用户名: 密码: 验证码:
常规与有机生产方式下稻田和菜地温室气体(CH_4和N_2O)排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖是当今全球性的环境问题,其主要原因为是由于大气中温室气体浓度的不断增加。其中,CH4和N2O是最主要的两种温室气体。农田生态系统是温室气体的重要排放源。目前国内有关农田温室气体的排放研究主要基于常规生产方式,而有关有机生产方式下农田温室气体排放的研究鲜有报道。本研究以我国华东地区稻田和菜地为研究对象,采用静态暗箱气相色谱法田间原位同步测定CH4和N20排放通量,探讨不同农业生产方式下农田温室气体排放特征和强度,这对于我国选择合理的农业生产方式、减少温室气体排放具有重要的意义。
     田间试验包含2007年水稻生长季和2009-2011年两年的蔬菜轮作观测周期。2007年水稻生长季,采用区组设计研究不同农业生产方式(常规和有机生产方式)和水分管理方式(持续淹水(F)、淹水-烤田-淹水(F-D-F)、淹水-烤田-淹水-湿润灌溉(F-D-F-M))对稻田CH4和N2O排放影响及评估有机生产方式对稻田温室气体的减排潜力;2009-2010年田间有机菜地试验主要研究不同栽培方式对菜地土壤N2O排放影响,同时结合室内培养试验研究不同栽培方式下土壤氮素转化过程;2010-2011年轮作周期内利用常规露天菜地试验数据研究环境因子对菜地N20和CH4排放通量的影响。综合2009-2011年常规和有机生产方式菜地试验数据,探讨不同农业生产方式下菜地CH4和N2O排放特征和强度,评估农业生产方式的转变(由常规生产方式转变为有机生产方式)对菜地温室气体减排效果及减排潜力。
     主要研究结果如下:
     1.土壤水分(水分管理方式)是稻田有无植株小区CH4和N20排放的主要驱动因子,同时温度(气温和土温)明显影响稻田有无植株小区CH4排放,而对N20排放影响不明显。露天栽培和设施栽培菜地,温度(气温和土温)和土壤水分对菜地CH4排放影响不显著。而露天和设施菜地N20排放均明显受到土壤水分影响,其N2O排放的最适宜土壤湿度(WFPS)分别为74.6%与80.1%。
     2.水稻生长季稻田CH4和N20排放通量与农业生产方式有关。常规生产方式下,F、F-D-F和F-D-F-M三种水分管理方式稻田,CH4季节平均排放通量分别为4.44、2.14和1.75mg m-2h-1,与有机生产方式下各水分管理方式相比,分别增加了20%、23%与25%。就N20排放通量而言,与常规稻田相比,F-D-F处理与F-D-F-M处理N20季节平均排放量较低,分别为10.85与13.66μgm-2h-1。全球增温潜势(GWP)方面:F处理明显增加了100年时间尺度上有机稻田CH4与N20排放量的综合GWP,而F-D-F-M处理CH4和N20排放量的GWP在两种农业生产方式下并没有明显的差异;与常规稻田相比,有机稻田各水分管理方式下其温室气体排放强度(GHGI)相对较高而碳效率比(CER)相对较低。结合GWP、GHGI和CER三方面,本研究结果表明有机生产方式在稻田管理中并不是有效的温室气体减排措施。
     3.室内培养试验结果表明设施有机菜地土壤的矿化作用、硝化作用和反硝化作用比露天有机菜地土壤强烈。而大田试验结果表明:栽培方式明显影响了菜地N2O排放,与露天栽培方式相比,设施栽培方式明显增加了菜地N20排放总量(P=0.0015)。无论施肥与否,设施栽培菜地N2O排放量均高于露天栽培菜地。有机肥的施用增加了露天和设施栽培菜地N20排放量,有机肥施用所导致的露天和设施栽培菜地N20排放系数分别为0.24%与0.20%。
     4.农业生产方式明显影响菜地CH4和N20排放量。在整个观测期,两种农业生产方式CH4通量明显不同,常规菜地是CH4吸收汇而有机菜地是CH4排放源。与常规露天菜地相比,常规设施菜地有较高的CH4吸收量与N2O排放量,但在有机菜地,CH4和N2O排放量在两种栽培方式下并没有明显差异。与常规生产方式相比,有机生产方式能明显降低菜地CH4和N2O排放量的GWP。无论是20年还是100年时间尺度上有机菜地CH4和N2O排放量的GWP均较常规菜地的低。与常规和有机露天栽培方式相比,设施栽培方式均增加了菜地CH4和N20排放量的GWP。
     5.搜集全球有关菜地N20排放数据,按一定的规则取舍数据,利用有效数据建立模型,模型拟合结果表明,菜地N2O年排放量与施氮量呈明显的线性关系,且菜地N20背景排放量较高。平均而言,露天与设施栽培菜地N20排放系数平均为为0.590%,背景排放量为2.56kg N ha-1yr-1。以此来估算我国菜地2008年年直接排放量为79.1Gg N20-N,占我国农田N20排放总量的20-23%。
     全文结论:
     农业生产方式影响稻田CH4和N2O排放。有机生产方式增加了100年时间尺度上F处理稻田CH4与N20排放量的综合GWP,而对F-D-F-M处理CH4和N20排放量的GWP没有影响;有机稻田各水分管理方式下其GHGI相对较高而CER相对较低。
     不同栽培方式土壤氮素的转化过程不同。设施菜地土壤的矿化、硝化作用与反硝化作用总体比露天菜地土壤强烈。
     农业生产方式明显影响CH4和N2O排放。整个观测期常规菜地是CH4吸收汇,而有机菜地是cH4排放源。有机生产方式降低了菜地CH4和N2O的GWP,而设施栽培方式增加了菜地CH4和N2O的GWP。
     菜地N2O排放总量估算。利用本研究所建模型估算我国菜地2008年N2O年直接排放量为79.1Gg N2O-N,占我国农田N20排放总量的20-23%。
The increasing concentration of greenhouse gases in the atmosphere, such as CH4and N2O has been paid much attention by people due to their substantial contribution to global warming, the severe impacts on the global climate. Agroecosytems are important sources of atmosphere greenhouse gases. Many studies about greenhouse gases in cropland based on conventional cropping regimes, while studies about greenhouse gases based on organic cropping regimes have been reported rarely. The study was carried out in rice and vegetable fields with static opaque chamber-gas chromatograph method to simultaneously measure CH4and N2O fluxes. The primary objectives were to examine the differences in characteristics and intensities of greenhouse gas emissions between conventional and organic cropping regimes, seeking for the suitable agriculture management and reducing greenhouse gases emissions in China.
     In this study, field experiments were accomplished over the rice-growing season in2007, while vegetable field experiment lasted from2009to2011. In2007, a split-plot experiment was conducted to study the effects of cropping regimes and water regimes in the rice-growing season on CH4and N2O emissions. Cropping regimes consisted of conventional and organic cropping regimes, while water regime in paddies consisted of the continous flooding (F) and the flooding-drainage-flooding (F-D-F). In2009-2010, an organic field experiment was conducted to investigate the effect of facilities on soil N2O emissions, and incubation experiments were conducted in laboratory to study nitrogen transformation. In2010-2011, we conducted conventional field experiment to invetagate the impact of environmental factors on CH4and N2O fluxes. Conbined the2009-2010and2020-2011field experiments, we explored the the difference in characteristics and intensities of greenhouse gases emissions between conventional and organic cropping regimes, and to evaluate the mitigation potential of the greenhouse gases emissions in organic cropping regime.
     The results of this study are presented as follows:
     1. Soil water status (water regime) was the factor controlling the seasonal pattern of CH4and N2O emission from rice paddies. Meanwhile, temperature (air and soil temperature) was another factor influencing CH4emission, but did't influence N2O emission. The effects of temperature (air and soil temperature) and soil moisture on CH4emission were not significantly levels despite in greenhouse plots or in open-air plots. The N2O emissions were affected by soil moisture both in greenhouse plots and in open-air plots, the optimum soil moisture for N2O emissions in greenhouse plots was80.1%and74.6%for open-air plots.
     2. The CH4and N2O fluxes in rice paddies depended on the cropping regimes. Seasonal fluxes of CH4averaged4.44,2.14and1.75mg m-2h-1for the organic rice paddies plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4emissions by20%,23%, and35%for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged10.85and13.66μg m-2h-1in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWP) of CH4and N2O emissions from organic rice paddies were significantly higher or comparable under various water regimes relative to conventional rice paddies. The greenhouse gas intensities were greater, while carbon efficiency ratios (CER) were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping systems might not be an effective option for mitigating the combined climatic impacts from CH4and N2O in paddy rice production.
     3. The results of incubation experiments indicate that the mineralization, nitrification and denitrification of greenhouse were more intensive than that of open-air vegetable soil. The results of field show that the facility significantly affected soil N2O emissions (P=0.0015). Greenhouse facitlity increased soil N2O emissions relative to open-air. Fertilizer application increased soil N2O emissions in both greenhouse and open-air plots, fertilizer-induced emission factor for N2O was0.24%for open-air and0.20%for greenhouse.
     4. In the present study, both CH4and N2O emissions differed between the organic and conventional vegetable cropping systems. Over the whole annual cycle, the soils varied from being minor net sources of CH4in the organic cropping systems to small net sinks for atmospheric CH4in the conventional vegetable cropping systems. Fertilizer application increased N2O emissions both in the organic and conventional vegetable fields, but organic fertilizer-induced N2O emissions in organic vegetable cropping systems were much lower than those induced by synthetic N fertilizer in the conventional vegetable cropping systems. Under the conventional vegetable cropping regime, more soil CH4uptakes and N2O emissions were observed in the greenhouse vegetable regimes compared to the open-air vegetable cropping systems. Under the organic vegetable cropping regime, however, soil CH4and N2O emissions did not significantly differ between the open-air and greenhouse vegetable systems. The combined annual GWP of CH4and N2O emissions were lowest for the organic open-air vegetable control plots while highest for the conventional greenhouse vegetable fertilized plots. The results of this study suggest that the conversion of conventional to organic cropping regimes would benefit for mitigating global warming potentials of CH4and N2O emissions in vegetable fields, while greenhouse instead of open-air vegetable cropping systems would slightly increase their global warming potentials.
     5. We compiled measurement data of direct N2O emissions from vegetable fields published in peer-reviewed Chinese and English journals, processed data according to certain rules. Model building by available field N2O flux measurements data over or close to1-year indicated a linear relationship between N2O emission and the amount of fertilizer application and that the background N2O emissions from conventional vegetable fields were significantly greater than those estimates from Chinese staple cropping uplands or rice-upland rotation systems. Considering all N2O fluxes data, thereby, we estimated the emission factor of N2O, on average, to be0.59%in conventional vegetable fields. The annual background N2O emission was, on average,2.76kg N2O-N ha-1in vegetable fields. By adopting the emission factor and background emission of N2O in conventional vegetable fields, the present study estimated annual direct N2O emissions to be79.1Gg N2O-N yr-1in Chinese vegetable cropping systems in2008, contributed20-23%of the total N2O emission from croplands in China.
     Thus, the CH4and N2O fluxes in rice paddies depended on the rice cropping regimes. The net global warming potentials (GWP) of CH4and N2O emissions from organic rice paddies were significantly higher or comparable under various water regimes relative to conventional rice paddies. The greenhouse gas intensities were greater, CER were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping systems might not be an effective option for mitigating the combined climatic impacts from CH4and N2O in paddy rice production. Secondly, the results of incubation experiments indicate that the mineralization, nitrification and denitrification of greenhouse were more intensive than that of open-air vegetable soil. Thirdly, both CH4and N2O emissions differed between the organic and conventional vegetable cropping systems. Over the whole annual cycle, the soils varied from being minor net sources of CH4in the organic cropping systems to small net sinks for atmospheric CH4in the conventional vegetable cropping systems. The combined annual GWP of CH4and N2O emissions were lower for organic vegetable plots, meanwhile, greenhouse instead of open-air vegetable cropping systems would slightly increase their global warming potentials. Finally, the present study estimated annual direct N2O emissions to be79.1Gg N2O-N yr-1in Chinese vegetable cropping systems in2008, contributed20-23%of the total N2O emission from croplands in China.
引文
1. 蔡祖聪,颜晓元,鹤田治雄,等.1995a.丘陵区稻田CH4排放的空间分布.土壤学报,32:151-159.
    2. 蔡祖聪,颜晓元,鹤田治雄,等,1995b.氮肥对稻田CH4排放的影响.土壤学报,32(增刊):136-142.
    3. 蔡祖聪,1999.土壤水分状况对CH4氧化,N2O和CO2排放的影响.土壤,5:266-269.
    4. 曹兵,贺发云,徐秋明,等.2006.南京郊区番茄地中氮肥的效应与去向.应用生态学报,17(10):1839-1844.
    5. 陈冠雄,黄国宏,黄斌,等.1995.稻田CH4和N2O的排放及养萍和施肥的影响.应用生态学报,6(4):378-382.
    6. 陈文新.1989.土壤和环境微生物学.北京:北京农业大学出版社.133-151.
    7. 丁洪,蔡贵信,王跃思,等.2001.华北平原不同作物-潮土系统中N2O排放量的测定.农业环境保护,20(1):7-9.
    8. 丁洪,王跃思,项虹艳,等.2004.菜地氮素反硝化损失与N2O排放的定量评价.园艺学报,31(6):762-766.
    9. 丁洪,张玉树,王跃思,等.2010.辣椒地土壤氮素反硝化损失与N2O排放研究.长江蔬菜(学术版),8:86-89.
    10. 杜睿,吕达仁,王庚辰,等.2003.温度对内蒙古典型草原土壤N2O排放的影响.自然科学,23(1):64-68.
    11. 封克,殷士学.1995.影响氧化亚氮形成与排放的土壤因素.土壤学进展,23(6):35-42.
    12. 封克,王子波,王小治,等.2004.土壤pH对硝酸根还原过程中N2O产生的影响.土壤学报.41(1):81-86.
    13. 耿远波,章申,董云社,等.2001.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,56(1):44-53.
    14. 过燕琴,高志亮,张令,等.2010.设施和露地栽培下有机菜地土壤氮素矿化和硝化作用的比较研究.农业环境科学学报,29(12):2436-2442.
    15. 过燕琴.2011.不同农业生产方式下菜地土壤氮素转化过程与N2O排放的研究.南京农业大学硕士学位论文.
    16. 贺发云,尹斌,蔡贵信,等.2005.菜地和旱作粮地土壤氮素矿化和硝化作用的比较.土壤通报,36(1):41-44.
    17. 侯鹏程,沈婷.2009.设施农业土壤生态环境存在问题及对策.北方园艺,9:131-133.
    18. 侯爱新,陈冠雄,Van Cleemput O.1998.不同种类氮肥对土壤释放N2O的影响.应用生态学报,9(2):176-180.
    19. 黄昌勇.2000.土壤学[M].北京:中国农业出版社.
    20. 黄国宏,陈冠雄,吴杰,等.1995.东北典型旱作农田CH4和N20排放通量研究.应用生态学报,6(4):383-386.
    21. 黄国宏,陈冠雄,韩冰.1999.土壤含水量与N20产生途径研究.应用生态学报,10(1):53-56.
    22. 黄耀,蒋静艳,宗良纲,等2001a.种植密度和降水对冬小麦田N2O排放的影响.环境科学,22(6):20-23.
    23. 黄耀,刘世梁,沈其荣,等.2001b.农田土壤有机碳动态模拟模型的建立.中国农业科学,34(5):532-536.
    24. 黄耀.2003.地气系统碳氮交换-从实验到模拟.北京:气象出版社.
    25. 贾仲君,蔡祖聪.2003.水稻植株对稻田甲烷排放的影响.应用生态学报,14(11):2049-2053.
    26. 金雪霞,范晓晖,蔡贵信,等.2004.菜地土壤N2O排放及其氮素反硝化损失.农业环境科学学报,23(5):861-865.
    27. 李长生,肖向明,Frolking S,等.2003.中国农田的温室气体排放.第四纪研究,23(5):493-503.
    28. 李辉信,胡峰,刘满强,等.2000.红壤氮素的矿化和硝化作用特征.土壤,32(4):194-197.
    29. 梁东丽,同延安,Ove Emetyrd,等.2002a.菜地不同施氮量下N20逸出量的研究.西北农林科技大学学报(自然科学版),30(2:)73-77.
    30. 梁东丽,同延安,Ove Emetyrd,等.2002b.干湿交替对早地土壤N20气态损失的影响.干旱地区农业研究,20(2):28-31.
    31. 梁东丽,同延安,Ove Emetyrd,等.2002c.灌溉和降水对旱地土壤N2O气态损失的影响.植物营养与肥料学报,8(3):298-302.
    32. 李良谟,伍期途.1991.原位条件下不同土壤中N20的通量.土壤,23(1):24-27.
    33. 李楠,陈冠雄.1993.植物释放N20速率及施肥的影响.应用生态学报,4(3):295-298.
    34. 李长生,肖向明,Frolking S,等.2003.中国农田的温室气体排放.第四纪研究,23(5):493-501.
    35. 林而达,李玉娥,饶敏杰,等.1994.稻田甲烷排放量估算和减缓技术选择.农村生态环境学报,10(4):55-58.
    36. 刘艳军,姜勇,梁文举,等.2005.蔬菜温室土壤某些化学性质的演变特征.应用生态学报,16(11):2218-2220.
    37. 刘真贞.2007.不同施氮措施对菜地N2O排放的影响.华中农业大学硕士学位论文.
    38. 卢维盛,张建国,廖宗文.1997.广州地区晚稻田CH4和N2O的排放通量及其影响因素.应 用生态学报,8(3):275-278.
    39. 闵航,陈美慈,等.1993.厌氧微生物学.杭州:浙江农业大学出版社.
    40. 邱炜红,刘金山,胡承孝,等.2010.不同施氮水平对菜地土壤N20排放的影响.农业环境科学学报,29(11):2238-2243.
    41. 上官行健,王明星,陈德章,等.1993.稻田土壤中的甲烷产生.地球科学进展,8:1-12.
    42. 宋文质,王少彬,苏维翰,等.1996.我国农田土壤的主要温室气体CO2、CH4和N2O排放研究.环境科学,17(1):85-92.
    43. 宋文质,王少彬,曾江海,等.1997.华北地区旱田土壤氧化亚氮的排放.环境科学进展,5(4):49-55.
    44. 唐咏,梁成华,刘志恒,等.1999.光温室蔬菜栽培对土壤微生物和酶活性的影响.沈阳农业大学学报(自然科学版),30(1):16-19.
    45. 殷永娴,刘鸿雁.1996.设施栽培下土壤中硝化反硝化作用的研究.生态学报,16(3):246-250.
    46. 颜晓元,施书莲,杜丽娟,等.2000.水分状况对水田土壤N2O排放的影响.土壤学报,37(4):482-489.
    47. 杨军,贺丽萍,杨崇,等.1997.广州地区晚季稻田CH4、N2O排放研究初报.华南农业大学学报,18(3):62-66.
    48. 杨军,陈玉芬,胡飞,等.1996.广州地区早稻田施肥对N2O排放影响的初步研究.华南农业大学学报,17(4):52-57.
    49. 姚志生,郑循华,周再兴,等.2006.太湖地区冬小麦田与蔬菜地N2O排放对比观测研究.气候与环境研究,11(6):691-701.
    50. 于克伟,陈冠雄,杨思河,等.1995.几种早地农作物在农田N2O释放中的作用及环境因素的影响.应用生态学报,6(4):387-391.
    51. 俞慎,李振高.1999.稻田生态系统生物硝化-反硝化作用与氮素损失.应用生态学报,10(5):630-634.
    52. 于亚军,朱波,荆光军.2008.成都平原土壤-蔬菜系统N2O排放特征.中国环境科学,28(4):313-318.
    53. 余海英,李廷轩,张锡洲.2010.温室栽培系统的养分平衡及土壤养分变化特征.中国农业科学,43(3):514-522.
    54. 万运帆,李玉娥,高清竹,等.2008.不同农业措施下冬小麦田N2O排放通量的特征.中国农业气象,29(2):130-133.
    55. 王小治,孙伟,王子波,等.2009.pH变化对中性土壤硝化过程N2O释放的影响.农业环境科学学报,28(8):1748-1752.
    56. 王辉,董元华,安琼,等.2005.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究:以南京市南郊为例.土壤,37(5):530-533.
    57. 王明星等.1987.稻田和沼气池甲烷排放通量的测定.科学通报,21:1646-1649.
    58. 王明星.1999.大气化学(第二版),气象出版社,北京.
    59. 王明星.2001.中国稻田甲烷排放.北京:科学出版社.
    60. 王斯佳,韩晓增,侯雪莹.2008.长期施肥对黑土氮素矿化与硝化作用特征的影响.水土保持学报,22(2):170-173.
    61. 王艳杰.2006.京郊保护地土壤氮素矿化过程.北京:首都师范大学.
    62. 王智平.1997.中国农田N20排放量的估算.农村生态环境,13(2):51-55.
    63. 王效科,李长生.2000.中国农业土壤N20排放量估算.环境科学学报,20(4):483-488.
    64. 王效科,欧阳志云.2001.DNDC模型在长江三角洲农田生态系统的CH4和N20排放量估算中的应用.环境科学,22(3):15-19.
    65. 魏迎春,李新平,刘刚.2008.杨凌地区大棚土壤硝态氮累积效应研究.水土保持学报,22(2):174-176.
    66. 吴彩霞,傅华.2009.根系分泌物的作用及影响因素.草业科学,26(9):24-29.
    67. 吴乐知,蔡祖聪.2007.基于长期试验资料对中国农田表土有机碳含量变化的估算.生态环境,16(6):1768-1774.
    68. 吴忠红,周建斌.2007.山西设施栽培条件下土壤理化性质的变化规律.西北农林科技大学学报(自然科学版),35(5):136-140.
    69. 邢光熹,颜晓元.2000.中国农田N20排放的分析估算与减缓对策.农村生态环境,16(4):1-6.
    70. 徐华,邢光熹,蔡祖聪,等.1999.土壤水分状况和氮肥施用及品种对稻田N20排放的影响.应用生态学报,10(2):186-188.
    71. 徐华,邢光熹,蔡祖聪.2000.土壤水分状况和质地对稻田N2O排放的影响.土壤学报,37(3):499-505.
    72. 徐文彬,刘广深,刘维屏.2002.降雨和土壤湿度对贵州旱田土壤N2O释放的影响.应用生态学报,13(1):67-70.
    73. 姚春霞,陈振楼,陆利民,等.2005.上海市郊蔬菜硝酸盐含量及评价.生态环境,14(3)365-368.
    74. 曾江海,王智平,张玉铭,等1995.小麦-玉米轮作期土壤排放N20通量及总量估算.环境科学,16(1):32-35.
    75. 张光亚,方柏山,闵航,等.2004.设施栽培土壤氧化亚氮排放及其影响因子的研究.农业环境科学学报,23(1):144-147.
    76. 张小洪,袁红梅,蒋文举.2007.油菜地C02、 N20排放及其影响因素.生态与农村环境学报,23(3):5-8.
    77. 张仲新,李玉娥,华珞,等.2010.不同施肥量对设施菜地N20排放通量的影响.农业工程学报,26(5):269-275.
    78. 张真和.2009.我国设施蔬菜发展中的问题与对策.中国蔬菜,(1):1-3.
    79.郑循华,王明星,王跃思,等.1996.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响.应用生态学报,7(3):273-279.
    80. 郑循华,王明星,王跃思,等.1997a.华东稻麦轮作生态系统N2O排放研究.应用生态学报,8(5):495-499
    81. 郑循华,王明星,王跃思,等.1997b.华东稻田CH4和N2O排放.大气科学,21(2):231-237.89.
    82. 周建斌,翟丙年,陈竹君,等.2004.设施栽培菜地土壤养分的空间累积及其潜在的环境效应.农业环境科学学报,23(2):332-335.
    83. 邹建文,黄耀,宗良纲,郑循华,王跃思.2003a.稻田CO2、CH4和N20排放及其影响因素.环境科学学报,23:758-764.
    84. 邹建文,黄耀,宗良纲,等.2003b.不同种类有机肥施用对稻田CH4和N2O排放的综合影响.环境科学,24:7-12.
    85. 邹建文.2005.稻麦轮作生态系统温室气体(CO2、CH4和N20)排放研究(学位论文).南京:南京农业大学.
    86. 朱咏莉,吴金水,周卫军,等.2005.亚热带稻田生态系统CO2排放及影响因素.中国环境科学,25(2):151-154.
    87. 朱兆良,文启孝主编.1992.中国土壤氮素,江苏科学技术出版社.
    88. Adamsen, A P S, King, G M.1993. Methane consumption intemperate and subarctic forest soils: rates, verticalzonation, and responses on Water and nitrogen. Applied and Environmental Microbiology,59:485-490.
    89. Agehara S, Warncke D D.2005. Soil moisture and temperature effects on nitrogen release from organic nitrogen source. Soil Science Society America Journal,69:1844-1855.
    90. Akiyama H, Tsuruta H.2003. Effect of organic matter application on N2O, NO, and NO2 fluxes from an Andisol field. Global Biogeochemical Cycles,17.1-11.
    91. Akiyama H, Tsuruta H.2003. Nitrous Oxide, Nitric Oxide, and Nitrogen Dioxide Fluxes from Soils after Manure and Urea Application. Journal of Environmental Quality,32:423-431.
    92. Akiyama H, Yagi K, Yan X Y.2005. Direct N2O emissions from rice paddy fields:summary of available data. Global Biogeochem Cycles,19:GB1005, doi:10.1029/2004GB002378.
    93. Ali M A, Oh J H, Kim P J.2008. Evaluation of silicateir on slag amendment on reducing methane emission from flood water rice farming. Agriculture and Ecosystems Environment,28:21-26.
    94. Allen A G, Jarvis S C, Headon D M.1996. Nitrous oxide emissions from soils due to inputs of nitrogen from excreta return by livestock on grazed grassland in the UK. Soil Biology Biochemistry,28:597-607.
    95. Alluvione F, Halvorson A D and Del Grosso S J.2009. Nitrogen, Tillage, and Crop Rotation Ef ects on Carbon Dioxide and Methane Fluxes from Irrigated Cropping Systems. Journal Environment Quality,38:2023-2033.
    96. Anke Lukewill and Richardf Wright.1997. Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Global Change Biology,3: 13-21.
    97. Meijide A, Jose'A, LauraSa'nchez M, et al.2007. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agriculture, Ecosystems and Environment,121:383-394.
    98. Antonio V, Skibab U, Lourdes G, et al.2006. Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization with treated pigs lurries and composts. Soil Biology & Biochemistry,38:2782-2793.
    99. Anonymous.1997. Handboek Melkveehouderij Praktijkonderzoek Rundvee. Schapenen Paarden, Lelystad, the Netherlands, pp 520.
    100. Aselmann I and Crutzen P J.1989. Global distribution Of natural freshwater wetlands and rice paddies:Their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry,8:307-358.
    101. Aulakh M S, Doran J W, Mosier A.1992. Soil denitrification significance, measurements and effects of management. Advances in Soil Science,18:1-57.
    102. Bachelet D and Neue H U.1993. Methane emissions from wetland rice areas of Asia. Chemosphere,26:219-237.
    103. Bachelet D, Kern J, Tolg M.1995. Balancing the rice carbon budget in China using a spatially-distributed data. Ecological Modelling,79:167-177.
    104. Ball B C, Scott A, and Parker J P.1999. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil and Tillage Research,53:29-39.
    105. Ball B C, McTaggart I P, Scott A.2004. Mitigation of greenhouse gas emissions from soils under silage production by use of organicor slow release fertilizer. Soil Use Manage.20:287-295.
    106. Batjes N H and Brides E M.1992. World inventory of soil emission:Identification and geographic quantification of soil factors and soil process that control fluxes of CO2, CH4 and N2O and the heat and moisture balance (draft background paper for discussion. Working paper and preprint,4: 11-47.
    107. Benckiser G, Eilts R, Linn A, et al.1996. N2O emissions from different copping systems and from aerated, nitrifying and denitrifying tanks of municipal waste water treatment plant. Biology and Fertility of soils,23:257-265.
    108. Bender M, Conrad R.1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology & Biochemistry,27:1517-1527.
    109. Bharati K, Mohanty S R, Rao V R, et al.1999. Effect of endosulfan on methane production from three tropical soils incubated under flooded condition. Bull Environ Contam Toxicol,63:211-218.
    110. Bhatia A, Pathak H, Jain N, et al.2005. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment,39:6976-6984.
    111. Bhatia A, Ghosh A, Kumar V, et al.2011. Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agriculture, Ecosystems and Environment, 144:21-28.
    112. Bloom A A, Palmer P I, Fraser A, et al.2010. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science,327:322-325.
    113. Bodelier P L E.2011. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability,3:1-10.
    114. Boeckx P O, Van Cleemput T M.2001. The influence of land age and pesticides on methane oxidation in some Belgian soils. Biology and Fertility of Soils,27:293-298.
    115. Borken W, Brumme R.1997. Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes. Soil Use Manage,13:251-257.
    116. Bosse U and Frenzel P.1998. Methane emissions from rice microcosms:the balance of production, accumulation and oxidation. Biogeochemistry,40:199-214.
    117. Bouwman A F.1990. Exchnage of greenhouse gases betweenter restrial ecosystems and the atmosphere. In Pages 61-127.Bouwmna, A. F. eds. soils and Gerenhouse effect, Chichester:Wiley and Sons, New York. USA.
    118. Bouwman A F.1996, Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecoysstems,46:53-60.
    119. Bouwman A F and VanderHoek K W.1997. Seenarios of animal waste production and fertilizer use and associated ammonia emissions for the developing countries. Atmospheric Environment,31 (24):4095-4102.
    120. Bouwman A F, Boumans L J M, and Batjes N H.2002a. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles,16:1080-1088.
    121. Bouwman A F, Boumans L J M, and Batjes N H.2002b. Emissions of N2O and NO from fertilized fields:Summary of available measurement data. Global Biogeochemieal Cyeles,16:1058-1070.
    122. Brenmer J M, Blackmer A M, Waring S A.1980. Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils. Soil Biology and Biochemistry.12:26-269.
    123. Bremner J M, and Blackmer A M.1981.Terrestrial nitrification as a source of atmospheric nitrous oxide. In Pages 151-170. Delwiche.C. C. Eds. Denitrification, Nitrification and Atmospheric N2O. John Wiley and Sons Ltd., Chichester.
    124. Branson K, Mosier A.1993. Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems. In Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Pub. No.55, pp 133-144.Am. Soc Agron, Madison, WI, USA.
    125. Brussaard L, Kuyper T W, Didden W A M, et al.2004. Biological soil quality from biomass to biodiversity-importance and resilience to management stress and disturbance. In:Schjenning, P., Elmholt, S., Christensen, B.T. (Eds.), Managing Soil Quality:challenges in Modern Agriculture. CAB International, pp 139-161.
    126. Butterbach B K, Papen H.2002. Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech foreste cosystem in Germany. Plant and Soil,240:77-90.
    127. Cai Z C, Xing G X, Yan X Y, et al.1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil,196:7-14.
    128. Cai Z C, Xing G X, and Shen GY.1999. Measurements of CH4 and N2O emissions from rice fields in Fengqiu,China. Soil Science and Plant Nulrition,45:1-13.
    129. Cai, Z.C., T.Sawamoto, C.S.Li, Q Kang, J.Boonjawat, A.R.Mosier, R.Wassmann, H. Tsuruta.2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemieal cycles,17:GB1107, doi:10.1029/2003GB002046.
    130. Cai Z C, Shan Y H, Xu H.2007. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nulrition,53:353-361.
    131. Cao B, He F F, Xu Q M, et al.2006.Gaseous losses from N fertilizer applied to tomato field in Nanjing suburbs. Acta Pedologica Sinca,43:62-68.
    132. Chan A, Parkin T.2001. Effect of land use on methane flux from soil. Journal of Environmental Quality,30:786-797.
    133. Chatskikh D, Olesen J E, Hansen E M,et al.2008. Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agriculture, Ecosystems and Environment,128:117-126.
    134. Cheng W G, Sudo S, Tsurutal H, et al.2006. Temporal and spatial variations in N2O emissions from a Chinese cabbage field as a function of type of fertilizer and application. Nutrient Cycling in Agroecosystems,74:147-155.
    135. Chinese Statistical Bureau.2009. China Statistical Year book. Chinese Statistical Bureau, Beijing, China.
    136. Chirinda N, J(?)rgen E O, John R P, et al.2010a.Soilproperties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agriculture, Ecosystems and Environment,139:584-594.
    137. Chirinda N, Mette S C, Kristian R A, et al.2010b. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment, 136:199-208.
    138. Cicerone R J, and Shetter J D.1981 Source of atmosphere methane:measurements in rice paddies and a discussion. Journal of Geophysical Research,86:7203-7209.
    139. Clairep M and Robertson G P. 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zeamays L.) cropping system. Global Change Biology,11: 1712-1719,doi:10.1111/j.1365-2486.2005.01040.x
    140. Clark M S, Ferris H, Klonsky K, et al.1998. Agronomic, economic, and environmental comparison of pest management in conventional and alternative tomato and corn systems in northern California. Agriculture, Ecosystems and Environment,68:51-71.
    141. Clayton H, Mc Taggart IP, Parker J, et al.1997.Nitrous oxide emissions from fertilized grassland: A 2-year study of the effects of N fertilizer form and environmental conditions. Biology and Fertility of soils,25:252-260.
    142. Conrad R, Seiler W, Bunse G.1983. Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. Journal of Geophysical Research,88:6709-6718.
    143. Conrad R, and Rothfuss F.1991. Mathane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and fertility of soils,12:28-32.
    144. Coehrna V L, SParro E B, Sehlentne W F, et al.1997. Long-temr tillage and crop residue management in the subarctic:fluxes of methane and nitrous oxide. Canadian Journal soil Science, 77:565-570.
    145. Corrie M D, VanKessel C, and Pennoek D J.1996. Landscape and seasonal pattenrs of nitrous oxide emissions in a semiarid region. Soil science Society of America Journal,60:1806-1815.
    146. Crutzen P J,1985. The role of the tropics in atmospheric chemistry. In:Dickinson, R. (eds.). Geophsiology of Amazonia, Wiley, Chichester. PP.107-132.
    147. Daum D, Schenk M K.1998. Inflence of nutrient solution pH on N2O and N2 emission from a soilless culture system. Plant Soil,203:279-287.
    148. Davidson E.A.1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In Pages 219-235.Rogers, J.E., and W.B. Whitman. Microbial Production and construction of greenhouse gases:methane, nitrogen oxides and halomethanes. American Society for Microbiology, Washington D.C.USA.
    149. Davidson E A, Belk E, Boone R D.1998.Soil water content and temperature as independent of confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biology,4:217-227.
    150. Denman S E, Tomkins N W, Mcsweeney C S.2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol,62:313-322.
    151. Desjardins R, Kulshreshtha S, Jenkins B, et al.1999. Canadian Greenhouse Gas Mitigation options in Agriculture. httP://www.agr.ca/policy/epad/frence/pubs/wptp/ggh/reportl/report l.pdf.
    152. Dorland S and Beaucham E G.1991.enitrification and ammonification at low soil temperatures. Canadian Journal soil Science,71:293-303.
    153. Del Grosso S, Ojima D, and Parton W.2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gases changes using the DAYCENT ecosystem model. Environmental Pollution,116:575-583.
    154. Denier H A C and Neue H U.1995. Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biofeochemical Cycles,8:127-134.
    155. Denier H A C, van Breemen N, Neue H U, et al.1996. Release of entrapped methane from wetland rice fields upon soil drying. Global Biofeochemical Cycles,10:1-7.
    156. Ding H, Wang Y, Xiang H, Li W.2004. Denitrification Loss and N2O Emission from Nitrogen Fertilizer Applied to Vegetable Field. Acta Horti culturae Sinica,31:762-766.
    157. Ding W X, Cai Z C, and Haruotsruta.H.2004. Cultivation, nitrogen fertilization, and set-aside effects on methane uptake in a drained marsh soil in Northeast China. Global Change Biology,10: 1801-1809.
    158. Dmitri C, J(?)rgen E O.2007. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil & Tillage Research,97:5-18.
    159. Drinkwater L E, Wagoner P, Sarrantonio M.1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature,396:262-264.
    160. Dobbie K E and Smith K A.1996.Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biology Biochemistry,28:1357-1365
    161. Dobbie K E, Me Taggart IP, Smith K A.1999. Nitrous oxide emissions from intensive agricultural systems:variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research,104:26891-26899. doi:10.1029/1999jd900378.
    162. Dorr H, Katruff L, Levin I.1993. Soil texture parameterisation of the CH4 uptake in aerated soils. Chemosphere,26:697-713.
    163. Drury C F, Reynolds W D, Tan C S, et al.2006. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil science Society of America Journal,70 (2):570-581.
    164. Eichner M J.1990. Nitrous oxide emissions from fertilized soils:summary of available data Journal of Environmental Quality,19:272-280.
    165. Elizabeth J F and Hemond H F.1992. Methane transport and oxidation in the unsaturated Zone of Sphafnum Peatland. Global Biogeochemical Cycles,6:33-44.
    166. Feng Z Z, Yao F F, Chen Z, et al.2007. Response of gas exchange and yield components of field-grown Triticum aestivum L. to elevated ozone in China. Photosynthetica,45:441-446.
    167. Food and Agricultural Organization (FAO).2002. Organic agriculture, environment and food security. FAO, Rome.
    168. FAO.2003. World agricultural towards 2015/2030. An FAO Perspective. FAO, Rome.
    169. Firestone M K, and Davidson E A.1989.Microbiologieal basis for NO and N2O Production an consumption in soil. In Pages 7-21. Andreae, M.O. and D.S. Schime, eds. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley and Sons Ltd., Chichester.
    170. Flessa H, Beese F.1995. Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Science Society of America Journal,59:1044-1051.
    171. Flessa H, Dorch P, Beese F.1995. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research,100,23:115-124.
    172. Flessa H, Wild U, Klemisch M, et al.1998.Nitrous oxide and methane fluxes from organic soils under agriculture. European Journal Soil Science,49:327-335.
    173. Flessa H., Ruser R, Schilling R, et al.2002. N2O and CH4 fluxes in potato fields:automated measurement, management effects and temporal variation. Agriculture, ecosystems and environment,105:307-325.
    174. Fliessbach A, Mader P.2000. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biology Biochemistry,32:757-768.
    175. Fliessbach A, Oberholzer H R, Gunst L, et al.2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment,118:273-284.
    176. Forster P, Ramaswamy V, Artaxo P, et al. Climate change 2007:the physical science basis. Contribution of working group it othe fourth assessment report of the intergovernmental panelon climate change. Cambridge University Press, Cambridge, ppl30-234.
    177. Franke S M, Douds D D, Galvez L, et al.2001. Diversity of communities of arbuscularmy corrhizal (AM) fungi present in conventional versu slow-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil Ecol.16:35-48
    178. Frolking S, Li C, Braswell R, et al.2004. Short-and long-term greenhouse gas and radiative forcing impacts of changing water management in Asiarice paddies. Global Change Biology, 110:1180-1196.
    179. Frolking S, Qiu J, Boles S, et al.2002.Combing remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochem Cycles, 16:1091-1101.
    180. Gilbert B, and Frenzel P.1998. Rice roots and CH4 oxidation:the activity of bacteria, their distribution and the microenvironment. Soil Biology and Biochemistry,30:1903-1916.
    181. Giller K E, Bignell D, Lavelle P, et al.2003. Soil biodiversity in rapidly changing tropical landscapes:scaling down and scaling up. In:Bardgett R D, Usher M B, Hopkins D W (Eds.), Biological Diversity and Function in Soils. Cambridge University Press, New York.
    182. Godde M, and Conrad R.2000. Influence of soil Properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biology and Fertility of Soils,32:120-128.
    183. Granli T, Bockman O.1994.Nitrogen oxide from agriculture. Norwegian Journal of Agricultural Sciences,12:7-127.
    184. Grant R F, andPattey E.2003. Modeling variability in N2O emissions ftom fertilized soil agricultural fields. Soil Biology& Biochemistry,35:225-243.
    185. Gu J, Zheng X H, Wang H, et al.2007. Regulatory effects of soil properties on background N2O emissions from agricultural soils in China. Plant Soil,295:53-65.
    186. Haile M S, Collins H P, Higgins S S.2008. Greenhouse Gas Fluxes from an Irrigated Sweet Corn (Zea mays L.)-Potato (Solanum tuberosum L.) Rotation. Journal Environment Quality, 37:759-771.
    187. Hansen B, Alr(?)e H, Kristensen E.2001. Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems and Environment, 83:11-26.
    188. Hayakawa H, Akiyama H, Shigeto Sudo, et al.2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manue. Soil Biology & Biochemistry,41:521-529.
    189. He F F, Jiang R F, Chen Q, et al.2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollutionl,57: 1666-1672.
    190. Henault C, Devis X, Lueas J L, et al.1998a. Influence of different agricultural practices (type of crop from of N-fertilizer) on soil nitrous oxide emissions. Biology and Fertility of soils,27: 299-306.
    191. H(?)gberg P, Read D J.2006. Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution,21:548-554.
    192. Holzapfel P A, Conrad R, Seiter W.1986. Effects of vegetation on the emission of methane from submerged paddy soils. Plant Soil,92:223-233.
    193. Horvatha L, Groszb B, Machon A, et al.2010. Estimation of nitrous oxide emission from Hungarian semi-arid sandy and loess grasslands; effect of soil parameters, grazing, irrigation and use of fertilizer. Agriculture, Ecosystems and Environment,139:255-263.
    194. Hosono T, Hosoi N, Akiyama H, et al.2006. Measurements of N2O and NO emissions during tomato cultivation using a flow-through chamber system in a glasshouse. Nutrient Cycling in Agroecosystem,75:115-134.
    195. Hoyer U, Lemnitzer B, Hulsbergen K J.2007. Impact of organic farming on different pools of soil organic matter and conclusions on humus balancing. Pp 9-12. In:Zikeli S., ClaupeinW., DabbertS., KaufmannB., MullerT., ValleZ'arateA. (Eds.), Zwischen Traditionund Global is ierung.Beitrage zur 9. Wissenschaftstagung Okologischer Landbau. Universitat Hohenheim.Verlag Dr.Koster, Berlin.
    196. Hou A X, Chen G X, Wang Z P, et al..2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society Journal, 64:2180-2186.
    197. Huang Y, Jiang J Y, Zong L G, et al.2001. Comparison of field measurements of CH4 emission from rice cultivation in Naming, China and in Texas, USA. Advance in Atmosphere Sciences,18: 1121-1130.
    198. Hunag Y, Jiao Y, Zong L G, et al..2002a. Qunatiattive dependence of methane emission on soil Properties. Nutrient Cycling in Ecosystems,64:157-167.
    199. Huang Y, Sun W J.2006a. Changes in top soil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bullet,51:1785-1803.
    200. Huang Y, Zhang W, Zheng X H, er al..2006b. Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecologica Sinica,26 (4):980-988.
    201. Hutsch B, Webster C, Powlson D.1993. Long-term effects of nitrogen fertilization on methane oxidation in soil of the broadbalk wheat experiment. Soil Biology and Biochemistry,25: 1307-1315.
    202. Husin Y A, and Murdiyarso D.1995. Methane flux from Indones in a wetland rice:The effect of water management and rice variety. Chemosphere,31:3153-3180.
    203. Hyatt C R, Venterea R T, Rosen C J, et al..2010. Polymer-Coated Urea Maintains Potato Yields and Reduces Nitrous Oxide Emissions in a Minnesota Loamy Sand. Soil Sciences society of America journal,74:419-428.
    204. IFOAM.2004. The role of Organic Agriculture in Mitigating Climate Change-a Scoping Study (eds Kotschi J. & Miiller-Samann K.), IFAOM. Bonn.
    205. Inubushi K, Cheng W G, Aonuma S, et al.2003. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology,9:1458-1464.
    206. IPCC.1997. Greenhouse gas emissions from agrieultural soils. In Greenhouse Gas Inventory Reference Manual Revised 1996, IPCC Guidelines for national greenhouse gas Inventories. IPCC/OECD/IGES, Braeknell, UK.
    207. IPCC.2000. IPCC Good Parercie Guidance and Uncertainty management in National Gerenhouse Gas Inventories. IGES, Tokyo.
    208. IPCC.2006.2006 IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Kanagawa, Japan.
    209. IPCC.2007a. Solomon S, Qin D H, Manning M, et al. he Pysical Science Basis.Climate Change 2007:Contribution of Working Group I to the Fourth Assessent Report of the Intergovemental Panel on Climete Change. Cambridge University Press, New York, NY, USA.
    210. IPCC.2007b. Agriculture. In:Metz, B, Davidson O R, Bosch PR. (Eds.), Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
    211. Jackson L E, Jalderon C F, Steenwerth K L, et al.2003. Responses of soil microbial processes and community structure to till age events and implications for soil quality. Geoderma,114:305-317.
    212. Jang I Y, Lee S H, Kyounung-Duk Zoh, et al.2011. Methane concentrations and methanotrophic community structure influence there sponse of soil methane oxidation to nitrogen contentina temperate forest. Soil Biology & Biochemistry,43:620-627.
    213. Jassal R S, Black T A, Roy R,et al.2011. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bolere spiration. Geoderma,162:182-186.
    214. Jiao Y, Huang Y, Zong L Q et al.2005. Effects of copper concentration on methane emission from rice soils. Chemosphere,58:85-193.
    215. Ju X T, Liu X J, Zhang F S, et al.2004. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations. Ambio,33:300-305.
    216. Ju X T, Kou C L, Zhang F S, et al.2006. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution,143 (1),117-125.
    217. Ju X T, Xing G X, Chen X P, et al.2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA,106:3041-3046.
    218. Kaiser E A, Heinemeyer O.1996. Temporal change in N2O-losses from two arable soils. Plant Soils,181:185-192.
    219. Kaiser E A, Kohrs K, Kueke M,et al.1998.Nitrous oxide release from arable soil-importance of N-fertilization, crops and temporal variation. Soil Biology & Biochemistry,12:1553-1563.
    220. Kaiser E A, and Ruser R.2000. Nitrous oxide emissions from arable soils in Germany:an evaluation of six long-term field experiments. Soil science and Plant Nutrition,163:249-260.
    221. Kamewada K.2007.Vertical distribution of denitrification activity in an Andisol upland field and its relationship withd issolved organic carbon:effect of long-term organic matter application. Soil Science and Plant Nutrition,53:401-412.
    222. Kanako K, Takuji S, Ryusuke H.2002. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan. Nutrient Cycling in Agroecosystems,63:239-247.
    223. Kanerva T, Regina K, Ramo K, et al.2005. Mesocosms mimic well natural meadows as regards greenhouse gas fluxesand potential activities of nitrifying and denitrifying bacteria. Plant Soil,276:287-299.
    224. Keith V C, Walter C O, John L H.1990.Response of black spruce (Piceamariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forest Research,20: 1530-1535,10.1139/x90-203.
    225. Kiese R C, Li C, Hilbert D W, et al.2005. Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rain forests in the wet tropics of Australia. Global Change Biology,11:128-144.
    226. Koyama T.1963.Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen, Journal of Geophysical Research,68:3971-3973.
    227. Kramer S B, Reganold J P, Glover J D, et al.2006. Reduced nitrate leaching and enhance denitrifier activity and efficiency in organically fertilized soils. PNAS,103:4522-4527.
    228. Kruger M, Frenzel P.2003. Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Global Change Biology,9: 773-784
    229. Lashof D A, Ahuja D R.1990. Relative contributions of green-house gas emissions to global warming. Nature,344:529-531.
    230. Laura S M, AnaMeijide, Lourdes G T, et al.2010.Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate. Agriculture, Ecosystems and Environment,137:99-107.
    231. Laville P, Lehuger S, Loubet B, et al.2011. Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural and Forest Meteorology,151:228-240.
    232. Lawlor K, Knight B P, Barbosa V L, et al.2000. Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS. Microbiol. Ecology,33: 129-137.
    233. Li C, Frolking S, Frolking T A.1992. Model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and ensitivity. Journal of Geophysical Research,97:9759-9776.
    234. Li C S, Aber J, Stange E, et al.2000.A Proeess-oriented model of N2O and NO emission from forest soils, Model development. Journal of Geophysieal Research,105:4369-384.
    235. Li C S, Frolking S, Xiao X, et al.2005.Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions:a case study for water management of rice agriculture of China. Global Biogeochem Cycles,19:3010.
    236. Lindsay L D, Stephen C W.2010. Reduced net atmospheric CH4 consumption is a sustained response to elevated CO2 in a temperate forest. Biology and Fertility of Soils,46:597-606.
    237. Liu S, Reiners W A, and Keller M.2000. Simulation of nitrous oxide and nitric oxide emissions from a Primary forest in the Costa Rican Atlantic Zone. Environmental Modeling and Software, 15:727-743.
    238. Liu S W, Qin Y M, Zou J W, et al.2010. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China. Science of the Total Environment,408:906-913.
    239. Liu W, Lu H, Wu W, et al.2008.Transgenic Bt rice doesnot affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biology and Biochemistry, 40:475-486.
    240. Liu X J, Mosier A R, Hatvorson A D, et al. Tillage and nitrogen application effects on nitrous and nitric oxide emissions irrigated corn fields. Plant and Soil,276:235-249.
    241. Lotter D W, Seidel R, Liebhardt W.2003. The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18:146-154.
    242. Lu D, Zong L, Xiao X, et al.2005. A comparison of heavy metals concentration in soils of organic and conventional farmingin typical regions of eastern China. Journal of Agro-environment Science,24 (1):143-147.
    243. Lu Y Y, Huang Y, Zou J W, et al.2006. Aninventory of N2O emissions from agriculture in China using Precipitation-rectified emission factor and background emission. Chemosphere, 65:1915-1924.
    244. Ma J, Xu H, Yagi K, et al.2008. Methane emission from paddy soils as affected by wheat straw returning mode. Plant and Soil,313:167-174.
    245. Ma J, Ma E D, Xu H,et al.2009. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry,41:1022-1028.
    246. MacDonald J A, Eggleton P, et al.1998.Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon. Global Change Biology,4:409-418.
    247. Mader P, Flieβbach A, Dubois D, et al.2002. Soil fertility and biodiversity in organic farming. Science,296:1694-1697.
    248. Maggiotto S R, Webb J, Wagner R C, et al.2000. Nitrous and nitrogen oxide emissions from turfgrass receiving different forms of nitrogen fertilizer. Journal of Environmental Quality,29: 621-630.
    249. Maljanen M, Liikanen A, Silvola J, et al.2003. Methane fluxes on agricultural and forested boreal organic soils. Soil Use and Management,19:73-79.
    250. Metting I, Blaine F.1993. Soil Microbial Ecology:Applications in Agricultural and Environmental Management. Marcel DekkerInc, New York, USA, pp646.
    251. Martin B and Conrad R.1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation. Soil Biology and Biochemistry,12:1517-152.
    252. Mattson M D and Likens G E.1990. Air Pressure and methane fluxes. Nature,347:718-719.
    253. Meijide A, Di'ez J A, Sa'nchez M L,et al.2007. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agriculture Ecosystems and Environment,121:383-394.
    254. Mogge B, Kaiser E A and Munch J C.1999. Nitrous oxide emissions and denirtification N-losses from agricultural soils in the Bornhoved lake region:Influenee of organic fertilizers and land use. Soils Biology Biochemsitry,31:1245-1252.
    255. Mosier A R, Schimel D, Valentine D, et al.1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature (London),350:330-332.
    256. Mosier A R, Duxbury J M, Freney J R, et al.1996. Nirtous oxide emissions rfom agrieultural fields:Assessment, measurement and mitigation. Plant soil,181:95-108.
    257. Mosier A R. and Delgado J A.1997.Methane and nitrous oxide fluxes in grasslands in western Puertorico. Chemosphere,35:2059-2082.
    258. Mosier A R, Halvorson A D, Reule C A, et al.2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. Journal of Environmental Quality,35:1584-1598.
    259. Mu Z J, Sonoko D K.2008. Nitrous oxide fluxes from upland soils in central Hokkaido,Japan. Journal of Environmental Sciences,20:1312-1322.
    260. Mulder C, de Zwart D, vanWijnen H J,et al.2003. Observational and simulated evidence of ecological shifts within the soil nematodee community of agroecosystems under conventional and organic farming. Function Ecology,17:516-525.
    261. Muller A, Davis J S.2009. Reducing global warming:the potential oforganic agriculture.http://orgprints.org/16507/1/mueller-and-davis-2009-Reducing Global Warming-Policy Brief, pdf (retrieved 11.12.10)
    262. Ndour N Y B, Baudoin E, Guisse A, et al.2008. Impact of irrigation water quality on soil nitrifying and total bacterial communities. Biology and Fertility of Soils,44:797-803.
    263. Neue H U, Sass RL.1998. The budget of methane from rice fields. IGAC tivities Newsletter, 12:3-11.
    264. Neue H U, Becker H P, Scharpenseel H W.1990. Organic matter dynamics, soil properties and cultural practices in rice and their relationship to methane production. In:Bouwban,A.F. (ed.), Soil and the Greenhouse Effect. John Wiley and Son, Chichester. pp 457-466.
    265. Nometh T, Abdel G A, Radimskzy L, et al.1996. Eeffet of plnat residues on ammonium and nitrate content of soils during incubation. In Pages 109-114. Van Cleemput, O.,.G Homfan, and A. Vemroesen. Eds. Progress Niortgen Cycling Studies. Kluwer, London.
    266. Oehl F, Sieverding E, Ineichen K, et al.2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environment Microbiol,69:2816-2824.
    267. Olesen J E, Schelde K, Weiske A, et al.2006. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment,112:207-220.
    268. Parashar D C, Rai J.1991. Parameters affecting methane emission from paddies fields. Indian Jounal of Radio and Space Physics,20:12-17.
    269. Pang X B, Mu Y J, Lee X Q, et al.2009. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China:effects of canopy, soil properties and field management. Atmospheric Environment,43:2571-2578.
    270. Parach D C, Rai J, et al.1991. Parameters affecting methane emission from paddy fields. Indian Journal of Radio and Space Physics,20:12-17.
    271. Parton W J, Mosier A R, Ojima D S, et al.1996. Generalized model for N2 and N2O produetion from nitrification and denitrifieation. Global Biogeochemieal Cyeles,10:401-12.
    272. Parton W J, Holland E A, and Del Grosso S J.2001. Generalized model for NOx and N2O emissions from soils. Journal of Geophysical Research,106:17403-17419.
    273. Parton W J, Mosie A R, Ojima D S, et al.1996.Generalized model for N2 and N2O Production from nitrification and denltrifieation. Global Biogcochemical Cyeles,10:401-412.
    274. Pappa V A, Hulin A, Rees R M.2011. Effects of water content and fertilisation on direct and indirect nitrogen losses from Vicia faba plants. Nitro-Europe conference. April.
    275. Paul J W, Beauchamp E G.1989. Effect of carbon constituents in manure on denitrifieation in soil. Canadian Journal of Soil Science,69:49-61.
    276. Pelletier N, Arsenault N, Tyedmers P.2008. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture; life cycle perspectives on Canadian canola, corn, soy, and wheat production. J. Environ. Manag,42:989-1001.
    277. Petersen S O, Regina K, Pollinger A, et al.2006. Nitrous oxide emissions from organic and conventional crop rotations in five European countries:Agriculture, Ecosystems and Environment, 112:200-206.
    278. Philip R G, Eldor A P, Richard R H.2000. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science,289: 1922-1925.
    279. Phillips R L.2007. Organic agriculture and nitrous oxide emissions at sub-zero soil temperatures. Journal of Geophysics Research,36:23-30.
    280. Pihlatie M, Syvasalo E, Simojoki A, et al.2004. Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sand soils under different soil moisture conditions. Nutrient Cyclingin Agroecosystems,70:135-141.
    281. Pimentel D, Hepperly P, Hanson J, et al.2005. Environmental, energetic, and economic comparisons of organic and conventional farmingsystems. Bioscience,55:73-582.
    282. Potter C S, Matson P A, and vitousek P M.1996. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research,101:1361-1377.
    283. Potter C S, Riley H R, and Klooster S A.1997. Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modelling,97:179-196.
    284. Potter C S, Davidson E, and Nepstad D.2001. Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in Amazon tropical forests. Forest Ecology and Management, 152:97-117.
    285. Qin Y M, Liu S W, Guo Y Q, et al.2010. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils,46: 825-834.
    286. Rachhpal S J, Andrew B T, Real R, et al.2011. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma,162:182-186.
    287. RauppJ, Oltmanns M. (2006) Soil properties, crop yield and quality with farm yard manure with and without biodynamic preparations and with inorganic fertilizers. In:Raupp J, Pekrun C, Oltmanns, M, Kopke U (Eds.).2008. Long-term field experiments in organic farming. ISOFARScientific Seriesl.Verlag Dr.Koster, Berlin, pp 135-155.
    288. Raupp J.2002.Wiedie Humusent wicklung langfristig sichern? Okologie Landbau 124:9-11.
    289. Reganold J, Elliott L, Unger Y.1987. Long-term effects of organic and conventional farming on soil erosion. Nature,330:370-372.
    290. Reicocky D C, W.Archer D.2007. Moldboard plow tillage depth and short-term carbon dioxide release. Soil & Tillage Research,94:109-121.
    291. Reiners W A, Liu S, and Gerow K G 2002. Historical and future land use effects on N2O and NO emissions using an ensemble modeling approach:Costa Rica, S Caribbean lowlands as an example. Global Biogeochemical Cycles,16:1068, doi:10.1029/2001GB001437
    292. Robertson G P, Paul E A, and Hawrood R R.2000. Greenhouse gases in intensive agrieulture: Contributions of individual gases to the radiative forcing of the atmosphere. Science,289: 1922-1925.
    293. Rochette P, Angers D A, Chantigny M H. et al.2004.Carbon dioxide and nitrous oxide emission following fall and spring applications of pig slurry to an agricultural soil. Soil Science Socioty American Journal,68:1410-1420.
    294. Rover M, Heinemeyer O, Kaiser E.1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biology and Biochemistry,30:1859-1865.
    295. Robertson G P, Grace P R.2004. Greenhouse gas fluxes in tropicaland temperate agriculture:the need for a full-cost accounting of global warming potentials. Environment Develop Sustain, 6:51-63.
    296. Rudaz A O, Walti E, Kyburz G, et al.1999. Temporal variation in N2O and N2 fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. Agriculture, Ecosystems & Environment,73:83-91.
    297. Kusa K, Sawamoto T, Hatan R.2002. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan. Nutrient Cycling in Agroecosystems,63:239-247.
    298. Ruser R, Flessa H, Schilling R, et al.2001. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems,59: 177-191.
    299. Sahrawat K L.1982. Nitrification in some tropical soils. Plant Soil,65:281-286.
    300. Sanchez M L, Vallejo A D J, Skiba U M.2008.The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biology and Biochemistry,40:142-151.
    301. Sass R L, Fishe F M, Tunre F T, et al.1991. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incoproration. Golbal Biogeoehemcial Cycles,5:335-350.
    302. Sass R L, Ding A, Huang Y.1999. Exchange of methane from rice fields:national, regional, and global budgets. Journal of Geophysical Research,104:26943-26952.
    303. Sass R L, Mosier A R, Zheng X H.2002. Introduction and summary:international workshop On greenhouse gas emissions from rice fields in Asia. Nutrient Cycling in Agroecosystems,63:9-15.
    304. Scgutz H, Holzapfel-Pschorn A, Conrad R, et al.1989. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice psddies field. Journal of Geophysical Research,94:16405-16416.
    305. Schaufler G, Kitzler B, Schindlbacher A, et al.2010. Greenhouse gas emissions from European soils under different land use:effects of soil moisture and temperature. European Journal of Soil Science,61:683-696.
    306. Schfltz H, Seiler W, Rennenberg H.1990a. Soil and land use related sources and sinks Of methane (CH4) in the context of the global methane budget. In:Bouwrnan, A.F. (ed.).Soils and the Greenhouse Effect, John Wiley and Sons, Chichester. pp:269-285.
    307. Schimel J P and Gulledge J.1998. Microbial community structure and global trace gases. Global Change Biology,4:745-758.
    308. Schrope M K, Chanton J P, Allen L H et al.1999. Effect of CO2 enrichment and elevated temperature on methane emissions from rice Oryzasativa. Global Change Biology,5:587-599.
    309. Scialabba N, Miiller-Lindenlauf M.2010. Organic agriculture and climate change. Renewable Agriculture and Food Systems,25:158-169.
    310. Sehy U, Dye J Q, Ruser R, et al.2004. Adding dissolved organic carbon to simulate freeze-thaw related N2O emissions from soil. Journal of Plant Nutrition and soil Science,167:471-478.
    311. Seiler W, Holzapfel-Pschorn A, Conrad R, et al.1984. Methane emission from rice paddies. Journal of Atmospheric Chemistry,1:241-268.
    312. Shel P M L, GBeaueham E P, and Thurell G W.2000. Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues. Communication soil Science Plant Annals,31:877-892
    313. Silnojoki A, and Jaakkola A.2000. Eeffet of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emissions in a loamy clay. European Journal of Soil Science, 51:413-424.
    314. Six J, Ogle S M, Breidt F J, et al.2004. The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biology, 10:155-160.
    315. Song G H, Li L Q Pan G X et al.2005. Top soil organic carbon storage of China and its loss by cultivation. Biogeochemistry,74:47-62.
    316. Speir T W, Kettles H A, and More R D.1995.Aerobice missions of N2O and N2 from soil cores: factors influencing production from 5N2 labled NO3- and NHU+. Soil Biology and Biochemistry,27: 1299-13061
    317. Smith C J, Brandon M, Partrick W H.1982. Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Socioty Plant Nutrient,28:161-171.
    318. Smith K A, MeTaggart HP, Dobbie K E, et al.1998. Emissions of N2O from Scottish agricultural soil, as a function of fertilizer N. Nutrient Cycling in Agroeeosystems,5:123-130.
    319. Smith P, Martino D, Cai Z C, et al. Climate Change 2007:Mitigation.Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change. Cambridge University Press, Cambridge, pp 497-540.
    320. Smith P, Martino D, Cai Z C, et al.2008. Greenhouse gas mitigation in agriculture. Phil Trans R Soc B363:789-813.
    321. Stainer RY, Adelberg E A, Ingraham J I.1976. General Microbiology (4th edition). The MacMillan Press Ltd., London.
    322. Stange E, Butterbaeh-Bahl K, and Papen H.2000. A Process oriented model of N2O and NO emissions ftom forest soils, sensitivity analysis and validation. Journal of Geophysical Researeh, 105:4385-4398.
    323. Stalenga J and Kawalec A.2008. Emission of greenhouse gases and soil organic matter balance in different farming systems. International Agrophysics,22:287-290.
    324. Sun H, Tang Y, Zhao Q G.2002. Nitrogen mineralization of prunings of six N2-fixing hedgerow species in a dry valley of the Jinsha River. Pedosphere.12:25-31.
    325. Syvasalo, E., K.Regina, E.Turtola, R. Lemola, M.Esala.2006. Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland. Agriculture Ecosystems Environment,113:342-348.
    326. Taylor F C, Brasseur G P, Zimmerman P R, et al.1991. A study of the source and sinks of methane and methyl chloroform using a global three-dimensional lagrangian troposperic trace transport model. Journal of Geophysical Research,96:3013-3044.
    327. Teepe R, Burmme R and Beese F.2000. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest. Soil Biology and Biochemistry.32:1897-1910.
    328. Thierfelder C, Wall P C.2009. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research,105:217-227.
    329. Thornton F C and Valente RJ.1996. Soil emissions of nitric oxide and nitrous oxider fom no-till corn. Soil Science Society of America Journal,60:1127-1133.
    330. Tokida T, Fumoto T, Cheng W, et al.2010. Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field:impact assessment and stoichiometric evaluation. Biogeosciences,7:2639-2653.
    331. USEPA (2006) Global anthropogenic non-C02 greenhouse gas emissions:1990-2002. Office of Atmospheric Programs, USEPA, Washington, DC Availableat:http://www.epa.gov/non CO2/ econ-inv/pdfs/global_emissions. pdf.
    332. van Boehove E, Jones H G, Pelletier P, et al.1996. Emission of N2O from agrieultuarl soil under snow cover:A significant part of N budget. Hydrological Processes,10:1545-1549.
    333. Van Bruggen A H C, Semenov A M.2000. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology,15:13-24.
    334. van Gestel N C, Schwilk D W, Tissue D T, et al.2011. Reductions in daily soil temperature variability increase soil microbial biomass C and decrease soil N availability in the Chihuahuan Desert:potential implications for ecosystem C and N fluxes. Global Change Biology 17:3564-3576, doi:10. 1111/j.1365-2486.2011.02479.x
    335. van Groenigena J W, Velthof G L, Oenema O, et al.2010. Towards an agronomic assessment of N2O emissions:a case study for arable crops. European Journal of Soil Science,61:903-913.
    336. Vassilios D L, Andreas P M, Kiriaki L K, et al.2011. Energy flowand greenhouse gas emissions in organic and conventional sweet cherry orchards located in or close to Natura 2000 sites. Biomass and bioenergy 35:1302-1310.
    337. Veldkamp E, and Keller M.1997. Nitrogen oxide emissions from banana a Plantation in the humid tropics. Journal of Geophysical Research,102:15889-15898.
    338. Velthof G L, Kuikman P J, Oenema O.2003.Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biology and Fertility of Soils,37:221-230.
    339. Wagner R C, and Thurtell G W.1998. Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management Practices. Nutrient Cycling in Agroecosystems, 52:151-163.
    340. Wang M Y, Dai A G, Shen R X.1990.CH4 emission from a Chinese rice paddies fields. Atca Meteorologica Sinica,401:265-275.
    341. Wang Y, Wang Y H.2003. Quick measurement of CH4, CO2 and N2O emissions from as hort-plant ecosystem. Advances in Atmospheric Sciences,20:842-844.
    342. Wang Y, Hu C, Zhu B, et al.2010. Effects of wheat straw application on methane and nitrous oxide emissions from purplish paddy fields. Plant and Soil Environ,56:16-22.
    343. Wassmann, R., H.U. Neue, C.Bueno, R.S.Lnatin, M.C.R.Alberto, L.V.Buendia, K.Bronson, H. PaPen, and H.Remrenbegr.1998. Methnae pruetion capacities of different rice soils derived from inhernet and exogenous substrates. Plant Soil,203:227-37.
    344. Waston R T, Mefira Filho L G, Sanhueza E, et al.1992. Greenhouse gases:Sources and sinks. In: Houghton, J.T., Callander, B.A., Vamey, S. K. (eds.).Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, New York, pp 25-47.
    345. Watanabe T, Kimura M, Asakawa S.2010. Diversity of methanogenic archael communities in Japanese paddy field ecosystem, estimated by denaturing gradient gelelectrophoresis. Biology and Fertility of Soils,46:343-354.
    346. Willer H, Kilcher L.2009. The world of organic agriculture-statistics and emerging trends 2009. Bonn:IFOAM; Frick:FiBL; Geneva:ITC,21.
    347. Whalen S C and Reeburgh W S.1990. Consumption of atmospheric methane by tundra soils. Nature,346:160-162.
    348. Workneh F, vanBruggen A H C, Drinkwater L E, et al.1993. Variables associated with corky root and phytophtora root rot of tomatoes in organic and conventional farms. Ecol. EpidemioL.83: 581-589.
    349. Wu H B, Guo Z T, Peng C H.2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology,9:305-315.
    350. Wu J, Brookes P C.2005. The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology & Biochemistry,37, 507-515.
    351. Xie Z B, Zhu J, Liu G, et al.2007. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology,13:1989-2007.
    352. Xing G X.1998. N2O emission from cropland in China. Nutrient Cycling in Agroecoysstems,52: 249-254.
    353. Xiong Z Q, Xie Y X, Xing, G X, et al.2006. Measurements of nitrous oxide emissions from vegetable production in China. Atmospheric Environment,40:2225-2234.
    354. Yan X Y, Akimoto H, and Ohara T.2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions ftom croplands in East, Southeast and South Asia. Global Change Biology,9 (7):1080-1096.
    355. Yan X Y, Akiyama H, Yagi K.2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panelon Climate Change Guidelines. Global Biogeochemical Cycles,23:GB2002.
    356. Yao Z S, Zheng X H, Xie B, et al.2009.Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. Atmospheric Environment,43:1888-1896.
    357. Yao Z S, Zhou Z, Zheng X H, et al 2010. Effects of organic matter in corporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant Soil,327:315-330.
    358. Yao H Y, Colin D C Qiao X R.2011. Soil Ph controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biology and Fertility of Soils,47:515-522.
    359. Zheng F, Wang X, Lu F, et al.2011. Effects of elevated ozone concentration on methane emission from a rice paddy in Yangtze River Delta, China. Global Change Biology,17:898-910.
    360. Zheng X H, Wang M X, Wang Y S, et al.1997. N2O and CH4 emission from Rice Paddies in Southeast China. Chinese Journal of Atmospheric Sciences,21:167-174.
    361. Zheng X H, Wang M X, Wang Y S, et al.1999. Characters of greenhouse gas (CH4, N2O, NO) emissions from croplands of southeast China. World Resoucre Review,11:229-246.
    362. Zheng X H, Wang M, Wang Y S, et al.2000. Impacts of soil moisture on nitrous oxide emission frome croplands:a case study on the rice-based agro-eeosystem in Southeast China. Chemosphere-global Change Scienee,2:207-224.
    363. Zheng X H, Han S, Huang Y, et al.2004. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles,18:1-19.
    364. Zheng J F, Zhang X H, Li L Q, et al.2007. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agricultrue Ecosystem Environment,120:129-138.
    365. Zheng X H, Mei B L, Wang Y S, et al.2008. Quantification of N2O fluxes from soil-plant systems maybe biased by the applied gas chromatograph methodology. Plant Soil,311:211-234.
    366. Zhu T B, Zhang J B, Cai Z C.2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant Soil,343:313-327.
    367. Ziska LH, Moya T B, Wassmann R, et.al.1998. Long-term growth at elevated carbon dioxid stimulates methane emission in tropical paddy rice. Global Change Biology,4:657-665.
    368. Zou J W, Huang Y, Zong L G, et al.2003. Eeffets of water regime and straw application in paddy rice season on N2O emission from following wheat growing season. Agricultural Science in China, 2:68-74.
    369. Zou J W, Huang Y,.Sun W J, et al..2005a. Contribution of plants to N2O emissions from soil-winter wheat ecosystem:pot and field experiments. Plant soil,269:205-211.
    370. Zou J W, Huang Y, Lu Y Y, et al.2005b. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmospheric Environment,39:4755-4765.
    371. Zou J W, Huang Y, Jiang J J, et al..2005c. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fertilizer application. Global Biogeochem. Cycles 19, GB2021.
    372. Zou J W, Huang Y, Zheng X H, et al.2007. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:dependence on water regime. Atmospheric Environment,41:032-8042.
    373. Zou J W, Liu S W, Qin Y M, et al.2009a Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agriculture, Ecosystems and Environment,129: 516-522.
    374. Zou J W, Huang Y, Qin Y M, Liu S W, et al.2009b. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 950s and 1990s. Global Change Biology,15:229-242, doi:10.1111/j.1365-2486.2008.01775.x.
    375. Zou J W, Lu YY, Huang Y.2010. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution,158:631-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700