boca Raton, Fla, USA,2nd edition,2001
    Kahkonen M.A., Lankinen P., Hatakka A. Hydrolytic and lignolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi [J]. Chemosphere,2008,72: 708-714
    Kandeler E, Luftenegger G. Influence of heavy metals on the functional diversity of soil microbial communites [J]. Biol Fert Soils,1997,23:299-306
    Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L., Abundance of narQ nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland [J]. Appl Environ Microbiol,2006,72:5957-5962
    Kandeler E., Kanpichler C., Horak O. Influence of heavy metals on the functional diversity of soil microbial communities [J]. Biol Fertil Soils,1996,23:299-306
    Kandeler E., Ts cherko D., Wess olek G Reaktion von Mikroorganismen auf Bodenkontaminationen TU Berlin [J]. Bodenokologie und Bodengenese,1998,26:100-107
    Katsuyama C., Kondo N., Suwa Y., Yamagishi T., Itoh M., Ohte N., Kimura H., Nagaosa, K. Kato K. Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest [J]. Microbes Environ,2008,23:337-345
    Kehrmeyer S.R., Applegate B.M., Pinkart H.C., Hedrick D.B., White D.C., Sayler GS. Combined lipid/DNA extraction method for environmental samples [J]. J Microbiol Methods,1996,25: 153-163
    Kelly J., Haggblom M., Tate R. Changes in soil microbial communities over time resulting from one time application of zinc:a laboratory microcosm study [J]. Soil Biol Biochem,1999,31: 1455-1465
    Khan K S. Effect of cadmium, lead on size of microbial biomass [J]. Pedosphere,1998,8:27-32
    Khan S., Cao Q., Hesham A.E.L., Xia Y., He J. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb [J]. J Environ Sci,2007,19:834-840
    Khan S., Hesham A.E., Qiao M., Rehman S., He J.Z. Effects of Cd and Pb on soil microbial community structure and activities [J]. Environ Sci Pollut Res,2010,17:288-296
    Killham K. A physiological determination of the impact of environmental stress on the activity of microbial biomass [J]. Environ Pollut,1985,38,283-294
    Kizilkaya R. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn [J]. Bioresour Technol,2008,99:946-953
    Knaebel D.B., Federle T.W., McAvoy D.C., Vestal J.R. Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil [J]. Appl Environ Microbiol, 1994,60:4500-8
    Knowles R. Denitrification [J]. Microbiological Reviews,1982,46 (1):43-70
    Kolb S., Knief C., Dunfield P.F., Conrad R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils [J]. Environ Microbiol,2005,7 (8):1150-1161
    Kolbs S. The quest for atmospheric methane oxidizers in forest soils [J]. Environ Microbiol. Rep.,2009, 1:336-346
    Konneke M., Berndard A.E., dela Torre J.R., Walker C.B., Waterbury J.B., Stahl D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature,2005,437:543-546
    Konneke M., Bernhard A.E., de la Torre J.R., Walker C.B., Waterbury J.B., Stahl D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature,2005,437:543-546
    Koops H.P., Bottcher B., Moller U.C., Pommerening-Roser A., Stehr G. Description of a new species of Nitrosococcus [J]. Arch Microbiol,1990,154:244-248
    Kowalchuk G.A., Atienstra A.W., Heiling G.H.J., Stephen J.R., Woldendrop J.W. Changes in the community structure of ammonia oxidizing bacteria during secondary succession of calcareous grasslands [J]. Environ Microbiol,2000,2:99-110
    Kozdroj J., van Elsas J.D. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches [J]. J Microbiol Meth,2001,43:197-212
    Kruger M., Frenzel P., Kemnitz D., Conrad R. Activity, structure and dynamics of the methanogenic archaeal community in flooded Italian rice field [J]. FEMS Microbiol Ecol,2005,51:323-331
    Kucera C L, Kirham D R. Microbial floristics of a managed tallgrass prairie [J]. Ecology,1979,52:912
    Kunito T., Saeki K.,Goto S., Hayashi H., Oyaizu H., Matsumoto S. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils [J]. Bioresour Technol,2001,79:135-146
    Kuperman R.G., Carreiro M.M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem [J]. Soil Biol Biochem,1997,29(2):179-190
    Landi L., Renella G., Moreno J.L., Falchini L., Nannipieri P. Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity:microbial biomass ratio under laboratory conditions [J]. Biol Fert Soils,2000,32,1:8-16
    Laskowski R., Maryanski M., Niklinska M. Effect of heavy metals and mineral nutrients on forest litter respiration rate [J]. Environ. Pollut,1994,84:97-102
    Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol GW., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature,2006,442: 806-809
    Levy-Booth D.J., Campbell R.G., Gulden R.H., Hart M.M., Powell J.R., Klironomos J.N., Pauls K.P., Swanton C.J., Trevors J.T., Dunfield K.E. Cycling of extracellular DNA in the soil environment [J]. Soil Biol Biochem,2007,39:2977-2991
    Lewandowski I., Schmidt U., Londo M., Faaij A. The economic value of the phytoremediation function-Assessed by the example of cadmium remediation by willow (Salix ssp) [J]. Agr Syst,2006,89 (1):68-89
    Li X., Zhu Y., Cavagnaro T.R., Chen M., Sun J., Chen X., Qiao M. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? [J] Plant Soil, 2009b,324:209-217
    Li Y., Rouland C., Benedetti M., Li F., Pando A., Lavelle P., Dai J. Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress [J]. Soil Biol Biochem,2009a,41:969-977
    Liebner S., Rublack K., Stuehrmann T., Wagner D. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia [J]. Microb Ecol,2009,57(1):25-35
    Lin C., Lu W., Wu Y. Agricultural soils irrigated with acidic mine water-acidity, heavy metals, and crop contamination [J]. Aust J Soil Res,2005,43:819-826
    Liu D., Liu X., Liu Y., Li L., Pan G., Crowley D., Tippkotter R. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China-Ⅵ. Changes in microbial community structure and respiratory activity [J]. Biogeosciences Discuss 2011,8: 1529-1554
    Liu W., Lu H.H., Wu W.X., Wei Q.K., Chen Y.X., Thies J.E., Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development [J]. Soil Biol Biochem,2008,40:475-486
    Liu Y., Yang M., Wu Y, Wang H., Chen Y., Wu W. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar [J]. J Soils Sediments,2011,11:930-939
    Liu Y.R., Zheng Y.M., Shen J.P., Zhang L.M., He J.Z. Effects of mercury on the activity and community composition of soil ammonia oxidizers[J]. Environ Sci Pollut Res,2010,17:1237-1244
    Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill [J]. Microbiol,2002,148: 3521-3530
    Macalady J.L., Mcmillan A.M.S., Dickens A.F., Tyler S.C., Scow K.M. Population dynamics of type I and Ⅱ methanotrophic bacteria in rice soils [J]. Environ Microbiol,2002,4 (3):148-157
    Macdonald C., Singh B., Peck J., Schaik A., Hunter L., Horswell J., Campbell C., Speir T. Long-term exposure to Zn-spiked sewage sludge alters soil community structure [J]. Soil Biol Biochem, 2007,39:2576-2586
    Magalhaes M.C., Machado A., Matos P., Bordalo A.A. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary [J], FEMS Microbiol Ecol,2011,77:274-284
    Malcolm G.M., Lopez-Gutierrez J.C., Koide R.T. Little evidence for respiratory acclimation by microbial communities to short-term shifts in temperature in red pine (Pinus resinosa) litter [J]. Global Change Biol,2009,15:2485-2492
    Maliszewska-Kordybach B., Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination [J]. Environ Int,2003,28: 719-728
    Malley C., Nair J., Ho G. Impact of heavy metals on enzymatic activity of substrate and composting worms Eiseniafetida [J]. Bioresour Technol,2006,97:1498-1502
    May L.A., Smiley B., Schmidt M.G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage [J]. Can J Microbiol,2001,47: 829-841
    McDonald I.R., Murrell J.C. The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs [J]. FEMS Microbiology Lett,1997,156:205-210
    Mcgrath S.P, Chaudhri A.M. Long term effects of metals in sewage on soils microorganisms and plant [J]. J Ind Microbiol,1995,14:94-101
    McKinley V.L., Peacock A.D., White D.C. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils [J]. Soil Biol Biochem,2005,37:946-1958
    McLaughlin M.J., Parker D.R., Clarke J.M. Metals and micronutrients-food safety issues [J]. Field Crops Res,1999,60:143-163
    McNaughton S.J. Diversity and stability of ecological communities:a comment on the role of empiricism in ecology [J]. Am Nat,1977,111:515-525
    McTavish H., Fuchs J.A., Hooper A.B., Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea [J]. J Bacteriol,1993,175:2436-2444
    Meers E., Ruttens A., Hopgood M., Lesage E., Tack F.M.G Potential of Brassicarapa, Cannabis sativa, Helianthus annuus and Zea mays for phyto-extraction of heavy metals from calcareous dredged sediment derived soils [J]. Chemosphere,2005,61:561-572
    Megan J.S., Plante A.F., Conant R.T., Paul E.A., Tanaka D.L. Patterns of substrate utilization during long-term incubations at different temperatures [J]. Soil Biol Biochem,2008,40:2722-2728
    Mele P.M., Crowley D.E. Application of self-organizing maps for assessing soil biological quality [J]. Agr Ecosyst Environ,2008,126:139-152
    Melillo J.M., Steudler P.A., Aber J.D., Newkirk K., Lux H., Bowles F.P., Catricala C, Magill A., Ahrens T., Morrisseau S. Soil warming and carbonecycle feedbacks to the climate system [J]. Science, 2002,298:2173-2176
    Mertens J., Broos K., Wakelin A.S., Kowalchuk A.G, Springael D., Smolders E.. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil [J]. The ISME Journal,2009,3,916-923
    Mertens J., Wakelin A.S., Broos K., Mclaughlin J.M., Smolders E. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper contaminated soils [J]. Environ Toxicol Chem,2010,29:27-37
    Mertens J.,Springael D.,De Troyer I., Cheyns K., Wattiau P., Smolders E. Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil [J]. Environ Microbiol,2006,8,2170-2178
    Mette H.N., Neils B.R. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria [J]. J Microbiol Methods,2002,50:189-203
    Miller M.N., Zebarth B.J., Dandie C.E., Burton D.L., Goyer C., Trevors J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil [J]. Soil Biol Biochem,2008,40:2553-2562
    Mishra S.R., Bharati K., Sethunathan N., Adhya T.K. Effects of heavy metals on methane production in tropical rice soils [J]. Ecotoxicol Environ Saf,1999,44:129-136
    Moffett B.F., Nicholson F.A., Uwakwe N.C., Chambers B.J., Harris J.A., Hill T.C. Zinc contamination decreases the bacterial diversity of agricultural soil [J]. FEMS Microbiol Ecol,2003,43:13-19
    Mohanty S.R., Bharati K., Deepa N., Rao V. R., Adhya T. K. Influence of heavy metals on methane oxidation intropical rice soils [J]. Ecotoxicol Environ Saf,2000,47,277-284
    Moreno J.L., Garcia C., Landi L., Falchini L., Pietramellara G, Nannipieri P. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and DHA and urease activities of soil [J]. Soil Biol Biochem,2001,33:483-489
    Muyzer G, Waal E.C.D., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol,1993,59:695-700
    Nemerow N.L. Stream, Lake, Estuary, and Ocean Pollution [M]. Van Nostrand Reinhold Publishing Co., New York, USA,1991, pp.0-472.
    Nguyen H.T., Sheimke A.K. The nature of the copper ions in the membranes containing the particulate methane monoxygenase from Methylococcus capsulatus (bath) [J]. J Biol Chem,1994,69: 14995-15005
    Nicol GW., Glover L.A., Prosser J.I. Spatial analysis of archaeal community structure in grassland soil [J]. Appl Environ Microbiol,2003,69:7420-7429
    Nies D.H., Silver S. Ion efflux systems involved in bacterial metal resistances [J]. J Ind Microbiol,1995, 14:186-199
    Nies D.H. Microbial heavy-metal resistance [J]. Appl Microbiol Biotechnol,1999,51:730-750
    Nommik H. Investigations on denitrification in soil [J]. Acta Agr Scand,1956,6:195-228
    Nordgren A., Baath E., Soderstrom B. Evaluation of soil respiration characteristics to assess heavy-metal effects on soil-microorganisms using glutamic-acid as a substrate. Soil Biol Bioehem,1988,20, 949-954
    Nordgren A., Baath E., Soderstrom B. Microfungi and microbial activity along a heavy metal gradient [J]. Appl Environ Microbiol,1983,7:1829-1837
    Nosir S. The impact of the almalyk industrial complex on soil chemical and biological properties [J]. Environ Pollut,2005,136:331-340
    O'Leary W.M., Wilkinson S.G Gram-positive bacteria. In Microbial Lipids [M]. Academic Press, London,1988,1:117-202
    O'Mullan G.D., Ward B.B. Comparison of temporal and spatial variation of ammonia oxidizing bacteria and nitrification rates in Monterey Bay, CA [J]. Appl Environ. Microbiol,2005,71,697-705
    Offre P., Prosser J.I., Nicol GW. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene [J]. FEMS Microbiol Ecol,2009,70:99-108
    Ohm H., Marschner B., Broos K. Respiration and priming effects after fructose and alanine additions in two copper-and zinc-contaminated Australian soils [J]. Biol Fertil Soils,2011,47:523-532
    Okana Y., Hristova K.R., Leutenegger C.M., Jackson L.E., Denison R.F., Gebreyesus B., Lebauer D., Scow K.M. Application of real-time PCR to study effects of ammonium on population size of ammonia oxidizing bacteria in soil [J]. Appl Environ Microbiol,2004,70:1008-1016
    Oliveira A., Pampulha E.M. Effects of long-term heavy metal contamination on soil microbial characteristics [J]. J Biosci Bioeng,2006,102:157-161
    Onyenwoke R.U., Brill J.A., Farahi K., Wiegel J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes) [J]. Arch Microbiol,2004,182:182-192
    Oorts K., Ghesquiere U., Swinnen K., Smolders E. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil [J]. Environ Toxicol Chem,2006,25:836-844
    Oremland R.S., Culbertson C.W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor [J]. Nature,1992,356:421-423
    Palmborg C. The relationships of soil microbial activity and biomass to the chemical composition of mor [D]. Doctoral thesis Swedish Univ. Agricultural Sci. Umea (Sweden).1997
    Paul E.A., Clark F.E. Soil Microbiology and Biochemistry [M]. Academic Press, San Diego.1996
    Pawlowska T.E., Charvat I. Heavy-Metal Stress and Developmental Patterns of Arbuscular Mycorrhizal Fungi [J]. Appl Environ Microbiol,2004,70:6643-6649
    Pennanen T., Frostegard A., Fritze H., Baath E. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests [J]. Appl Environ Microbiol,1996,62:420-428
    Pettersson M., Baath E. Temperature-dependent changes in the soil bacterial community in limed and unlimed soil [J]. FEMS Microbiol Ecol,2003,45:13-21
    Philippot L., Hallin S., Schloter M. Ecology of denitrifying prokaryotes in agricultural soils [J]. Adv Agron,2007,96:249-305
    Philippot L., Cregut M., Cheneby D., Bressan M., Dequiet S., Martin-Laurent F., Ranjard L., Lemanceau P. Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress [J]. FEMS Microbiology Lett,2008,285:51-57
    Powlson D.S, The soil microbial biomass:before, beyond and back. In'Beyond the biomass; composition and functional analysis of soil microbial communities'[M]. (Eds K Ritz, J Dighton, KE Giller). John Wiley:Chichester, UK,1994, pp.3-20.
    Premi P.R., Cornfield A.H. Effects of addition of copper, manganese, zinc and chromium compounds on ammonification and nitrification during incubation of soil [J]. Plant Soil,1969,31:345-352
    Prosser J.I. Microbial processes within the soil. In:Dirk van Elsas J, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology [M]. Marcel Dekker, New York,1997:83-213
    Putten W.H.V.D. Plant-soil feedback and soil biodiversity affect the composition of plant communities. In:Bardgett, R.D., Usher, M.B., Hopkins, D.W. (Eds.), Biological Diversity and Function in Soils [M]. Cambridge University Press, New York.2005
    Qiu Q.F., Noll M., Abraham W.R., Lu Y.H., Conrad R. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ [J]. The ISME Journal,2008,2,602-614
    Rajapaksha R.M.C.P., Tobor-Kaplon M.A., Baath E. Metal toxicity affects fungal and bacterial activities in soil differently [J]. Appl Environ Microbiol,2004,5:2966-2973
    Reay D.S. Sinking methane [J]. Biologist,2003,50:15-19
    Renella G, Chaudri A., Brookes P.C. Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity [J]. Soil Biol Biochem,2002,34:121-124
    Renella G., Ortigoza A.L.R., Landi L., Nannipieri P. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50) [J]. Soil Biol Biochem,2003,35:1203-1210
    Ross D.J. Invertase and amylase activities as influenced by clay minerals, soil clay fractions and topsoils under grassland [J]. Soil Biol Biochem,1983,15:287-293
    Rusk J.A., Hamon R.E., Stevens D.P., McLaughlin M.J. Adaptation of soil biological nitrification to heavy metals [J]. Environ Sci Technol,2004,38:3092-3097
    Ruth-Anne S.,0ivind E., Vigdis T. Abundance and diversity of archaea in heavy-metal-contaminated soils [J]. Appl Environ Microbiol,1999,8:3293-3297
    Ruyters S., Mertens J., Springael D., Smolders E. Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress [J]. Soil Biol Biochem,2010a,42,766-772
    Ruyters S., Mertens J., T'Seyen I., Springael D., Smolders E. Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil [J]. Soil Biol Biochem,2010b,42:1581-1587
    Sakadevan K., Zheng H., Bavor H.J. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater [J]. Water Sci Technol,1999,40:349-355
    Sakamoto K., Oba Y. Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass [J]. Biol Fertil Soils,1994,17:39-44
    Sanchez J. M., Valle L., Rodriguez F., Morinigo M.A., Borrego J.J. Inhibition of methanogenesis by several heavy metals using pure cultures [J]. Lett Appl Microbiol,2008,23(6):439-444
    Sandaa R.A., Torsvik V, Enger (?)., Daae F.L., Castberg T., Hanh D. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution [J]. FEMS Microbiol Ecol, 1999,30:237-251
    Sandaa R.A., Torsvik V, Enger (?). Influence of long-term heavy-metal contamination on microbial communities in soil [J]. Soil Biol Biochem.2001,33:287-295
    Sanders J.R., McGrath S.P., Adams T.M. Zinc, copper and nickel concentrations in ryegrass grown on sewage sludge-contaminated soils of diffrent pH [J]. J Sci Food Agric,1986,37 (10):961-968
    Sanguinetti C.J., Dias N.E., Simpson A.J.G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Biotechniques,1994,17:915-919
    Schauss K., Focks A., Leininger S., Kotzerke A., Heuer H., Thiele-Bruhn S., Sharma S., Wilke B.M., Matthies M., Smalla K., Munch J.C., Amelung W., Kaupenjohann M., Schloter M., Schleper C. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils [J]. Environ Microbiol,2009,11:446-456
    Schimel J., Balser T.C., Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function [J]. Ecol,2007,88:1386-1394
    Schimel J.P., Bennett J., Fierer N. Microbial community composition and soil nitrogen cycling:is there really a connection. In:Bardgett, R.D., Usher, M.B., Hopkins, D.W. (Eds.), Biological Diversity and Function in Soils [M]. Cambridge University Press, New York.2005
    Schleifer K.H. Microbial diversity:facts, problems and prospects [J]. System Appl Microbiol.2004,27: 3-9
    Schleper C., Jurgens G., Jonuscheit M., Genomic studies of uncultivated archaea [J]. Nat Rev Microbiol, 2005,3:479-488
    Schmidt E.L., Belser L.W. Autotrophic nitrifying bacteria. In:Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis. Part 2. Microbiological and biochemical properties [M]. Soil Science Society of America, Madison, Wis.,1994, pp.159-177
    Sharma S., Aneja M.K., Mayer J., Munch J.C., Schloter M. Diversity of transcripts of nitrite reductase genes(nirK and nirS) in rhizospheres of grain legumes [J]. Appl Environ Microbiol,2005,71: 2001-2007
    Shen G., Lu Y., Zhou Q., Hang J. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme [J]. Chemosphere,2005,61:1175-1182
    Shen R.N., Yu C.L. Direct evidence for a soluble methane monooxygenase from type r methanotrophic bacteria:purification and properties of a soluble methane monooxygenase from Methylomonus sp. GYJ3 [J]. Arch Biochem Biophys,1997,345:223-229
    Shoun H., Tanimoto T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction [J]. J Biol Chem,1991,266 (17): 11078-11082
    Shrestha M., Abraham W.R., Shrestha P.M., Noll M., Conrad R. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids [J]. Enviro Microbiol,2008,10:400-412
    Singh B.K., Tate K.R., Kolipaka G., Hedley C.B., Macdonald C.A., Millard P., Murrell J.C. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria [J]. Appl Environ Microbiol,2007,73 (16):5153-5161
    Smith M.S., Tiedje J.M. Phases of denitritication following oxygen depletion in soil [J]. Soil Biol Biochem,1979,11:261-267
    Six J., Frey S.D., Thiet R.K., Batten K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Sci Soc Am J,2006,70:555-569
    Smolders E., Brans K., Coppens F., Merckx R. Potential nitrification rate as a tool for screening toxicity in metal contaminated soils [J]. Environ Toxicol Chem,2001,20:2469-2474
    Sobolev D., Begonia M.F.T. Effects of heavy metal contamination upon soil microbes:lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers [J]. Int J Environ Res Public Health,2008,5:450-456
    Speir T.W., Kettles H.A., Parshotam A., Searle P.L., Vlaar L.N.C. Simple kinetic approach to determine the toxicity of As [V] to soil biological properties [J]. Soil Biol Biochem,1999,31:705-713
    Springer E., Sachs M.S., Woese C.R., Boone D.R. Patial gene sequences for the a subunit of methyl-coenzyme M reductase (McrI) as a phylogenetic tool for the family Methanosarcinaceae [J]. Int J Syst. Bacteriol,1995,45:554-559
    Stephen J.R., Chang Y-J., MacNaughton S.J., Kowalchuk GA., Leung K.T., Flemming C.A., White D.C. Effect of toxic metals on indigenous soil P-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria [J]. Appl Environ Microbiol,1999,65:95-101
    Stohs S.J., Bagchi D. Oxidative mechanisms in the toxicity of heavy metals [J]. Free Radical Bio Med, 1995,18:321-336
    Stres B., Mahne I., Avgustin G, Tiedje J.M. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated Michigan soils [J]. Appl Environ Microbiol,2004,70:301-309
    Sverdrup L.E., Linjordet R., Str(?)mman G., Hagen S.B., van Gestel C.A.M. Functional and community-level soil microbial responses to zinc addition may depend on test system biocomplexity [J]. Chemosphere,2006,65:1747-1754
    Teske A., AIm E., Regan J.M., Toze S., Rittmann B.E., Stahl D.A. Evolutionary relationship among ammonia-and nitrite-oxidizing bacteria [J]. J Bacteriol,1994,176:6623-6630
    Tett S.F.B., Stott P.A., Allen M.R., Ingram W.J., Mitchell, J.F.B. Causes of twentieth-century temperature change near the Earth's surface [J]. Nature,1999,399 (3736):572-576
    Thauer R.K. Biochemistry of methanogenesis:A tribute to Marjory Stephenson [J]. Microbiology,1998, 144:2377-2406
    Throback I.N., Johansson M., Rosenquist M., Pell M., Hansson M., Hallin S. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil [J]. FEMS Microbiology Lett,2007,270:189-194
    Thurna M., Freitag T.E., Nicol GW., Prosser J.I. Growth, activity and temperature responses of ammonia-oxicizing archaea and bacteria in soil microcosms [J]. Environ Microbiol,2008,10: 1357-1364
    Tiedje J.M., Anaerobes. N.Y., John W., Zehnder, A.J.B. (Ed.).Ecology of denitrification and dissimilatory nitrate reduction to ammonium [J]. Environ Microbiol,1988:179-244
    Tiedje J.M., Simkins S., Groffman P.M., (1989) Perspective on measurement of denitrification in the field including recommended protocols for acetylene based methods [M]. In Developments in Plant and Soil Science, Vol.39. Ecology of Arable Land. Perspectives and Challenges (M. Clarholm and L. Bergstrom, Eds), pp.217-240. Kluwer, Dordrecht.
    Tilman D. Biodiversity:population versus ecosystem stability [J]. Ecology,1996,77:350-363
    Tischer S., Tanneberg H., Guggenberger G Microbial parameters of soils contaminated with heavy metals:assessment for ecotoxicological monitoring [J]. Pol J Ecol,2008,56 (3):471-479
    Treusch A.H., Leininger S., Kletzin A., Schuster S.C., Klenk H.P., Schleper C. Novel genes for nitrite reductase and Ano-related proteins indicate a role of uncultivated mesophilic crenarchaeota in introgen cycling [J]. Environ Microbiol,2005,7:1985-1995
    Tunlid A., White D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil [M]. In Soil Biochemistry, Vol.7, Eds. G Stotzky and J M Bollag. Marcel Dekker, INC New York, Basel, Hong Kong.1992,229-262
    Tyler G. International Conference on Heavy Metals in the Environment [J]. Toronto, Canada,1975,217
    Urbach E., Vergin K.L., Giovannoni S.J. Immunochemical detection and isolation of DNA from metabolically active bacteria [J]. Appl Environ Microbiol,1999,65:1207-1213
    Usuda K., Toritsuka N., Matsuo Y., Kim D.H., Shoun H. Denitrification by the fungus Cylindrocarpon tonkinense:anaerobic cell growth and two isozyme forms of cytochrome P-450nor [J]. Appl Environ Microbiol,1995,61(3):883-889
    Valentine D.L. Adaptations to energy stress dictate the ecology and evolution of the Archaea [J]. Nat Rev Microbiol,2010,5:316-323
    van Beelen P., Wouterse M., Posthuma L., Rutgers M. Location-specific ecotoxicological risk assessment of metal-polluted soils [J]. Environ Toxicol Chem,2004,23:2769-2779
    van der Heijden M.GA., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I.R. Mychorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature,1998,396:69-72
    van der Lelie D., Tibazarwa C., In Metals in the Environment:Analysis by Biodiversity[M]. Prasad M.N.V., Ed.; Marcel Dekker:New York,2001, pp.1-36
    Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass-C [J]. Soil Biol Biochem,1987,19:703-707
    Vasquez-Murrieta M.S., Cruz-Mondrag6n C., Trujillo-Tapia N., Herrera-Arreola G, Govaerts B., Van Cleemput O., Dendooven L. Nitrous oxide production of heavy metal contaminated soil Soil [J]. Soil Biol Biochem,2006,38:931-940
    Walter H.M, Keeney D.R., Fillery I.R. Inhibition of nitrification by acetylene [J]. Soil Sci Soc Am J, 1979,43(1):195-196
    Wang Y, Li Q., Shi J., Lin Q., Chen X., Wu W., Chen Y. Assessment of mi, crobial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator [J]. Soil Biol Biochem,2008,40:1167-1177
    Wang Y, Shi J., Wang H., Lin Q., Chen X., Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter [J]. Ecotoxicol Environ Saf,2007,67:75-81
    Wang Y, Wu W., Ding Y, Liu W., Anton P., Chen Y, Medha D. Methane oxidation activity and bacteria community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L [J]. Soil Biol Biochem,2008,40:2452-2459
    Ward B.B., Mullan GD. Worldwide distribution of Nitrosococcus oceani, a marine ammonia oxidizing gamma-proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes [J]. Appl Environ Microbiol,2002,68:4153-4157
    Wardle D.A., Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development [J]. Soil Biol Biochem,1995,27:1601-1610
    Weber O., Scholz R.W., Buhlmann R., Grasmuck D. Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies [J]. Risk Anal,2001,21:967-977
    Welp G., Brummer GW., Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents [J]. Ecotoxicol Environ Saf,1997,38:200-204
    Wenderoth D.F., Reber H.H. Development and comparison of methods to estimate the catabolic versatility of metal-affected soil microbial communities [J]. Soil Biol Biochem,1999,31: 1793-1802
    Wertz S., Degrange V., Prosser J.I., Poly F., Commeaux C., Freitag T. Maintenance of soil functioning following erosion of microbial diversity [J]. Environ Microbiol,2006:2162-2169
    Wertz S., Degrange V., Prosser J.I., Poly F., Commeaux C., Guillaumaud N., Roux X.L. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance [J]. Environ Microbiol,2007,9 (9): 2211-2219
    White D.C., Davis W.M., Nickels J.S., King J.D., Bobbie R.J. Determination of the sedimentary microbial biomass by extractable lipid phosphate [J]. Oecologia,1979,40:51-62
    Wichern F., Hafeel K. The fungal-bacterial ratio:Tipping the balance for soil health [J]. Soils are Alive Newsletter,2004,3 (3)
    Witter E., Gong P., Baath E., Marstorp H. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications [J]. Environ Toxicol Chem,2000,19:1983-1991
    Wolsing M., Prieme A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments [J]. FEMS Microbiol Ecol,2004,48:261-271
    Wolsing M., Prieme A., Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments [J]. FEMS Microbiol Ecol,2004,48:261-271
    Wuana R.A., Okieimen F.E. Heavy Metals in Contaminated Soils:A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation [J]. ISRN Ecology,2011, doi:10.5402/2011/402647
    Wyszkowska J., Kurcharski J., Lajszner W. The effects of copper on soil biochemical properties and its interaction with other heavy metals [J]. Polish J Environ Stud,2006,15:927-934
    Xiong X., Allinson G., Stagnitti F., Peterson J. Metal contamination of soils in the Shenyang Zhangshi irrigation area [J]. Bull Environ Contain Toxicol,2003,70:935-941
    Yagi K.K., Minami. Effect of organic matter application on methane emission from some Japanese paddy fields [J]. Soil Sci Plant Nutr,1990,36:599-610
    Yao H., Xu J., Huang C. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils [J]. Geoderma,2003,115:139-148
    Ye R.W., Averill B.A., Tiedje J.M. Denitrification:production and consumption of nitric-oxide [J]. Appl Environ Microbiol,1994,60:1053-1058
    Yin S., Yang L., Yin B., Mei L. Nitrification and denitrification activities of zinc-treated soils worked by the earthworm Pheretima sp. [J]. Biol Fert Soils,2003,38:176-180
    Yoshida M., Ishii S., Otsuka S., Senoo K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil [J]. Soil Biol Biochem,2009,41:2044-2051
    Yoshida M., Ishii S., Otsuka S., Senoo K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria [J], Microbes Environ,2010,25:45-48
    Yoshida M., Ishii S., Otsuka S., Senoo K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil [J]. Soil Biol Biochem,2009,41:2044-2051
    Young M., Crawford J.W. Interactions and self-organization in the soil-microbe complex [J]. Science, 2004,304 (5677):1634-1637
    Zelles I., Bai Q.Y., Beck T., Beese F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils [J]. Soil Biol Biochem,1992,24:317-323
    Zelles L. Identification of single cultured microorganisms based on their whole community fatty acid profiles using extraction procedure [J]. Chemosphere,1999,39:665-682
    Zelles L., Bai Q.Y., Rackwitz R., Chadwick D., Beese F. Determination of phospholipid-and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils [J]. Biol Fertil Soils,1995,19:115-123
    Zhang GL., Yang F.G, Zhao Y.G, Zhao W.J., Yang J.L., Gong Z.T. Historical change of heavy metals in urban soils of Nanjing, China during the past 20 centuries [J]. Environ Int,2005,31:913-9
    Zhang Y., Dai J., Wang R., Zhang J. Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China [J]. Euro J Soil Biol,2008,44: 84-91
    Zheng J., Zhang X., Li L., Zhang P., Pan G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil [J]. Agr Ecosyst Environ,2007,120:129-138
    Zhou J., Dang Z., Cai M., Liu C. Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China [J]. Pedosphere,2007,17:588-594
    Zhou J., Xue K., Xie J., Deng Y, Wu L., Cheng X., Fei S., Deng S., He Z., Van Nostrand J.D., Luo Y. Microbial mediation of carbon-cycle feedbacks to climate warming [J]. Nature Climate Change,2012,106-110
    Zhou Z.F., Zheng Y.M., Shen J.P., Zhang L.M., He J.Z. Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil [J]. Environ Sci Pollut Res,2011, 18:1644-1652
    Zogg G.P., Zak D.R., Ringleberg D.B., MacDonald N.W., Pregitzer K.S.,White D.C. Compositional and functional shifts in microbial communities due to soil warming [J]. Soil Sci Soc Am J,1997, 61:475-481
    Zumft W.G Cell biology and molecular basis of denitrification [J]. Microbiol Mol Biol Rev,1997,61: 533-616
    陈翠华,倪师军,何彬彬,张成江.基于污染指数法和GIS技术评价江西德兴矿区土壤重金属污染[J].吉林大学学报(地球科学版).2008,38(1):105-111
    陈中云,闵航,吴伟祥,陈美慈.土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J].浙江大学学报(农业与生命科学版),2001,27(5):546-550
    邓晓,廖晓兰,唐群锋.甲胺磷和乙草胺对产甲烷菌种群数量及其活性的影响[J].农村生态环境2004,20(3):56-59
    段学军,闵航.镉对稻田土壤典型微生物种的胁迫生理毒性[J].生态环境2005,14(6):865-869
    方红亚,刘足根,杨国华,陈凯,胡小华,彭昆国.大余县钨矿尾砂库区天然生长植物研究[J].江西科学.2007,25:593-597
    高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140
    宫靖.我国土壤环境质量不容乐观,1.5亿亩耕地被污染.2011,http://www.cinic.org.cn/site951/chyj/2011-10-27/508741.shtml
    龚伟群,潘根兴.中国水稻生产中Cd吸收及其健康风险的有关问题[J].科技导报,2006,24:44-48.
    关松荫等.土壤酶及其研究方法[M].北京:农业出版社(第1版).1986
    和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142
    黄承才,葛滢,常杰,卢蓉,徐青山.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328
    蒋定安,汤旭东.宜兴市农田保护区重金属铅污染状况研究[J].土壤,2002,3:156-159
    蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,3:130-134
    李志鹏.土地利用变化和重金属污染对水稻土土壤呼吸和有机碳损失的影响[D].博士学位论文.南京农业大学.2009
    龙健,黄昌勇,滕应,姚槐应.矿区重金属对土壤环境质量微生物学指标的影响[J].农业环境科学学报,2003,22(1):60-63
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508
    马瑾,潘根兴,万洪富,夏运生,罗薇.珠江三角洲典型区域土壤重金属污染探查研究[J].土壤通报,2004,35(5):636-638
    董文茂,《保卫土壤-珠三角土壤污染调查》,环境,2005年7月
    沈萍等.微生物学实验[M].北京:高等教育出版社(第3版).1999,69-73
    沈壬兴,上官行健.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化[J].地球科学进展,1995,4(10):270
    腾应,黄昌勇,骆永明,李振东.重金属复合污染下红壤微生物活性及其群落结构的变化[J].土壤学报,2005,42(5):819-828
    土壤环境质量标准(GB 15618-1995) [S].国家环境保护局//http://www.sepa.gov.cn/eic/650208312909889536/19951206/1023470.html
    王涵,高树芳,陈炎辉,王果.重金属污染区土壤酶活性变化——以福建龙岩新罗区特钢厂污水灌溉区为例[J].应用生态学报,2009,12(20):3034-3042
    王嘉,王仁卿,郭卫华.重金属对土壤微生物影响的研究进展[J].山东农业科学,2006,1:101-105
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1203
    吴新民,潘根兴,李恋卿.长江三角洲土壤质量演变趋势分析[J].地理与地理信息科学,2006,22(3):88-91
    许超,夏北成,秦建桥,何石媚,李海骞,林小方.广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价[J].农业环境科学学报,2007,26(增刊):549-553
    许万文,张文涛.德兴铜矿酸性矿山废水污染分析[J]江西化学,2004,1:84-90
    阎姝,潘根兴,李恋卿.重金属污染降低水稻土微生物商并改变PLFA群落结构——苏南某地污染稻田的案例研究[J].生态环境2008,17(5):1828-1832
    杨万江,陈文佳.中国水稻生产空间布局变迁及影响因素分析[J].经济地理,2011,31:2086-2093
    杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境,2000,9(1):15-18
    张国政.产甲烷菌的一般特征[J].中国沼气,1990(2):5-8
    张良运,李恋卿,潘根兴.南方典型产地大米Cd、Zn、Se含量变异及其健康风险探讨[J].环境科 学,2009,30(9):2792-2797
    张良运,李恋卿,潘根兴,崔立强,李宏磊,吴小琰,邵诘奇.重金属污染可能改变稻田土壤团聚体组成及其重金属分配[J].应用生态学报,2009b,20(11):2806-2812
    张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90
    章柯, 土壤污染呈加剧趋势: 《侵蚀绿色发展根基》 .2010,http://news.qq.com/a/20101117/000900.htm
    郑聚锋,张平究,潘根兴,李恋卿,张旭辉.长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化[J].生态学报,2008,28(10):4864-4872
    周生路,廖富强,吴绍华,任奎,张红富,李志.基于分等样地的江苏典型区农用地土壤重金属污染研究[J].农业工程学报,2008,24(5):78-83
    周通,潘根兴,李恋卿,常上.南方几种水稻土重金属污染下的土壤呼吸及微生物学效应[J].农业环境科学学报,2009,28(12):2568-2573
    邹国元,张福锁.根际反硝化作用与N20释放[J].中国农业大学学报,2002,7(1):77-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700